
JAN
F E B
2025

LangChain, Microservices, AI, Python, C#
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Construct
Voice-Enabled AI
Applications

Use CQRS in
Microservices

Build Game
Encounters
with AI

Building AI
Pipelines with

LangChain

ARE YOU WONDERING
HOW ARTIFICIAL
INTELLIGENCE CAN
BENEFIT YOU TODAY?©

sh
ut

te
rs

to
ck

EXECUTIVE BRIEFINGS
Are you wondering how AI can help your business? Do you worry about privacy or regulatory issues stopping
you from using AI to its fullest? We have the answers! Our Executive Briefings provide guidance and
concrete advise that help decision makers move forward in this rapidly changing Age of Artificial Intelligence
and Copilots!

We will send an expert to your office to meet with you. You will receive:

1.	 An overview presentation of the current state of Artificial Intelligence.

2.	 How to use AI in your business while ensuring privacy of your and your clients’ information.

3.	� A sample application built on your own HR documents – allowing your employees to query
those documents in English and cutting down the number of questions that you
and your HR group have to answer.

4.	 A roadmap for future use of AI catered to what you do.

AI-SEARCHABLE KNOWLEDGEBASE AND DOCUMENTS
A great first step into the world of Generative Artificial Intelligence, Large Language Models (LLMs),
and GPT is to create an AI that provides your staff or clients access to your institutional knowledge,
documentation, and data through an AI-searchable knowledgebase. We can help you implement a first
system in a matter of days in a fashion that is secure and individualized to each user. Your data remains
yours! Answers provided by the AI are grounded in your own information and is thus correct and applicable.

COPILOTS FOR YOUR OWN APPS
Applications without Copilots are now legacy!

But fear not! We can help you build Copilot features into your applications in a secure and integrated
fashion.

CONTACT US TODAY FOR A FREE CONSULTATION AND DETAILS ABOUT OUR SERVICES.

codemag.com/ai-services
832-717-4445 ext. 9 • info@codemag.com

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay
$50.99 USD. Payments should be made in US dollars drawn on a US bank. American
Express, MasterCard, Visa, and Discover credit cards are accepted. Back issues are
available. For subscription information, send e-mail to subscriptions@codemag.com
or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly
by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX
77379 U.S.A. POSTMASTER: Send address changes to CODE Component Developer
Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �Building HAL 9000 (And It Runs

Completely on My Mac)
Did “2001: A Space Odyssey” get your interest in AI started early?
Come along as Sahil shows you how to make voice activation work for
you—offline!
Sahil Malik

16 	 �Exploring .NET MAUI:
MVVM, DI, and Commanding
In this fourth entry in his series on MAUI, Paul teaches you about the
Model-View-View-Model (MVVM) and Dependency Injection (DI) design
patterns to make reusable, maintainable, and testable applications.
You’ll also learn how to make your code-behind more efficient using
Commanding.
Paul Sheriff

28 	 �Building Microservices Architecture
Using CQRS and ASP.NET Core
Joydip shows you how the architectural pattern Command Query
Responsibility Segregation (CQRS) can help build scalable
applications in complex situations.
Joydip Kanjilal

46 	 �Exploring LangChain:
A Practical Approach to Language
Models and Retrieval-Augmented
Generation (RAG)
If you need to use large language models (LLMs) to build applications,
you need to know about LangChain, the powerful framework that helps
embed LLMs into complex workflows, uses conversational agents,
accesses knowledge retrieval systems, and creates automated pipelines.
Wei-Meng shows you how to make AI do the work for you.
Wei-Meng Lee

60 	 �Semantic Kernal Part 4: Agents
Following up on his previous articles on core concepts, coding,
and advances examples in Semantic Kernal, Mike covers agents,
to help you conquer complex tasks and build on their code.
Mike Yeager

64 	 �The Infinite Monster Engine
Even if you’ve never played it (or gotten hooked), you know about
Dungeons and Dragons. You may have envied your friends and
co-workers for their lost weekends spent immersed in fantastical
worlds. Jason’s love of the game is infectious and he shows you how
to get AI to help you build some memorable characters using an
Infinite Monster Engine.
Jason Murphy

72 	 �My New Copilot+ PC
Mike got a new computer, a Copilot+ PC. “That’s nice,”
you’re thinking. Well, wait until he tells you what it can do
with Windows Studio Effects, Recall, Phi Silica, Test Recognition,
Cocreator with Paint, and Super Resolution!
(And what doesn’t work yet.)
Mike Yeager

Departments
5 	 Editorial

11 	 �Advertisers Index

74 	 Code Compilers

5Title articlecodemag.com

DevIntersection

codemag.comEditorial

EDITORIAL

6

� Rod Paddock
�

7Title articlecodemag.com

Do you worry about privacy or regulatory issues stopping you from using AI to its fullest?

We have the answers!

We will send an expert to your office to meet with you. You will receive:

1.	 An overview presentation of the current state of Artificial Intelligence.

2.	 How to use AI in your business while ensuring privacy of your and your clients’ information.

3.	� A sample application built on your own HR documents – allowing your employees to query
those documents in English and cutting down the number of questions that you
and your HR group have to answer.

4.	 A roadmap for future use of AI catered to what you do.

CONTACT US TODAY FOR A FREE CONSULTATION AND DETAILS ABOUT OUR SERVICES.

codemag.com/executivebriefing
832-717-4445 ext. 9 • info@codemag.com©

sh
ut

te
rs

to
ck

ARE YOU
WONDERING
HOW ARTIFICIAL
INTELLIGENCE
CAN HELP YOUR
BUSINESS?

8 codemag.comBuilding HAL 9000 (And It Runs Completely on My Mac)

ONLINE QUICK ID 2501021

Building HAL 9000 (And It Runs
Completely on My Mac)
HAL 9000 is a fictional artificial intelligence (AI) character in Arthur C. Clarke's novel "2001: A Space Odyssey" and its film
adaptation directed by Stanley Kubrick. It had a conversational interface—humans could just talk to it like humans talk with each
other. It was super intelligent. The original idea came about in 1964 when Kubrick and Clarke started working on the project.

The year 1964 was when the Ford Mustang was introduced.
Rotary phones were how you made phone calls, and you
wore thick black polycarbonate glasses. Microwave ovens
were a new thing, as were color TVs. As the world danced
to “Pretty Woman” by Roy Orbison, or “Twist and Shout”
by the Beatles, society was looking forward to the seem-
ingly impossible goal of putting man on the moon by the
end of the decade.

It’s in that enchanting time that HAL 9000 was imagined,
a super intelligent computer program that could control
the functions of a spaceship, that was self-aware, and
people could interact with in natural language.

Fast forward to 2024. Although I don’t quite yet have my
personal flying spaceship, HAL 9000 is a pretty close real-
ity. Nerd that I am, I set out to build HAL 9000 for myself.

In my last article in CODE Magazine, I talked about run-
ning AI locally. The goal of this article is different but
straightforward. I want to build a HAL 9000 that I can
speak to, in any language, about any topic. And it should
give me answers about whatever I ask for. Additionally, I
want to do it all on my off-the-shelf commercially avail-
able MacBook Pro. Finally, I want to be able to build it
so that it runs completely offline, so that in the rare case
I manage to get a spaceship, I don’t have to rely on an
internet connection to run it.

As I build it, I’ll share all of the code and explain it as I
go. In the end, I’ll put together a fully functioning ap-
plication, HAL 9000.

What You’re Going to Need
To follow this article, you’ll need a beefy machine. You’re
not going to rely on the cloud to build the model for
you. You’ll need a powerful local compute capability. This
means either a higher-end Windows/Linux laptop or one
of the newer Macs. And yes, you’ll need a GPU. AI involves
a lot of calculations and to speed things up, a lot of them
are offloaded to the GPU. The difference between doing
everything on the CPU vs. GPU is astronomical. For my
purposes, I’ll use my rusty trusted M1 Max MacBook Pro.
It’s a few years old, but it has enough oomph to work
on thousands of pages of text, which is good enough
for my needs. Hopefully, you have a similarly equipped
machine, or, to follow along you could just use a smaller
input dataset.

Also, you’ll download and use standard libraries, pack-
ages, and large language models that other companies
and people have built. But when you’re done with it, no

data will be sent to the cloud, and your application will
have the ability to be able to run completely offline. To
get started, though, you’ll need an internet connection.

Also, I will use Python, so ensure that you have Python
3x installed.

The Main Components
Let’s think about the problem and break it down into
smaller parts.

I’ll need the ability to listen and convert my spoken text
into ASCII text. When I speak into my mic, saying “Let’s
talk about New York City,” my program should be able to
transcribe the text I say on the fly.

I’ll need a large language model (LLM) that takes my spo-
ken text, transcribed to plain text, as inputs, and returns
a sensible response.

And finally, I’ll need the ability to take the LLM’s response
and convert it to audio, which I can then hear through
my speakers.

All this put together should give me a super intelligent
sentient being.

Enter Hugging Face
Hugging Face (http://huggingface.co) is a popular open-
source AI community and platform focused on natural
language processing (NLP) and transformer-based models.
It has a pretty impressive transformers library, a number
of pre-trained models, a model hub where you can find or
contribute to models, a large number of datasets for your
own experimentation, and so much more. I figured that
this would be a great place for me to start exploring what
I can build.

For my purposes, models are what I care about. I went
to https://huggingface.co/models, started looking at the
various models, and found that there are a number of im-
pressive models available. As I started playing with them,
I started discovering superpowers. For instance, a long
time ago, I saw that Microsoft Cognitive services (now
known as Microsoft AI services) had a REST API that you
could just show a picture to and it would detect what it
saw in the picture. Or draw bounding boxes around things
it saw in the picture. There’s a whole section of models
dedicated to computer vision. I tried a few capabilities
there, like I showed it a picture of my dogs, and it im-
mediately recognized the dogs in the picture, even the

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting
with fellow geeks in real
time. His talks and train-
ings are full of humor and
practical nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

9codemag.com Building HAL 9000 (And It Runs Completely on My Mac)

ings. Those errors and warnings are worth paying heed to.
For the purposes of this article, I want to keep my outputs
clean, so I suppressed them, as follows.

import logging
import warnings

warnings.filterwarnings('ignore')
for name in
 logging.Logger.manager.loggerDict.keys():
 logging.getLogger(name).setLevel(
 logging.CRITICAL)

Okay, I’m excited. My simple audio transcription is work-
ing. I also want to be able to talk into a microphone and
have Whisper transcribe it on the fly. I played around a
bit with Whisper and was able to write code, as shown in
Listing 2. This code allows me to speak into the micro-
phone, and Whisper can detect it. A curious thing you see
in Listing 2 is “device_index=7”. What is that magic num-
ber 7? Well, 7 isn’t just my lucky number; it’s the index of
the microphone I wish to listen to. To list all microphones
on your computer, just use the below code snippet:

for index, name in
 enumerate(
 sr.Microphone.list_microphone_names()):
 print("Microphone with name \"{1}\"
 found for `Microphone(device_index={0})`".
 format(index, name))

Now let’s run my code and see how it works. To run the
code in VSCode, I simply hit F5, and once the code prints
“Say something,” I just said whatever I wished. The out-
put can be seen in Figure 1.

breeds; or I could have a conversation about the image,
like “Tell me more about a Doberman” etc. Theoretically
speaking, I could just show my AI bot a picture from
my webcam, and start talking about it. Or I could run
it on my phone and show it a weed, have it recognize
the plant, and then tell me how to get rid of it. Or how
about a bunch of scanned receipts and ask something
like, “How much did I spend on Burritos last year?” I’ll
leave computer vision for another day. For now, let’s re-
focus on audio.

There are a bunch of models available under the Audio
section of the models page in Hugging Face. There are
text-to-speech models, text-to-audio, automatic speech
recognition, audio-to-audio, audio classification, and
voice activity detection.

For my needs, I already know that I will find text-to-
speech and automatic speech recognition useful.

Automatic Speech Recognition
This is the first problem I need to solve. I need to be
able to speak to the computer, hopefully in any language,
and it should be able to transcribe the texts with decent
accuracy. I noticed that one of the models available was
openai/whisper. So I decided to play with it.

Whisper (https://github.com/openai/whisper) is a gen-
eral-purpose speech recognition model. It’s trained on a
large dataset of diverse audio and is also a multitasking
model that can perform multilingual speech recognition,
speech translation, and language identification. In order
to use Whisper on my Mac, I needed to install FFmpeg
first. Well, that’s easy. I was able to install that using the
command below.

brew install ffmpeg

With the above in place, I started writing my first simple
Whisper-based program. The first step is to define a Py-
thon .venv, which I’ll skip the details of since I assume
you’re already familiar with the basics of Python.

With that in place, let’s define the requirements.txt,
which is shown below

soundfile
pyaudio
SpeechRecognition
git+https://github.com/openai/whisper.git

I defined a launch.json in my .vscode folder that allowed
for debugging, which can be seen in Listing 1. And now
my canvas was set up to start playing with Whisper. I
went ahead and wrote the following simple program:

import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

To my shock, whatever text was spoken in audio.mp3,
Whisper transcribed accurately into text. I do notice that
these open-source models show a lot of errors and warn-

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Python Debugger: Current File",
 "type": "debugpy",
 "request": "launch",
 "program": "${file}",
 "console": "integratedTerminal"
 }
]
}

Listing 1: My launch.json to enable Python debugging

import speech_recognition as sr
from speech_recognition import
 Microphone, Recognizer, UnknownValueError

r = sr.Recognizer()
with sr.Microphone(device_index=7) as source:
 print("Say something!")
 audio = r.listen(source)

try:
 print("You said:" +
 r.recognize_whisper(audio,
 language="english"))
except sr.UnknownValueError:
 print("Didn't understand")
except sr.RequestError as e:
 print(f"Could not request results; {e}")

Listing 2: Live audio transcribing using Whisper

10 codemag.com

This is incredible, but I’m going to keep things simple
by limiting this article to English. You can imagine how
easy it would be to modify this bot to work in any lan-
guage by just detecting the language being spoken and
passing that as an input to the recognized language to
converse in.

As impressive as this is, I want my audio transcribing to
work continuously. In other words, until I say a catch
phrase like “Goodbye,” I want my program to keep doing
audio transcriptions. After all, as I’m writing the chat bot,
I’m going to have a conversation with it. I’ll say things
like, “Let’s talk about New York City,” and it’ll tell me
some general information about New York City, and then
I might ask further questions based on the context of the
answer.

The code to listen for audio continuously until I say
“Goodbye” can be seen in Listing 4. This code running in
my VSCode’s debug output can be seen in Figure 2.

One thing I’ll say about the output you see in Figure 2,
is that although the transcription is shockingly accurate,
and works across multiple languages, I did notice that
any background noise can easily confuse it. So if you’re
following me along in actual code, try and do this in a
quiet environment. That said, there are tweaks you can
make to tune out background noise.

All right, I think we have the first ingredient of the bot
all done. Let’s make it smarter by connecting my spoken
text to a large language model.

Connecting My Text to a large LLM
A large language model (LLM) is a type of artificial in-
telligence (AI) designed to process and understand hu-
man language, typically using deep learning techniques.
There are many large language models, specialized for
various needs. You could pick from any number of large
language models available on Hugging Face. All the big
popular names like Llama and Gemma and Phi, etc., are
available.

Now, large tech companies have spent billions of dol-
lars building these models, so they don’t just give it
away. For most models, you’ll have to fill out a form
and acknowledge terms of use, and, for some models
like Llama3.1, you must wait for approval. In certain
jurisdictions, they may not allow you to use the model
at all.

Figure 1: Speech recognition seems to work.

Figure 2: Output of continuously recognizing spoken text

import whisper

model = whisper.load_model("base")

audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")

options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)

print(result.text)

Listing 3: Audio transcribing in any language

import os
import speech_recognition as sr
from speech_recognition import
 Microphone, Recognizer, UnknownValueError

def audio_callback(recognizer, audio):
 try:
 prompt = recognizer.recognize_whisper(
 audio, model="base", language="english")
 print(prompt)
 if "bye" in prompt.lower():
 stop_listening(wait_for_stop=False)
 os._exit(0)
 except UnknownValueError:

 print("There was an error processing the audio.")

recognizer = Recognizer()
microphone = Microphone(device_index=7)

with microphone as source:
 recognizer.adjust_for_ambient_noise(source)

stop_listening =
 recognizer.listen_in_background(microphone,
 audio_callback)
input() # wait to exit
stop_listening(wait_for_stop=False)

Listing 4: Listen for spoken text continuously

As exciting as this is, I couldn’t help but wonder: What if
I wanted to make this smarter? As in, be able to speak in
any language, detect the language, and use that detected
language to both chat with my LLM and use it for audio
transcription. This can be done using the code shown in
Listing 3.

Building HAL 9000 (And It Runs Completely on My Mac)

11codemag.com

The “mps” is because I’m running on a Mac. If you’re on
a PC with an NVIDIA card, just replace that with “cuda”.

A transformer pipeline in AI refers to a sequence of
processing stages that use transformer architectures to
perform specific tasks. At the bare minimum, a pipe-
line takes a model to make predictions from inputs, and

You could take any of these models, and fine tune them
also. Fine-tuning a Large Language Model (LLM) in-
volves adjusting the model's weights and parameters to
better perform a specific task or adapt to a particular
domain. By fine tuning, you can improve performance
for a specific task, you could adopt to your specific do-
main, you can reduce bias, or you might improve model
generalizability, as need be. I’ll leave fine tuning for a
future article. For now, I feel that a generic LLM will
suffice.

I started playing around with a few models, and decided
I’ll use Gemma for this article. Gemma (Generative Expert
Memory Model Architecture) is an AI model developed
by Google. Google has put in all the hard work already.
They’ve trained it on 45 terabytes of data, and it’s in-
credible and knowledgeable in so many fields. I found
Gemma to be great for conversational AI, and with mini-
mal prompt engineering, I was able to get it to give me
coherent answers that were fun and useful. I’m not saying
Llama is bad; to be honest, all of these models are quite
comparable to each other.

Let’s start building the app with Gemma. Because I’m run-
ning everything locally, I went with the 2-billion param-
eter version of Gemma. The more parameters, the better
your accuracy, but the more beefy computer you’re going
to need to run this. How about using LangChain to do
something smart? When you have access to puny hard-
ware, run the 2-billion parameter model, and when you
have a server, call out to the server running the 45B pa-
rameter. When you’re online, call out to OpenAI and some
model there.

To use this model, I had to visit https://huggingface.co/
google/gemma-2-2b-it and on the right hand top, click
on the “Use this model” button and select “Using Trans-
formers”. Right there it showed me some example code.
Well, this is too easy.

I must say that you’ll have to frequently fill out an ac-
knowledgement form, and the team building Llama must
allow you to use a model. This is as simple as going to the
page for Llama on Hugging Face, filling out a simple form,
going to your Hugging Face account settings, and creat-
ing an access token for yourself at https://huggingface.
co/settings/tokens. With all that in place, just include
the below snippet in your code and you’re good to go.

from huggingface_hub import login
login("yourtoken")

Now back to Gemma, where you don’t need to have an au-
thentication token, let’s start writing code for the conver-
sational bot. The first step is to create a pipeline object,
as can be seen below.

import torch
from transformers import pipeline

pipe = pipeline(
 "text-generation",
 model="google/gemma-2-2b-it",
 model_kwargs={"torch_dtype": torch.bfloat16},
 device="mps",
)

import pandas as pd
from transformers import
 pipeline, AutoTokenizer,
 AutoModelForSequenceClassification

Load pre-trained model and tokenizer
model_name =
 "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model =
 AutoModelForSequenceClassification.from_pretrained(
 model_name)

Create pipeline
classifier = pipeline("sentiment-analysis",
 model=model, tokenizer=tokenizer)

Example text
text = "I loved the new movie!"

Run pipeline
result = classifier(text)

print(result)

Listing 5: An example of a pipeline for sentiment analysis

Advertisers Index

CODE Consulting--AI Services
	 www.codemag.com/ai-services� 2

CODE Consulting--Executive Briefing
	 www.codemag.com/executivebriefing� 7

CODE Consulting--Copilot
	 www.codemag.com/copilot� 70

CODE Consulting
	 www.codemag.com/Code� 75

CODE Staffing
	 www.codemag.com/staffing� 76

DevIntersection
	 www.devintersection.com� 5

dtSearch
	 www.dtSearch.com� 15

Every Woman Tech
	 www.everywoman.com/tech-forum� 35

UAV Expo
	 www.expouav.com� 45

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsi-
bility for errors or omissions.

Building HAL 9000 (And It Runs Completely on My Mac)

12 codemag.com

model to perform this task. Using that model, you’d cre-
ate a pipeline. Although not the focus of this article, I
wanted to show you how simple it is to build sentiment
analysis. You can see the code for sentiment analysis
using a popular model in Listing 5. As you can see, it’s
a matter of having a model and a tokenizer, building a
pipeline and using it.

It would be cool to pair this sentiment analysis with the
simple old bot and make it smart enough that if the con-
versation is becoming too sad, it’ll throw a joke in there
for fun. I’ll leave that as an experiment for you to do.

But let’s refocus on my intelligent bot and get back to
building it. With my pipeline set up, I can give it an input
as “prompt” and the large language model returns me the
output I’m looking for. This is as simple as the code snip-
pet you see below.

messages = [
{"role": "user", "content": prompt},
]
outputs = pipe(messages, max_new_tokens=256)
assistant_response =
 outputs[0]
 ["generated_text"][-1]["content"].strip()

Feel free to run this, and you’ll be able to get an answer
to any question you may have. But that’s not what we’re

Figure 3: Me talking with my chatbot

Figure 4: My hardworking GPU

import torch
from transformers import pipeline

pipe = pipeline(
 "text-generation",
 model="google/gemma-2-2b-it",
 model_kwargs={"torch_dtype": torch.bfloat16},
 device="mps",
)

def generate_text(prompt, previousResponses):
 prompt = prompt + ". Answer in brief."
 allPrevResponses = ""
 for previousResponse in previousResponses:
 allPrevResponses += previousResponse + "\n"

 messages = [
 {"role": "user", "content": allPrevResponses +
 "\n" + prompt},
]
 outputs = pipe(messages, max_new_tokens=256)
 assistant_response =
 outputs[0]["generated_text"][-1]["content"].strip()
 return assistant_response

previousResponses = []
while True:
 user_input = input("\033[92m >> You: \033[0m")
 response = generate_text(user_input, previousResponses)
 previousResponses.append(response)
 print("\033[93m >> AI:", response, "\033[0m")

Listing 6: My fancy text based chat bot

a tokenizer for mapping raw text inputs to a token. A
tokenizer is simply a component that splits text into
individual words, phrases, or sub words, called tokens.
For instance, you may have something like, “take some
text and do sentiment analysis on it,” and you’d need a

Building HAL 9000 (And It Runs Completely on My Mac)

13codemag.com

trying to do. We want our bot to be smarter. We want it
to understand context. So if I say, “Let’s talk about dogs”
with a subsequent question about “What is bark?”, I want
to know about dogs barking. But if I say, “Let’s talk about
trees” with a subsequent question of “What is bark?”, I
wish to be told about tree bark.

Context is important. For example, “my dogs love to play
in leaves” or “my dogs are not happy when their owner
leaves”, have two entirely different meanings for the
same word.

There are two ways to attach context. One is that instead
of role : user, you can just attach all previously said text
as role : assistant. Alternatively, the prompt can just
remember all previously generated text. I’ll use the latter
approach and put together a full code example, as can be
seen in Listing 6. Notice that in Listing 6 I have also
added a prompt of “Answer in brief.” I found Gemma to be
a bit too wordy. Or maybe I’m just impatient.

My interaction with Gemma can be seen in Figure 3. Re-
member, this is me typing into a keyboard.

Notice that all the processing is being done locally; look
at how hard my GPU is working in Figure 4 when I ask it
all these questions.

There are some other interesting things you can see in
Figure 3. My second question said, “Answer in pirate
style” and the model did. This is so funny. But in my next
question, I just said “What can I do there?” But what is
“there”? My model understood from the context that I’m
still talking about New York City.

Figure 5: AI helping me with cooking

Figure 6: AI helping me with cooking

import os
import speech_recognition as sr
from speech_recognition
 import Microphone, Recognizer, UnknownValueError
import torch

import torch
from transformers import pipeline

import logging
import warnings

warnings.filterwarnings('ignore')
for name in logging.Logger.manager.loggerDict.keys():
 logging.getLogger(name).setLevel(logging.CRITICAL)

pipe = pipeline(
 "text-generation",
 model="google/gemma-2-2b-it",
 model_kwargs={"torch_dtype": torch.bfloat16},
 device="mps",
)
def AskAI(prompt, previousResponses):
 prompt = prompt + ". Answer in brief."
 allPrevResponses = ""
 for previousResponse in previousResponses:
 allPrevResponses += previousResponse + "\n"

 messages = [
 {"role": "user",
 "content": allPrevResponses + "\n" + prompt},
]
 outputs = pipe(messages, max_new_tokens=256)
 assistant_response =
 outputs[0]["generated_text"][-1]["content"].strip()

 return assistant_response

previousResponses = []

def audio_callback(recognizer, audio):
 try:
 prompt = recognizer.recognize_whisper(
 audio, model="base", language="english")
 print("\033[92m >> You: " + prompt + " \033[0m")
 print("\r Thinking ")
 response = AskAI(prompt, previousResponses)
 previousResponses.append(response)
 print("\r\033[93m >> AI:", response, "\033[0m\n")

 if "bye" in prompt.lower():
 stop_listening(wait_for_stop=False)
 os._exit(0)
 except UnknownValueError:
 print("There was an error processing the audio.")

recognizer = Recognizer()
microphone = Microphone(device_index=7)

with microphone as source:
 recognizer.adjust_for_ambient_noise(source)

stop_listening =
 recognizer.listen_in_background(
 microphone, audio_callback)

print("\n ------------------------------ \n
 I am your super friendly AI,
 what do you wanna chat about today? \n ")
input() # wait to exit
stop_listening(wait_for_stop=False)

Listing 7: My audio driven chat bot

Building HAL 9000 (And It Runs Completely on My Mac)

14 codemag.com

And it gives me a nice, detailed output, as can be seen
in Figure 5.

I like the “Start simple” bit, so let me ask how to make
a grilled cheese.

How do I make a grilled cheese?

As expected, AI gives me quick five steps to make a
grilled cheese. This can be seen in Figure 6.

Now, that I’ve established a context, I can just ask a
subsequent question.

Will it make me fat?

To which AI promptly replies,:

No, a grilled cheese is unlikely to make you fat if
you eat it in moderation as part of a balanced diet.

Well, that’s good to know! Feel free to keep this conversa-
tion going about any other topic you wish.

Text to Audio
All this chat about grilled cheese is making me hungry, so
let me leave you with a little teaser. You’ve so far built a
fully functional chatbot. I’ve played a bit with it: I asked
it about Microsoft Graph, programming in general, securi-
ty-related stuff, I asked it about cooking as you saw, and
I asked it about touristy stuff. I asked it about investing.
I asked it about historical events. In every instance, my
jaw was on the floor.

I did talk about a few extensibility points, like detecting
language, and adding sentiment analysis. But to round
up the chatbot, let’s add the last bit, which is text to
audio.

This is where the real world kicks in. In the movie, HAL
answered questions that were suited to short audio in-
teractions. That isn’t how the real world operates. Some-
times the output is code. Sometimes it’s images. Other
times it’s bulleted lists. Just look at Figure 5. Now imag-
ine closing your eyes and having that text read out to you
as audio. I wouldn’t find that very useful, to be frank. It’s
easier to read bulleted lists yourself than to have them
read out to you.

Still, because I set out to do a full audio-based interac-
tion, let’s add text to speech also.

Back on Hugging Face, I found the 2noise/chatts model
as the most popular text-to-audio model. It was easy to
put together a code example that converted any input
text to a pretty decent quality of spoken audio. You can
see the code for text-to-audio in Listing 8. In fact, I was
able to visit https://chattts.com and tweak the inputs to
figure out what parameters worked best for me.

If you’re curious, I played the “Let’s talk about dogs” and
“Let’s talk about trees” game and asked “Tell me about
bark.” Here are the outputs I received:

Bark is a dog's way of communicating, like a "hello"
or a "warning." It's a complex sound with many mean-
ings depending on the context and the dog's tone.

Bark is fascinating! It's the tree's protective out-
er layer, a shield against insects, disease, and
the elements. It also plays a role in water and
nutrient transport, and can even change color
and texture with age.

Putting It All Together
I think we have a pretty impressive application in the
works. Let’s put all this together now. I can convert text
to audio, I can listen continuously. I can converse with
an LLM. I can chat based on context. Putting Listing 4
and Listing 6 together, I get Listing 7, which is my fully
functional chatbot that I can speak with.

Let’s give it a try. If you’re online, I put together a few
examples of this program running.

You can see me chat about Microsoft Graph here: https://
www.youtube.com/watch?v=8vJtldKwxKw. Or you can see
me chatting about airplanes here: https://www.youtube.
com/watch?v=rnn9hLdvWv4. Or you can see me learn
about securing JavaScript applications here: https://
www.youtube.com/watch?v=OGnwGJgiABQ.

It’s probably more compelling to watch a video and hear
me talk and get a feel for how this works interactively
than to see it in text, but if you’re not online, let’s see
some fun interaction here.

Let’s say I’m throwing a party and I’ve never cooked any-
thing. My first question to AI is:

Teach me how to cook.

import sounddevice as sd
import ChatTTS

chat = ChatTTS.Chat()
chat.load(compile=True)

texts = [
 "how are you?"
]

params_infer_code =
 ChatTTS.Chat.InferCodeParams(
 temperature = .3,
 top_P = 0.7,
 top_K = 20,
)
wavs = chat.infer(texts,
 params_infer_code=params_infer_code)

sd.play(wavs[0][0], 24000, blocking=True)

Listing 8: Text to audio

SPONSORED SIDEBAR

Stay Connected
with CODE Magazine
on LinkedIn

Join our professional
community on LinkedIn
to stay ahead in the
tech world.

Exclusive Content:
Get the latest tech
insights and articles.

Industry Updates:
Stay informed with
cutting-edge news.

Networking:
Connect with peers and
industry leaders.

Help us grow by sharing
with colleagues and
friends.

Follow us today:
www.linkedin.com/
company/code-magazine

Building HAL 9000 (And It Runs Completely on My Mac)

15codemag.com

� Sahil Malik
�

®

 The Smart Choice for Text
Retrieval® since 1991

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Developers:
• SDKs for Windows, Linux, macOS
• Cross-platform APIs cover C++, Java

and current .NET
• FAQs on faceted search, granular data

classification, Azure, AWS and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Instantly Search
Terabytes

I’ll leave it up to you to integrate it into Listing 7, but
as I said, I didn’t find it very useful except for simple
questions that had straightforward and to-the-point an-
swers. For example, quick math questions, or asking fac-
tual questions that didn’t need long drawn-out answers.

Summary
Did I just build a super intelligent chat bot that I can talk
with about any topic and it replies intelligently? Yeah, I
just did. And I’ve been using it to learn about all sorts of
stuff. I’ve heard stuff like the federal reserve is lowering
rates and it’s taught me all about it.

I find it simply amazing that what was purely science
fiction in 1964, I was able to effectively build over the
weekend. Just to drive home the point of how incredible
this is, what else was considered science fiction in 1964?
What’s considered science fiction today? Teleportation?
Cloning? Travel at the speed of light? Time travel? Admit-
tedly, 1964 was 60 years ago, but that’s still within one
person’s lifetime.

Can you imagine, in the year 2094, some random guy using
off-the-shelf hardware to clone himself, time travel back
to 2024, and write an article to show how to build HAL?

Yeah, neither can I.

Well, I’m off to make a grilled cheese. You have fun.

Building HAL 9000 (And It Runs Completely on My Mac)

16 codemag.comExploring .NET MAUI: MVVM, DI, and Commanding

ONLINE QUICK ID 2501031

Exploring .NET MAUI:
MVVM, DI, and Commanding
Up to this point in this article series on .NET MAUI ,you created a set of typical business application input pages and learned
about the many different controls you can use for data input. Data binding is a great feature of .NET MAUI to help you eliminate
C# code in your applications. In this article, you’ll learn the Model-View-View-Model (MVVM) and Dependency Injection (DI)

design patterns to create reusable, maintainable, and test-
able applications. You’ll learn to eliminate code in your
code-behind by taking advantage of Commanding. You’ll
also learn how to apply Commanding while keeping your
various components reusable across other types of applica-
tions. Finally, you’ll learn how to keep your MauiProgram
class maintainable by employing extension methods.

Introduction to Model-View-View-
Model (MVVM)
You’ve been using an entity class to supply the controls
with data, but an entity class shouldn’t be used for this
purpose. A View Model class is used to bind data to the
controls on the UI. View models have properties used to
set which buttons are enabled/visible, which menus are
enabled/visible, and for posting informational and error
messages. View model classes have methods to load data
into entities or save data. View model classes may expose
an entity object or have properties to expose only those
properties of the entity object needed for the UI.

The whole point of using the MVVM design pattern is better
reusability, maintainability, and testability of classes. De-
sign your classes and assemblies in such a manner that you
achieve the ability to reuse those classes across multiple
projects, as shown in Figure 1. The "View Layer" such as
WPF, Blazor, .NET MAUI, etc., should know how to use the
properties and methods of the view model classes. How-
ever, the "View Model Layer" should not know about the
view layer. The view model classes should know which re-
positories (Data Layer) and Model (Entity Layer) classes it

can use to fill in its properties. However, the repositories
and entities shouldn’t know anything about the view model
classes or the view layer. It’s important to keep the classes
in the view model, model, and data layer assemblies' tech-
nology-agnostic. In other words, those assemblies should
be simple class libraries and have no references to any spe-
cific front-end technology to achieve maximum reusability.

Add More Properties to the Common Base Class
For the application being developed in this article, a few
view model classes are needed. Typically, you create a
view model class for each view/page you create in your
application. Almost all pages in your application need to
display information, error, and validation messages to the
user. Let's add some properties to the CommonBase class
to hold that data. Open the BaseClasses\CommonBase.
cs file and add a couple of Using statements.

using System.ComponentModel.DataAnnotations.Schema;
using System.Text.Json.Serialization;

Add a string property named InfoMessage to hold infor-
mational messages, and another string property named
LastErrorMessage to hold the last error message to dis-
play to the user. The LastException property keeps track
of the last exception generated. The constant REPO_NOT_
SET is used when you use a repository class to get data
from a data store. This constant provides the error mes-
sage to display if you forget to set the repository object
into a class that needs it. You’ll see examples of these
later, but for now, add the code shown in Listing 1 to the
CommonBase.cs file.

Paul D. Sheriff
http://www.pdsa.com

Paul has been working
in the IT industry since
1985. In that time,
he has successfully
assisted hundreds of
companies’ architect
software applications
to solve their toughest
business problems. Paul
has been a teacher and
mentor through various
mediums such as video
courses, blogs, articles and
speaking engagements
at user groups and
conferences around the
world. Paul has multiple
courses in the www.
pluralsight.com library
(https://bit.ly/3gvXgvj)
and on YouTube.com
(https://www.youtube.
com/@pauldsheriff) on
topics ranging from C#,
LINQ, JavaScript, Angular,
MVC, WPF, XML, jQuery,
and Bootstrap. Contact
Paul at psheriff@pdsa.com.

Figure 1: Use the MVVM design pattern for better reusability and maintainability.

17codemag.com Exploring .NET MAUI: MVVM, DI, and Commanding

Notice that each property raises the PropertyChanged
event when a new value is set into the property. Two
attributes are added to each property [NotMapped] and
[JsonIgnore]. The [NotMapped] attribute is used because
each entity class inherits from this class and if you use
the Entity Framework, you don’t want it thinking it needs
to locate a column with any of these property names. The
[JsonIgnore] attribute is optional, but you typically don’t
want to send these properties as JSON when serializing
and deserializing an entity object through a Web API.

Create a View Model Base Class
Like you did with the entity classes, create a view mod-
el base class that each view model inherits from. Right
mouse-click on the Common.Library\BaseClasses folder
and add a new class named ViewModelBase and replace
the entire contents of the new file with the code shown
in Listing 2.

This class inherits from the CommonBase class, then adds
an additional property and method. The RowsAffected
property is set after each method that either retrieves
or modifies data in a data store. This can be useful to
display to the user how many items were found when
searching, or how many items were modified. The Pub-
lishException() method is where you write code to per-
form logging of the exception.

Create View Model Layer Class Library
As you did with the User class, create a new Class Library
project into which you place all your view model classes.
Right mouse-click on the Solution and add a new Class Li-
brary project named AdventureWorks.ViewModelLayer.
Delete the Class1.cs file as this file is not used. Right
mouse-click on the Dependencies folder in this new Ad-
ventureWorks.ViewModelLayer project and add a project
reference to the Common.Library project and to the Ad-
ventureWorks.EntityLayer project.

Add a User View Model Class
Right mouse-click on the AdventureWorks.ViewModel-
Layer project and add a new folder named ViewModel-
Classes. Right mouse-click on the ViewModelClasses

folder and add a new class named UserViewModel. Re-
place the entire contents of this new file with the code
shown in Listing 3.

The UserViewModel class (Listing 3) inherits from the
ViewModelBase class you just created. It contains a prop-
erty named CurrentEntity that’s a User data type. The
CurrentEntity property is used to bind each property in
the User class to the appropriate controls on the UserDe-
tailView page. There are three methods in this view model
class; GetAsync(), GetAsync(id), and SaveAsync(). These
methods do not currently interact with any data store, but
later, you’ll hook these up to different repository classes
that get data from different data stores.

The GetAsync() method returns a list of users that can be
bound to a collection-type view on the UserList page. For
now, this method returns an empty list, but you’ll add a

#region Private/Protected Variables
private string _InfoMessage = string.Empty;
private string _LastErrorMessage = string.Empty;
private Exception? _LastException = null;

protected const string REPO_NOT_SET =
 "The Repository Object is not Set.";
#endregion

#region Public Properties
[NotMapped]
[JsonIgnore]
public string InfoMessage {
 get { return _InfoMessage; }
 set {
 _InfoMessage = value;
 RaisePropertyChanged(nameof(InfoMessage));
 }
}

[NotMapped]
[JsonIgnore]

public string LastErrorMessage {
 get { return _LastErrorMessage; }
 set {
 _LastErrorMessage = value;
 RaisePropertyChanged(
 nameof(LastErrorMessage));
 }
}

[NotMapped]
[JsonIgnore]
public Exception? LastException {
 get { return _LastException; }
 set {
 _LastException = value;
 LastErrorMessage = _LastException == null
 ? string.Empty : _LastException.Message;
 RaisePropertyChanged(nameof(LastException));
 }
}
#endregion

Listing 1: Add message properties to the CommonBase class.

namespace Common.Library;

public class ViewModelBase : CommonBase {
 #region Private Variables
 private int _RowsAffected;
 #endregion

 #region Public Properties
 public int RowsAffected
 {
 get { return _RowsAffected; }
 set
 {
 _RowsAffected = value;
 RaisePropertyChanged(nameof(RowsAffected));
 }
 }
 #endregion

 #region PublishException Method
 protected virtual void PublishException(Exception ex)
 {
 LastException = ex;

 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
 #endregion
}

Listing 2: Create a view model base class from which all your view models inherit.

18 codemag.com

use the hard-coded data returned from the GetAsync(id)
method in the UserViewModel class. Remove the Bind-
ingContext attribute from the <Border> element as the
BindingContent is going to be set in the code behind.
Your <Border> element should now look like the follow-
ing XAML.

<Border Style="{StaticResource Border.Page}">

Change All Bindings to Use the CurrentEntity Property
Because you’ve now wrapped up the User object within
the CurrentEntity property on the UserViewModel class,
change all the Binding markup extensions to use Curren-
tEntity before the property names, as shown in the fol-
lowing XAML. You should be able to do this with a search
and replace in the Visual Studio editor.

{Binding CurrentEntity.PROPERTY_NAME}

Modify the Code Behind
Open the Views\UserDetailView.xaml.cs file and change
the using statement that points to the EntityLayer to
point to the ViewModelLayer instead, as shown in the
following code snippet:

using AdventureWorks.ViewModelLayer;

Remove the line of code from the constructor that set
the ViewModel to the value coming from the Resources
collection. That was the view model created in the XAML

list of user data soon. The GetAsync(id) method sets the
CurrentEntity property to a single user object, then returns
that object. The user object is hard coded currently, but
later this data will come from a data store. The SaveAsync()
method will eventually be called from the Save button on
the user page, and for now, just returns a new user.

Use the User View Model on XAML
It’s now time to change the user detail view to use the
UserViewModel class instead of the User class. Right
mouse-click on the Dependencies folder in this new
AdventureWorks.MAUI project and add a project refer-
ence to the AdventureWorks.ViewModelLayer proj-
ect. Open the Views\UserDetailView.xaml file and
change the XML namespace "vm" to point to the View-
ModelLayer assembly, as shown in the following code
snippet.

xmlns:vm="clr-namespace:
 AdventureWorks.ViewModelLayer;
 assembly=AdventureWorks.ViewModelLayer"

Change the x:DataType attribute on the ContentPage to
use the UserViewModel instead of the User class.

x:DataType="vm:UserViewModel"

Remove the <vm:User x:Key="viewModel" …> from the
<ContentPage.Resources> element as you’re now going to

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;

namespace AdventureWorks.ViewModelLayer;

public class UserViewModel : ViewModelBase {
 #region Private Variables
 private User? _CurrentEntity = new();
 #endregion

 #region Public Properties
 public User? CurrentEntity {
 get { return _CurrentEntity; }
 set {
 _CurrentEntity = value;
 RaisePropertyChanged(
 nameof(CurrentEntity));
 }
 }
 #endregion

 #region GetAsync Method
 public async
 Task<ObservableCollection<User>> GetAsync()
 {
 return await Task.FromResult(
 new ObservableCollection<User>());
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<User?> GetAsync(int id) {
 try {
 // TODO: Get a User from a data store

 // MOCK Data
 CurrentEntity = await
 Task.FromResult(new User {

 UserId = id,
 LoginId = "SallyJones615",
 FirstName = "Sally",
 LastName = "Jones",
 Email = "Sallyj@jones.com",
 Phone = "615.987.3456",
 PhoneType = "Mobile",
 IsFullTime = true,
 IsEnrolledIn401k = true,
 IsEnrolledInFlexTime = false,
 IsEnrolledInHealthCare = true,
 IsEnrolledInHSA = false,
 IsEmployed = true,
 BirthDate =
 Convert.ToDateTime("08-13-1989"),
 StartTime = new TimeSpan(7, 30, 0)
 });

 RowsAffected = 1;
 }
 catch (Exception ex) {
 RowsAffected = 0;
 PublishException(ex);
 }

 return CurrentEntity;
 }
 #endregion

 #region SaveAsync Method
 public async virtual Task<User?> SaveAsync() {
 // TODO: Write code to save data
 System.Diagnostics.Debugger.Break();

 return await Task.FromResult(new User());
 }
 #endregion
}

Listing 3: Create a user view model class to which to bind your controls.

Exploring .NET MAUI: MVVM, DI, and Commanding

19codemag.com

In the UserViewModel class create a method named Get-
PhoneTypes() to load the list of phone types, as shown
in the following code. All data is hard coded for now,
but later in this article series, you’ll get data from a data
store.

#region GetPhoneTypes Method
public async
 Task<ObservableCollection<string>>
 GetPhoneTypes() {
 PhoneTypesList = await Task.FromResult(
 new ObservableCollection<string>(
 ["Home", "Mobile", "Work", "Other"])
);

 return PhoneTypesList;
}
#endregion

Modify the User Detail View
Now that you have a method to load phone types, that
method needs to be called before the user detail page
is displayed. Open the Views\UserDetailView.xaml.cs
file and add a call to the GetPhoneTypes() method in the
OnAppearing event procedure, as shown in the following
code.

protected async override void OnAppearing() {
 base.OnAppearing();

 // Set the Page BindingContext
 BindingContext = ViewModel;

 // Get the Phone Types
 await _ViewModel.GetPhoneTypes();

 // Retrieve a User
 await _ViewModel.GetAsync(1);
}

Because you’re now getting the phone types from the
view model class, you no longer need the XAML array.
Open the Resources\Styles\AppStyles.xaml file and
delete the <x:Array x:Key="phoneTypes" …> element
from the <ResourceDictionary> element. Open the Views\
UserDetailView.xaml file and locate the <Picker> and
change it to look like the following XAML.

<Picker VerticalTextAlignment="Center"
 SelectedItem="{Binding CurrentEntity.PhoneType}"
 ItemsSource="{Binding PhoneTypesList}" />

The SelectedItem property is bound to the PhoneType
property on the user object so if the selection in the Pick-
er control is changed, the PhoneType property in the user
object is updated with the new value. The ItemsSource
property is changed from the StaticResource markup ex-
tension to use the Binding markup extension that points
to the observable collection of phone types in the User-
ViewModel class.

Try It Out
Run the application, click on User > Navigate to Detail
and you should still see the same list of phone types, and
the picker should be positioned on the value for the user
read from the view model class.

that’s no longer there. Your constructor should now look
like the following:

public UserDetailView() {
 InitializeComponent();
}

Change the _ViewModel variable to a UserViewModel
data type as shown in the following code snippet. Create
a new instance of the UserViewModel on the same line as
the declaration.

private readonly UserViewModel _ViewModel = new();

Modify the OnAppearing() event procedure to look like
the following code. Make sure you add the async keyword
to the OnAppearing() event procedure. Set the Binding-
Context for the entire ContentPage to the _ViewModel
variable. Call the GetAsync(id) method on the view model
asynchronously to have the single instance of the User
object placed into the CurrentEntity property.

protected async override void OnAppearing() {
 base.OnAppearing();

 // Set the BindingContext to the ViewModel
 BindingContext = _ViewModel;

 // Retrieve a User
 await _ViewModel.GetAsync(1);
}

Try It Out
Run the application and click on Users > Navigate to De-
tail. You should see that the hard-coded User data from
the view model class is now bound to the controls on this
user detail page.

Load Phone Picker Using MVVM
If you remember, the phone type list is a XAML resource lo-
cated in the AppStyles.xaml file. Let's create a list of phone
types in the user view model class so that list can be bound
on the page. Open the ViewModelClasses\UserViewModel.
cs file and add a new private variable that’s an Observable-
Collection of strings. An ObservableCollection in .NET raises
the PropertyChanged event whenever the collection is modi-
fied in any manner. This collection type should be used for
all collections when working with .NET MAUI or WPF.

private ObservableCollection<string>
 _PhoneTypesList = [];

Let's expose this list of phone types so it can be bound
on the user detail page. Add a public property named
PhoneTypesList to the UserViewModel class as shown in
the code snippet below.

public ObservableCollection<string>
 PhoneTypesList {
 get { return _PhoneTypesList; }
 set {
 _PhoneTypesList = value;
 RaisePropertyChanged(nameof(PhoneTypesList));
 }
}

Exploring .NET MAUI: MVVM, DI, and Commanding

20 codemag.com

Dependency Injection (DI) helps you remove coupling
between classes. In order to use DI, create an interface
(or base class) for each of your logging, configuration,
repository, database context, and other classes to imple-
ment or inherit. Now, instead of creating an instance of
Serilog in each class that needs to perform logging, reg-
ister Serilog with a DI service in the MauiProgram class.
Most loggers today implement the ILogger interface. In
each class that needs to use logging, you add the ILogger
interface as an argument to the constructor of that class.
You do the same process with repository, configuration,
and even the EF DbContext class, as shown in Figure 2.

Register each interface and the corresponding class with
the Services collection of the MauiAppBuilder object in
the CreateMauiApp() method in the MauiProgram class, as
shown in the following code snippet:

builder.Services.AddScoped
 <IRepository<User>, UserRepository>();
builder.Services.AddScoped
 <IRepository<PhoneType>, PhoneTypeRepository>();

In this code, you specify a service lifetime (Scoped, Sin-
gleton, Transient) and pass the interface followed by the
class that implements that interface. Service lifetimes will
be explained shortly. Each of these classes are placed into
the DI container and are then ready to be used. A class is
used when an instance of a class is created by .NET MAUI
and that class has a constructor expecting a parameter of
an interface type registered in the DI container.

In addition to classes that implement interfaces you also
register view models and views if they need to receive any
of the classes from DI to do their work. For example, if the

Introduction to Dependency Injection
I want you to think about the <ShellContent> elements
you created in the AppShell.xaml file. Each ShellContent
object uses a DataTemplate markup extension to which
you pass the name of a ContentPage you want to be
displayed when clicked upon. You don’t have to write
any C# code to create the ContentPage; the .NET MAUI
navigation engine takes care of all the details of page
creation.

Think of some of the most common things you do when
you’re writing a typical business application. You prob-
ably use a tool like Log4Net or Serilog to record excep-
tions, information, and debug messages. You probably
have an Entity Framework (EF) database context object
for working with your database. You might have a set of
repository classes that are responsible for working with
each table in your database. You might also have a con-
figuration manager class to retrieve application-wide set-
tings from a JSON file, or maybe from a database.

The reason I’m pointing out these items is that I want
you think about how many times in your application you
might be instantiating your logging, your database con-
text, your repository, or your configuration classes. If you
have even a medium size application, the answer is that
you’re probably instantiating these classes in hundreds of
locations throughout your code base. Now, think of the
maintenance nightmare you’d encounter if you needed to
replace the logging class with a different one, or that
all your repository classes can't use a database context
anymore, but need to make Web API calls. If you don't
program with Dependency Injection, a change like this
could cause hundreds of hours of re-work.

Figure 2: Services are placed into a DI container waiting to be referenced by an instance of a class.

Figure 3: Use an interface to create different implementations of a service.

Exploring .NET MAUI: MVVM, DI, and Commanding

21codemag.com

DI Service Lifetimes
The Services collection on the MauiAppBuilder object has
three different methods you can use to register classes
into the DI container; AddSingleton(), AddScoped(), and
AddTransient(). When you add a class as a Singleton, the
first time that class is requested by a constructor, the ob-
ject is created and has a scope of the entire lifetime of the
application. If another class requests that class, the exact
same instance of the object first created is used. Because
a .NET MAUI application is inherently single user, this type
of lifetime is fine for views and view model classes.

When you add a class as Scoped, an instance of that class
is created within the scope of the object that created it.
When the object that created it is destroyed, this object
is also destroyed. This type of lifetime is good for reposi-
tory objects because if you have a DbContext object, you
don't want that object to stay around any longer than
necessary. This type of lifetime is appropriate for views
and view models.

A class added as Transient is like a scoped object, but
there’s no pre-defined lifetime. It may be released any-
time, and if requested again, a new instance is created.
This type of lifetime is good for classes that log data or
read configuration items.

Add an IRepository Interface
Right mouse-click on the Common.Library project and
add a new folder named Interfaces. Right mouse-click
on the new Interfaces folder and add a new file named
IRepository. Replace the entire contents of the new file
with the following code:

using System.Collections.ObjectModel;

namespace Common.Library;

public interface IRepository<TEntity> {
 Task<ObservableCollection<TEntity>> GetAsync();
 Task<TEntity?> GetAsync(int id);
}

constructor of the UserDetailView has an IRepository<User>
as an argument (shown in the following code) the naviga-
tion engine asks the DI container to look up the interface to
see if it’s registered. If it is, an instance of the UserReposi-
tory class is created by the DI engine and passed to the repo
argument when the UserDetailView class is instantiated.

public UserDetailView(IRepository<User> repo) {
 InitializeComponent();

 // DO SOMETHING WITH THE REPOSITORY CLASS
}

Use Interfaces for Repository Classes
In a typical business application, you build a set of reposi-
tory classes to talk to a data store to get and modify data.
Each repository class needs certain standard methods such
as Get(), Get(id), Insert(), Update(), Delete(), etc., that
manipulate the data in a single table of your data store.
Each repository class implements the interface by creating
each method to perform the specified logic. If you have
three tables in your application, such as Product, User, and
PhoneTypes, you create three repository classes to imple-
ment each of the methods for performing CRUD logic.

For each repository class, you might start out using EF
and a DbContext object to manipulate the data in each
of these tables. However, when testing applications, you
might want to use mock data instead. If you use .NET
MAUI for a cross-platform application, each repository
class should call Web APIs to perform the data manipula-
tion. Each of these different types of classes implements
the same interface, but each performs it differently.

Place each of these different repository implementations
into different assemblies (Figure 3) and you reference
just one of those assemblies at a time in your .NET MAUI
program (Figure 4). The repository classes from the refer-
enced assembly are the ones registered with the DI con-
tainer in the MauiProgram class. As long as each view
model and/or view only uses the repository interface, it
doesn’t matter which assembly you use, as they are com-
pletely interchangeable.

Figure 4: The .NET MAUI application selects one assembly with the implementation of an interface to use.

Exploring .NET MAUI: MVVM, DI, and Commanding

22 codemag.com

_Repository variable. Of course, you’re going to ensure
that this object is of the type UserRepository a little
later. In the code shown in Listing 4, check to see if
the _Repository variable is not null. If it’s not null, make
a call to the GetAsync(id) on the repository class. The
value returned is placed into the CurrentEntity property.
Once the CurrentEntity property is set and the Proper-
tyChanged event fires, the UI re-reads the data and up-
dates all bindings on the page.

Also notice that the code sets the LastErrorMessage
property if the _Repository variable has not been set.
The InfoMessage property is set to one of two messages
depending on whether the user ID was located or not. If
mock data is returned because the _Repository variable
was null, then the InfoMessage property is set to tell the
user that mock data was used. Finally, the RowsAffected
property is set to a value of one (1).

Try It Out
Run the application and click on Users < Navigate to
Detail to see the hard-coded user coming from this new
method. The messages do not show up anywhere, but
those will be added later in this article series.

Create a Data Layer Class Library
As stated before, you may want to have different data
stores from which you get data. I’d highly recommend
that you create different class library projects for each of
these different data stores. In this article, you’re going
to use mock data. Right mouse-click on the Solution and
add a new Class Library project named AdventureWorks.
DataLayer.Mock. Delete the Class1.cs file, as this file
isn’t needed. Right mouse-click on the Dependencies
folder in the AdventureWorks.DataLayer.Mock project
and add two project references to the AdventureWorks.
EntityLayer and Common.Library class libraries.

Add a User Repository Class
Right mouse-click on the new AdventureWorks.DataLayer.
Mock project and add a folder named RepositoryClasses.
Right mouse-click on the RepositoryClasses folder and

The generic IRepository<TEntity> interface requires you to
identify the Entity class name when declaring a variable.
For example, IRepository<User> or IRepository<Product>
identifies the type of object(s) returned from the Ge-
tAsync() or GetAsync(id) methods. All the Repository
classes you build in this article series are going to be
asynchronous, so all method names are going to reflect
this. Other methods to support data modification will be
added later to this interface.

Use the IRepository Interface in the User View Model Class
Let's now use the IRepository interface in the user view
model class. The Common.Library project is already
referenced from the view AdventureWorks.ViewModel-
Layer project, so the IRepository interface is available
to use. Open the ViewModelClasses\UserViewModel.
cs file and add a new private variable that is of the
type IRepository<User>, as shown in the following line
of code:

private readonly IRepository<User>? _Repository;

Add two constructors, one empty, and the other injects
the IRepository<User> interface, as shown in the follow-
ing code. Assign the repo variable to the private read-on-
ly _Repository variable. You haven’t built this repository
class yet, but you don't need it to create the appropriate
code in the user view model class to make calls to the
methods defined in the interface.

#region Constructors
public UserViewModel() {
}

public UserViewModel(IRepository<User> repo)
 : base() {
 _Repository = repo;
}
#endregion

Use the IRepository Interface in View Model Classes
Modify the GetAsync(id) method (Listing 4) to retrieve
a single user by calling the GetAsync(id) method of the

public async Task<User?> GetAsync(int id) {
 try {
 // Get a User from a data store
 if (_Repository != null) {
 CurrentEntity = await _Repository.GetAsync(id);
 if (CurrentEntity == null) {
 InfoMessage = $"User id={id} was not found.";
 }
 else {
 InfoMessage = "Found the User";
 }
 }
 else {
 LastErrorMessage = REPO_NOT_SET;
 InfoMessage = "Found a MOCK User";

 // MOCK Data
 CurrentEntity =
 await Task.FromResult(new User {
 UserId = id,
 LoginId = "SallyJones",
 FirstName = "Sally",
 LastName = "Jones",

 Email = "Sallyj@jones.com",
 Phone = "615.987.3456",
 PhoneType = "Mobile",
 IsEnrolledIn401k = true,
 IsEnrolledInFlexTime = false,
 IsEnrolledInHealthCare = true,
 IsEnrolledInHSA = false,
 IsEmployed = true,
 BirthDate
 = Convert.ToDateTime("08-13-1989"),
 StartTime = new TimeSpan(7, 30, 0)
 });
 }

 RowsAffected = 1;
 }
 catch (Exception ex) {
 RowsAffected = 0;
 PublishException(ex);
 }

 return CurrentEntity;
}

Listing 4: Use a Repository object to retrieve data from a data store.

Exploring .NET MAUI: MVVM, DI, and Commanding

23codemag.com

add a new class named UserRepository. Replace the entire
contents of this new file with the code shown in List-
ing 5. The UserRepository class implements the IReposi-
tory interface and thus contains the implementation of the
two methods GetAsync() and GetAsync(id). The GetAsync()
method creates a list of three users and returns them as
an ObservableCollection of User objects. The GetAsync(id)
method retrieves the list of users from the GetAsync()
method, then applies the LINQ Where() method to the list
to locate the ID passed in as the parameter.

Add Dependency in MAUI Project
As mentioned previously, you need one concrete implemen-
tation of a data layer in your .NET MAUI application. Right
mouse-click on the Dependencies folder in the Adventure-
Works.MAUI project and a project reference to Adventure-
Works.DataLayer.Mock project. Do NOT add a reference to
the DataLayer.Mock project to the view model layer. All the
view model class needs to know is the interface that the re-
pository classes are using. The concrete implementation of
the repository classes is created by .NET MAUI's DI engine
and those implementations are injected into the view models.

Inject View Models into Views
You now have the IRepository<User> being passed to the
constructor of the UserViewModel class. You need to pass

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;
using System.Data;

namespace AdventureWorks.DataLayer;

/// <summary>
/// Create a set of User mock data
/// </summary>
public partial class UserRepository
 : IRepository<User> {
 #region GetAsync Method
 public async
 Task<ObservableCollection<User>>
 GetAsync() {
 return await Task.FromResult(
 new ObservableCollection<User>()
 {
 new() {
 UserId = 1,
 LoginId = @"MichaelThomason",
 FirstName = @"Michael",
 LastName = @"Thomason",
 Email = @"MichaelThomason@advworks.com",
 Phone = @"615.555.3333",
 PhoneType = @"Mobile",
 IsFullTime = true,
 IsEnrolledIn401k = true,
 IsEnrolledInHealthCare = true,
 IsEnrolledInHSA = false,
 IsEnrolledInFlexTime = false,
 IsEmployed = true,
 BirthDate = new DateTime(1985, 3, 15),
 StartTime = null,
 },
 new() {
 UserId = 2,
 LoginId = @"SheilaCleverly",
 FirstName = @"Sheila",
 LastName = @"Cleverly",
 Email = @"SheilaCleverly@advworks.com",
 Phone = @"615.123.3456",
 PhoneType = @"Other",

 IsFullTime = false,
 IsEnrolledIn401k = false,
 IsEnrolledInHealthCare = true,
 IsEnrolledInHSA = false,
 IsEnrolledInFlexTime = false,
 IsEmployed = true,
 BirthDate = new DateTime(1981, 6, 9),
 StartTime = new TimeSpan(7, 30, 0),
 },
 new() {
 UserId = 3,
 LoginId = @"CatherineAbel",
 FirstName = @"Catherine",
 LastName = @"Abel",
 Email = @"CatherineAbel@advworks.com",
 Phone = @"615.998.3332",
 PhoneType = @"Mobile",
 IsFullTime = true,
 IsEnrolledIn401k = true,
 IsEnrolledInHealthCare = true,
 IsEnrolledInHSA = true,
 IsEnrolledInFlexTime = true,
 IsEmployed = true,
 BirthDate = new DateTime(1979, 4, 5),
 StartTime = null,
 }

 // ADD MORE MOCK DATA HERE

 });
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<User?> GetAsync(int id) {
 ObservableCollection<User> list =
 await GetAsync();
 User? entity = list.Where(
 row => row.UserId == id).FirstOrDefault();

 return entity;
 }
 #endregion
}

Listing 5: Create a repository class to return a set of mock user data.

using Common.Library;

namespace AdventureWorks.EntityLayer;

public class PhoneType : EntityBase {
 #region Private Variables
 private int _PhoneTypeId;
 private string _TypeDescription
 = string.Empty;
 #endregion

 #region Public Properties
 public int PhoneTypeId {
 get { return _PhoneTypeId; }
 set {
 _PhoneTypeId = value;
 RaisePropertyChanged(nameof(PhoneTypeId));
 }
 }

 public string TypeDescription {
 get { return _TypeDescription; }
 set {
 _TypeDescription = value;
 RaisePropertyChanged(
 nameof(TypeDescription));
 }
 }
 #endregion
}

Listing 6: Create a PhoneType entity class.

Exploring .NET MAUI: MVVM, DI, and Commanding

24 codemag.com

respectively? Register these classes in the MauiProgram
class using the MauiAppBuilder object. Open the Maui-
Program.cs file and add some new using statements.

using AdventureWorks.DataLayer;
using AdventureWorks.EntityLayer;
using AdventureWorks.MAUI.Views;
using AdventureWorks.ViewModelLayer;
using Common.Library;

Just below the builder.UseMauiApp<App>(), add the
following code to inject the repository, the view model,
and the view into the DI container.

// Add classes for use in Dependency Injection
builder.Services.AddScoped<IRepository<User>,
 UserRepository>();
builder.Services.AddScoped<UserViewModel>();
builder.Services.AddScoped<UserDetailView>();

Try It Out
Run the application and click on the User > Navigate to
Detail menu to see the user associated with the UserId
property equal to one (1) in the user repository appear.
Stop the application and try using one of the other user
ID values such as 2 or 3.

Load Phone Types Using
Repository Class
Earlier in this article, you loaded the phone types by cre-
ating a collection in the UserViewModel class. Instead of
hard coding these types in the UserViewModel class, cre-
ate a PhoneType entity class, and a PhoneTypeRepository
class to retrieve the phone type data from a data store.
Creating entity and repository classes for phone types al-
lows you to reuse them on other pages.

Add a PhoneType Entity Class
Right mouse-click on the EntityClasses folder in the
AdventureWorks.EntityLayer project and add a new

an instance of the UserViewModel class to the UserDetail-
View page so the page can bind to the properties of the
view model class, and make calls to any methods. Open
the Views\UserDetailView.xaml.cs file and modify the
constructor to accept the view model class and to assign
that variable to the _ViewModel variable.

public partial class UserDetailView
 : ContentPage {
 public UserDetailView(UserViewModel viewModel) {
 InitializeComponent();

 _ViewModel = viewModel;
 }

 // REST OF THE CODE HERE
}

Register Classes with DI Container
The responsibility for creating an instance of the UserDe-
tailView is through the .NET MAUI navigation system. So,
how do the UserViewModel and the UserRepository classes
get passed to the UserDetailView and the UserViewModel

#region GetPhoneTypes Method
public async Task<ObservableCollection<string>>
 GetPhoneTypes() {
 if (_PhoneTypeRepository != null) {
 var list =
 await _PhoneTypeRepository.GetAsync();

 PhoneTypesList = new
 ObservableCollection<string>
 (list.Select(row => row.TypeDescription));
 }

 return PhoneTypesList;
}
#endregion

Listing 7: Modify the GetPhoneTypes method to use the repository to retrieve the list
of phone types.

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;

namespace AdventureWorks.DataLayer;

/// <summary>
/// Create a set of PhoneType mock data
/// </summary>
public partial class PhoneTypeRepository
 : IRepository<PhoneType> {
 #region GetAsync Method
 public async
 Task<ObservableCollection<PhoneType>>
 GetAsync() {
 return await Task.FromResult(
 new ObservableCollection<PhoneType>
 {
 new() {
 PhoneTypeId = 1,
 TypeDescription = "Home",
 },
 new() {
 PhoneTypeId = 2,
 TypeDescription = "Mobile",
 },

 new() {
 PhoneTypeId = 3,
 TypeDescription = "Work",
 },
 new() {
 PhoneTypeId = 4,
 TypeDescription = "Other",
 }
 });
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<PhoneType?>
 GetAsync(int id) {
 ObservableCollection<PhoneType> list
 = await GetAsync();
 PhoneType? entity = list.Where(
 row => row.PhoneTypeId == id)
 .FirstOrDefault();

 return entity;
 }
 #endregion
}

Listing 8: Add a repository class to work with PhoneType objects.

Exploring .NET MAUI: MVVM, DI, and Commanding

25codemag.com

Try It Out
Run the application, click on User > Navigate to Detail
and you should still see the same list of phone types, and
the phone type picker should be positioned on the value
for the user read from the repository.

Eliminate Event Handling with
Commanding
The MVVM design pattern eliminates a lot of code from
the UI layer by removing code behind pages and moving
it down to a view model. On the user detail page, you
have two buttons: Save and Cancel. You created an event
procedure to handle the click event on the Save button,
as shown in the following code.

private void SaveButton_Clicked(object sender,
 EventArgs e) {
 // TODO: Respond to the event here
 System.Diagnostics.Debugger.Break();
}

The SaveButton_Clicked event procedure is mapped to the
Save button by setting the Clicked attribute as shown below.

<Button Text="Save"
 Clicked="SaveButton_Clicked" />

As you can imagine, as you add more buttons to a page,
your code behind can grow significantly. Eliminating code
behind helps make your code more portable if you wish
to recreate your UI in a different technology. The more
code you have in your view model, entity, and repository
classes, the more your code is reusable.

The SaveButton_Clicked event procedure is eliminated by
using a technique called Commanding. Commanding is
where you create a property that is of the type ICom-
mand. You then create an instance of this ICommand by
instantiating a Command class. Once you’ve created this
Command property, bind it to the Save button with code
that looks like the following:

<Button Text="Save"
 Command="{Binding SaveCommand}" />

class named PhoneType. Replace the entire contents
of this new file with the code shown in Listing 6.
This class contains a phone type identifier and the de-
scription of the phone type. The same design pattern
is followed in this class as in the User class. You use
private variables for each property, then expose that
private variable through getter and setter. Don't forget
to add the call to the RaisePropertyChanged() event in
the setter. Open the ViewModelClasses\UserViewMod-
el.cs file and add a new private variable of the type
PhoneTypeRepository, as shown in the following line
of code.

private readonly IRepository<PhoneType>?
 _PhoneTypeRepository;

Add a third constructor to accept an
IRepository<PhoneType> object from the DI engine, as
shown in the following code.

public UserViewModel(IRepository<User> repo,
 IRepository<PhoneType> phoneRepo) : base() {
 _Repository = repo;
 _PhoneTypeRepository = phoneRepo;
}

Locate the GetPhoneTypes() method and modify the code
to look like Listing 7. The _PhoneTypeRepository pri-
vate variable injected into the constructor is used to re-
trieve the list of phone types from the data store used by
the PhoneTypeRepository class.

Add a Phone Type Repository Class
Right mouse-click on the RepositoryClasses folder in the
AdventureWorks.DataLayer.Mock project and add a new
class named PhoneTypeRepository. Replace the entire con-
tents of this new file with the code shown in Listing 8. Once
again, a familiar design pattern is applied to the PhoneTy-
peRepository class. Implement the IRepository interface and
create the two methods GetAsync() and GetAsync(id).

Add Phone Types to DI
Open the MauiProgram.cs file in the AdventureWorks.
MAUI project and add a new service to the DI container
to use the PhoneTypeRepository class.

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Windows.Input;

namespace AdventureWorks.MAUI.MauiViewModelClasses;

public class UserViewModel :
 AdventureWorks.ViewModelLayer.UserViewModel {
 #region Constructors
 public UserViewModel() : base() {
 }

 public UserViewModel(IRepository<User> repo)
 : base(repo) {
 }

 public UserViewModel(IRepository<User> repo,
 IRepository<PhoneType> phoneRepo) :
 base(repo, phoneRepo) {

 }
 #endregion

 #region Commands
 public ICommand? SaveCommand
 { get; private set; }
 #endregion

 #region Init Method
 public override void Init() {
 base.Init();

 // Create commands for this view
 SaveCommand = new Command(
 async () => await SaveAsync());
 }
 #endregion
}

Listing 9: Create a Commanding View Model class in your .NET MAUI application.

Exploring .NET MAUI: MVVM, DI, and Commanding

26 codemag.com

Getting the Sample Code

You can download the sample
code for this article by visiting
www.CODEMag.com under
the issue and article, or by
visiting www.pdsa.com/
downloads. Select “Articles”
from the Category drop-
down. Then select “Exploring
.NET MAUI: MVVM, DI, and
Commanding” from the Item
drop-down.

xmlns:vm="clr-namespace:
 AdventureWorks.MAUI.MauiViewModelClasses"

Modify the Save button and remove the Clicked attribute,
as shown in the code snippet below. Add a Command
attribute and set the Binding markup extension to the
SaveCommand property you created as show below. When
the Save button is clicked upon, the SaveCommand is
fired and the SaveAsync() method is invoked.

<Button Text="Save"
 ImageSource="save.png"
 ToolTipProperties.Text="Save Data"
 ContentLayout="Left"
 Command="{Binding SaveCommand}" />

Change the View Model Reference
Open the MauiProgram.cs file and remove the modify the
DI injection to use the new MauiViewModelClasses.User-
ViewModel class instead of the view model coming from
the view model layer project.

builder.Services.AddScoped<
 MauiViewModelClasses.UserViewModel>();

Modify the UserDetailView Code
Open the Views\UserDetailView.xaml.cs file and change
the using AdventureWorks.ViewModelLayer; to use the
new namespace, as shown below.

using AdventureWorks.MAUI.MauiViewModelClasses;

Remove the SaveButton_Clicked() event procedure, as
this code is no longer needed.

Try It Out
Run the application, click on the Users > Navigate to
Detail menu, click on the Save button, and you should
end up on the Break() method in the SaveAsync() method
in the UserViewModel class in the ViewModelLayer proj-
ect. There are more options in the Command class that
you can take advantage of, such as the ability to disable
a button through a CanExecute property. I don't tend
to use this property as I control disabling buttons in my
view model by binding a Boolean view model property

The ICommand interface is defined in the System.Win-
dows.Input namespace, which is located in the System.
ObjectModel assembly. The System.ObjectModel assembly
is a part of the Microsoft.NETCore.App framework, so the
ICommand can be used in your view model layer assembly
if you wish. However, the concrete implementation of the
Command class is located in the Microsoft.Maui.Controls
project. You don’t want to add this assembly into your
view model layer as this couples the view model assembly
to .NET MAUI and that can cause problems if you want
to reuse the view model assembly in an MVC, a WPF, or a
Blazor application.

To take advantage of commanding, create a view model
class in the .NET MAUI application that inherits from the
view model class in the view model layer project. The
view model class created in the .NET MAUI application
can implement the commanding, yet all the other reus-
able functionality is kept in the view model layer project.

Implement Commanding in Your Project
Right mouse-click on the AdventureWorks.MAUI project
and add a new folder named MauiViewModelClasses.
Right mouse-click on the MauiViewModelClasses folder
and add a new class named UserViewModel. Replace the
entire contents of this new file with the code shown in
Listing 9. In the code shown in Listing 9, create three
constructors just like you did in the UserViewModel in
the ViewModelLayer project. Each of these constructors
call the base constructor passing in the arguments. The
SaveCommand property is defined as an ICommand in-
terface. This property is initialized in the Init() method.
The Init() method is called from the CommonBase class
constructor so it doesn’t need to be called from any of
the view model constructors. The first parameter to the
Command constructor is any anonymous method that says
to call the SaveAsync() method located in the UserView-
Model class in the ViewModelLayer project.

Change Your XAML File to Use the New View Model Class
You need to use the new view model class in your XAML
files, instead of the view model class from the view model
layer project. Open the Views\UserDetailView.xaml file and
change the "xmlns:vm" namespace to reference the new
namespace in the .NET MAUI application, as shown below.

using AdventureWorks.DataLayer;
using AdventureWorks.EntityLayer;
using AdventureWorks.MAUI.Views;
using AdventureWorks.ViewModelLayer;
using Common.Library;

namespace AdventureWorks.MAUI.ExtensionClasses;

public static class ServiceExtensions {
 public static void AddServicesToDIContainer(
 this IServiceCollection services) {
 // Add Repository Classes
 AddRepositoryClasses();
 // Add View Model Classes
 AddViewModelClasses(services);
 // Add View Classes
 AddViewClasses(services);
 }

 private static void AddRepositoryClasses(

 IServiceCollection services) {
 // Add Repository Classes
 services.AddScoped<IRepository<User>,
 UserRepository>();
 services.AddScoped<IRepository<PhoneType>,
 PhoneTypeRepository>();
 }

 private static void AddViewModelClasses(
 IServiceCollection services) {
 // Add View Model Classes
 services.AddScoped<UserViewModel>();
 }

 private static void AddViewClasses(
 IServiceCollection services) {
 // Add View Classes
 services.AddScoped<UserDetailView>();
 }
}

Listing 10: Add a class for extension methods of the IServicesCollection object.

Exploring .NET MAUI: MVVM, DI, and Commanding

27codemag.com

to the IsEnabled property on the buttons. This makes
the view model code easier to reuse in technologies that
don't support commanding or don't implement command-
ing in the same manner.

Advantages of Commanding
Many times, the code in an event handler is just a single
line of code calling a method in a view model. By using
commanding, you directly call methods in the view model
without the event handler code. Commanding thereby
eliminates event handling in the user interface of appli-
cations making your applications more reusable, easier to
test, and more maintainable.

Disadvantages of Commanding
Although there are great advantages to using command-
ing, there are some downsides to it as well. First and
foremost, commanding isn’t available natively in all UI
technologies such as Windows Forms, Web Forms, or WPF.
Many of the "Community Toolkits" for these technologies
do provide some form of commanding. However, not all
these toolkits implement commanding in the same way.
You can solve a lot of these pitfalls by using the design
pattern I presented in this article. Take advantage of in-
heritance and just write a little bit of code in the UI layer
and leave your view model classes without any ties to a
specific UI technology or toolkit.

Clean Up the MauiProgram Class
Open the MauiProgram.cs file in the AdventureWorks.
MAUI project and you’ll see that you have quite a few
lines just adding repository, view model, and view classes
into the DI container. As you can imagine, this list of
services can get quite long and thus make your Maui-
Program class unmanageable. The builder.Services ob-
ject is an IServiceCollection data type, so let's create
a set of extension methods for this type in a separate
class.

Right mouse-click on the AdventureWorks.MAUI project
and add a new folder named ExtensionClasses. Right
mouse-click on the ExtensionClasses folder and add a
new class named ServiceExtensions. Replace the entire
contents of this new file with the code shown in List-
ing 10.

There’s one public method in the ServiceExtensions class,
AddServicesToDIContainer(), that’s called from the Maui-
Program.CreateMauiApp() method. This method calls
three other private methods to add repository, view mod-
el, and view classes. If you have other types of classes
to add to the DI container, add additional methods as
appropriate. The ServiceExtension class accomplishes the
same functionality as the lines of code currently in the
MauiProgram.cs file but organizes the adding of services
into different methods. Once you have the ServiceExten-
sions class created, eliminate the lines of code in the
MauiProgram class that added classes to the Services col-
lection with the code shown below.

// Add Classes to Dependency Container
builder.Services.AddServicesToDIContainer();

Go to the top of the MauiProgram.cs file and eliminate
any unnecessary using statements.

Try It Out
Run the application to ensure that everything still works
as it did before all the changes you just made.

Clean Up Warnings in Error List Window
While we’re on the subject of cleaning up, let's also ensure
that you’re using the x:DataType attribute on all pages
and partial pages. If you remember, the x:DataType at-
tribute, when applied on a page, uses compiled bindings
on that page. Compiled bindings improve the speed of
data binding at runtime by resolving binding expressions
at compile-time. Open the ViewsPartial\HeaderView.
xaml file and add an XML namespace to the ViewsPartial
namespace, as shown below.

xmlns:partial="clr-namespace:
 AdventureWorks.MAUI.ViewsPartial"

Add the x:DataType attribute, as shown in the following
code snippet:

x:DataType="partial:HeaderView"

By adding these two lines, you eliminate some warnings
in the Error List window. Not all can be eliminated yet,
as you haven’t created a view model for the product data.
These warnings will eventually be eliminated as you con-
tinue on with this article series.

Summary
Using the Model-View-View-Model and the Dependency
Injection design patterns helps you create reusable,
maintainable, and testable code. Always be thinking how
to keep common code in separate assemblies for maxi-
mum reusability. Commanding is a great way to reduce
code behind, but ensures that you keep the code in the
UI layer and not in your generic class libraries. Keep
your MauiProgram.cs file organized by creating extension
methods in a separate class. In the next article, you’ll
learn to display lists of data, select an item from the list,
and navigate to the detail page for that item.

SPONSORED SIDEBAR

Ready to Modernize
a Legacy App?

Need advice on migrating
yesterday’s legacy
applications to today’s
modern platforms?
Take advantage of
CODE Consulting’s years
of experience and contact
us today to schedule a
FREE consulting call to
discuss your options.

No strings. No
commitment.

For more information:
www.codemag.com/
consulting or email us at
info@codemag.com.

� Paul D. Sheriff
�

Exploring .NET MAUI: MVVM, DI, and Commanding

28 codemag.comBuilding Microservices Architecture Using CQRS and ASP.NET Core

ONLINE QUICK ID 2501041

Building Microservices Architecture
Using CQRS and ASP.NET Core
In today's fast-paced business landscape, we often build scalable, secure, high-performing, and maintainable applications.
A plethora of design patterns and architectural approaches can help in this regard. Command Query Reponsibility Segregation,
or CQRS, is a proven architectural pattern that can help build scalable applications in complex scenarios. It does this by splitting

responsibilities among read and write models. This article
discusses the CQRS pattern, why it’s important, and shows
how you can implement the CQRS pattern in Microser-
vices-based applications.

If you’re to work with the code examples discussed in this
article, you need the following installed in your system:

•	 Visual Studio 2022
•	 .NET 9.0
•	 ASP.NET 9.0 Runtime

If you don’t already have Visual Studio 2022 installed on
your computer, you can download it from here: https://
visualstudio.microsoft.com/downloads/.

Understanding the Problem
Consider an enterprise application built in ASP.NET Core
that needs to handle big data or massive amounts of
data. For example, the application might be handling mil-
lions of complex transactions such as retrieving product
details, updating stock, processing orders, etc. Over time,
as the application attempts to scale to handle more con-
current requests, things can get complicated because you
might be using the same models for data read and write
operations. As a result, you might often observe inconsis-
tences in your application's data.

The CQRS pattern can help you isolate these operations
into commands (i.e., create, update, and delete data) and
queries (i.e. retrieve data from the database). This helps
you optimize and scale the command and query compo-
nents of your application independently, enabling your
application to be high performant, scalable, and reliable.
Figure 1 shows typical application-enabling queries and
updates from and to an underlying database.

Why do you need a mediator? The mediator is the com-
ponent in your application that’s responsible for routing
each request to the appropriate component. The result?
Your application's code will be more lean, clean, decou-
pled, and manageable.

An Introduction to the CQRS Pattern
In most applications, the same model is used both for
read and write/update operations. When you're using
simple CRUD operations (create, read, update, and de-
lete), you're good to use the same model to query data
as well as save/update data. Over time, as the application
grows and you have more and more data in the database,
things become complicated. You might often observe
anomalies in read and write operations because you have
certain properties that must be persisted or updated in
the database but you don’t want them to be returned
in queries.

For example, you might need the ProductId of the Prod-
uct model to be stored in the database but not returned
when the same model is queried. This might lead to data
loss and inconsistencies in data. Enter the CQRS pattern.
CQRS, an acronym for Command and Query Responsibil-
ity Segregation, is an architectural pattern in which the
data read and data write operations are isolated from one
another, as shown in Figure 2.

You can even isolate the read data and write data by
using separate databases for each. In this case, you'll
have two databases, one for reading or querying data
optimized for queries and one write database that’s op-
timized for create, update, and delete operations. Hence,
your read database can be a document database and the
write database can be a relational database. By isolating
the read and write data stores, you can achieve enhanced
scalability to handle increased loads.

For instance, you may want to optimize your read data-
base to withstand significantly greater loads than your
write database. There are more read operations in an ap-
plication than writes and updates. Figure 3 shows an
implementation of the CQRS pattern.

Here’s how the entire process works:

1.	 The client communicates with an application by
sending commands using an API as an interface.

2.	 The application receives the command and processes
it.

3.	 The application writes the data associated with the
command into the write (or command) repository.

Joydip Kanjilal
joydipkanjilal@yahoo.com

Joydip Kanjilal is an MVP
(2007-2012), software
architect, author, and
speaker with more than
20 years of experience.
He has more than 16 years
of experience in Microsoft
.NET and its related
technologies. Joydip has
authored eight books,
more than 500 articles,
and has reviewed more
than a dozen books.

Figure 1: A typical application with queries and updates from and to a database

29codemag.com Building Microservices Architecture Using CQRS and ASP.NET Core

Key Components of the CQRS
Design Pattern
The CQRS pattern encompasses several key components:

•	 Commands: These are components that help you
change the application's state. For example, you can
take advantage of commands to create new data,
update data, or delete data.

•	 Queries: These components don't change the ap-
plication’s state; instead, they help you in data re-
trieval from the data store.

•	 Command handlers: These are components that ac-
cept some incoming commands, perform the actions
per these commands and consequently alter the ap-
plication’s state.

•	 Query handlers: These are components that can
help you build queries, execute those queries to re-
trieve data out of a data store, and subsequently
return this data to the invoker.

Challenges of the CQRS Design
Pattern
There are several challenges of the CQRS pattern:

•	 Increased complexity: CQRS introduces additional
complexity in your application because of the need
for different paths for reading and writing/updating
data. Additionally, applications that take advantage

4.	 Once the command is saved to the write database,
events are fired in the read (query) repository to up-
date the data.

5.	 In the read (or query) database, the data persists
after processing.

6.	 By communicating with the APIs used for receiving
data, the client sends queries to the query side of
the program.

7.	 The application processes the read request to re-
trieve the appropriate data from the read database.

In CQRS, a command should always
be task-based and not data-centric.
For example, "Reserve a train ticket" is
an example of a command. However,
"Change train reservation status
to Reserved" is not a command.

Benefits
Here are the key benefits of the CQRS pattern:

•	 Separation of concerns: The CQRS pattern sepa-
rates the query (i.e., data retrieval without modify-
ing the state) and command (i.e., create, update,
and delete operations) components of the applica-
tion, enabling you to optimize both independently.
Although you can optimize your queries to be more
efficient and fast, you can implement strict valida-
tion, transaction, and security logic in the command
components.

•	 Optimization: Because the read and write opera-
tions are isolated into two different models, the
CQRS pattern can help in optimizing performance
of data access operations in your application. Al-
though it can help you optimize query performance
by improving the speed of data retrieval in read op-
erations, the CQRS pattern can help you preserve
transactional integrity and domain logic, and op-
timize write or update operations in the database.

•	 Scalability: Because the CQRS pattern splits the
data access components into read and write compo-
nents, it enables you to scale each of these compo-
nents independently of one another. Typically, write
operations in an application are fewer compared to
read operations. Hence, if the application experi-
ences heavy read traffic, the read models can be
scaled horizontally.

•	 Security: The CQRS pattern helps you to implement
different security strategies for read and write op-
erations in your application. For example, you might
want to secure certain operations that write or up-
date sensitive data in the database. On the other
hand, you may want most of the read operations in
the application to allow data to the made available.

•	 Maintainability: Because it isolates the read and
write operations in an application, the CQRS pat-
tern facilitates maintainability due to separation of
concerns. For example, you can change the query
components of your application without affecting
the command side of your application that’s respon-
sible for updating or persisting data.

Figure 2: CQRS at work with the data read and write operations isolated

Figure 3: An implementation of the CQRS pattern with separate databases for read and
write operations

30 codemag.com

Building a Microservices-Based
Application Using CQRS
When building microservices-based applications, you can
take advantage of the CQRS design pattern and the Me-
diatR library to manage the command and query respon-
sibilities of your application efficiently. This approach
fosters separation of concerns, which in turn enables you
to build an application that contains scalable, efficient,
and maintainable source code.

In this section, you’ll build a microservices-based ap-
plication using CQRS. Let’s now examine how to build a
simple ASP.NET Core 9 Web API application using CQRS.
You’ll implement a simple order processing application
that demonstrates how you can use CQRS in ASP.NET Core.
A typical Order Processing System is composed of several
entities, such as Supplier, Order, Product, Customer, etc.
For the sake of simplicity and brevity, you’ll build the
Product module of the application in this example.

In the next section, let’s examine how to create an ASP.
NET Core 9 project in Visual Studio 2022.

Create a New ASP.NET Core 9 Project in Visual Studio 2022
You can create a project in Visual Studio 2022 in sev-
eral ways, such as, from the Visual Studio 2022 Developer
Command Prompt or by launching the Visual Studio 2022
IDE. When you launch Visual Studio 2022, you'll see the
Start window. You can choose "Continue without code"
to launch the main screen of the Visual Studio 2022 IDE.

Now that you know the basics, let’s start setting up the
project. To create a new ASP.NET Core 8 Project in Visual
Studio 2022:

1.	 Start the Visual Studio 2022 IDE.
2.	 In the Create a new project window, select “ASP.NET

Core Web API” and click Next to move on.
3.	 Specify the project name as ShoppingCartSystem

and the path where it should be created in the Con-
figure your new project window.

4.	 If you want the solution file and project to be cre-
ated in the same directory, you can optionally check
the Place solution and project in the same direc-
tory checkbox. Click Next to move on.

5.	 In the next screen, specify the target framework and
authentication type as well. Ensure that the "Config-
ure for HTTPS," "Enable Docker Support," “Do not use
top-level statements”, and the “Enable OpenAPI sup-
port” checkboxes are unchecked because you won’t
use any of these in this example.

6.	 Remember to leave the Use controllers checkbox
checked because you won’t use minimal API in this
example.

7.	 Click Create to complete the process.

A new ASP.NET Core Web API project is created. You’ll use this
project to implement the CQRS pattern in ASP.NET Core and C#.

Install Entity Framework Core
So far so good. The next step is to install the necessary
NuGet Package(s) for working with Entity Framework Core
and SQL Server. To install these packages into your proj-
ect, right-click on the solution and the select Manage
NuGet Packages for Solution….

of CQRS pattern should have different components
for reading and writing operations, which can even-
tually become an overhead.

•	 Consistency: It’s difficult to ensure that your ap-
plication's data is consistent—updates to the data
in your data store must be reflected in the query
results. Hence, you need proper data synchroniza-
tion mechanisms to ensure that the data pertaining
to read and write operations is in sync. Ensure that
there’s no data duplication between command and
query components. It’s quite challenging to ensure
data integrity across multiple data stores, particu-
larly when there’s a system or network failure.

•	 Operational overhead: The CQRS pattern can intro-
duce operational overhead because of the need to
deploy services for both query and write operations
in separate servers. Deploying, scaling, monitoring,
and debugging applications that take advantage of
the CQRS pattern can also be challenging.

•	 Testing and debugging: It’s quite challenging to
test and debug applications that leverage the CQRS
pattern. You might need to adopt specific testing
strategies because of the asynchronous nature of
the CQRS pattern. Additionally, because the com-
mands and events are processed in an isolated man-
ner and asynchronously, detecting issues in distrib-
uted applications can be challenging.

Use Cases
Typically, the CQRS pattern is used in large and complex
projects where performance and scalability are important.
Here are the key use cases of the CQRS pattern:

•	 E-commerce applications
•	 Healthcare applications
•	 Financial applications
•	 IoT applications
•	 High-traffic systems
•	 Supply chain management systems

Introduction to Microservices
Architecture
Microservices architecture encompasses a conglomera-
tion of loosely coupled components that can be built
using a collection of homogenous or heterogenous tech-
nologies. Microservices can be used to build, deploy, and
scale components individually and independently of each
other. This architectural approach represents a great leap
forward in software development by providing organiza-
tions with the requisite agility and flexibility to operate
efficiently in today's digital world. Because microser-
vices architecture is a scalable architecture, it provides
enterprises with the ability to scale existing services as
needed.

There’s a plethora of benefits of microservices architec-
ture, such as the following:

•	 Fault tolerance
•	 Modularity
•	 Improved scalability
•	 Reduced coupling
•	 Better ROI
•	 Faster releases
•	 Faster development

Building Microservices Architecture Using CQRS and ASP.NET Core

31codemag.com

 MediatR.Extensions.Microsoft.
DependencyInjection

Alternatively, you can install these packages by executing
the following commands at the Windows Shell:

dotnet add package MediatR
dotnet add package
 MediatR.Extensions.Microsoft.
DependencyInjection

The MediatR.Extensions.Microsoft.DependencyInjection
helps you register the MediatR handlers in your ASP.NET
Core application automatically.

Register MediatR in ASP.NET Core
You should register the MediatR handlers with the ser-
vices collection of your application. To do this, write the
following line of code in the Program.cs file:

builder.Services.AddMediatR
(cfg => cfg.
RegisterServicesFromAssembly
(Assembly.
GetExecutingAssembly()));

Now search for the NuGet packages named Microsoft.En-
tityFrameworkCore and Microsoft.EntityFrameworkCore.
InMemory packages in the search box and install them
one after the other. Alternatively, you can type the com-
mands shown below at the NuGet Package Manager Com-
mand Prompt:

PM> Install-Package
Microsoft.EntityFrameworkCore
PM> Install-Package
 Microsoft.EntityFrameworkCore.
SqlServer

Alternatively, you can install these packages by executing
the following commands at the Windows Shell:

dotnet add package
Microsoft.EntityFrameworkCore
dotnet add package
 Microsoft.EntityFrameworkCore.
SqlServer

Introducing the Mediator Pattern
The mediator design pattern is a behavioral pattern that
helps decrease dependencies among objects and regulates
how they can interact with each other effectively. This
pattern prevents objects from communicating directly,
instead requiring them to communicate through a media-
tor object. As a result, it helps build applications that
are loosely coupled, and easier to manage and maintain.
Figure 4 illustrates the Mediator pattern.

Introducing MediatR
To implement the mediator design pattern, you can take
advantage of the open-source library called MediatR. This
library enables you to implement the CQRS with ease and
manage the command and query handlers effectively. It
allows easy implementation of CQRS by offering an effec-
tive way of dealing with command and query handlers.
In essence, MediatR acts as a mediator that directs com-
mands and queries to the appropriate handlers.

The key benefits of MediatR include the following:

•	 Promotes loose coupling
•	 Facilitates easy maintainability and testability
•	 Helps adhere to the single responsibility principle

(SRP)
•	 Enables clear communication between objects

Figure 5 shows how MediatR works by delegating the re-
quest to the respective handlers.

Install MediatR in ASP.NET Core
You can install the MediatR library from NuGet. To do
that, right-click on the solution and the select Manage
NuGet Packages for Solution….

Now search for the NuGet packages named MediatR, and
MediatR.Extensions.Microsoft.DependencyInjection pack-
ages in the search box and install them one after the
other. Alternatively, you can write the commands given
below at the NuGet Package Manager Command Prompt:

PM> Install-Package MediatR
PM> Install-Package

Figure 4: Demonstrating the Mediator pattern

Figure 5: Demonstrating how MediatR delegates the requests to the respective handlers

Building Microservices Architecture Using CQRS and ASP.NET Core

32 codemag.com

 {
 _repository = repository;
 }

 public async Task<User> Handle

Create a Request in MediatR
In MediatR, messages can be of two types. These in-
clude requests (commands/queries) and notifications
(for events). You can define a request in MediatR by
implementing the IRequest<TResponse> interface, where
TResponse is the type of response, i.e., Order, Product,
Customer, Supplier, etc. The following code snippet illus-
trates how you can define a request in MediatR:

public class GetCustomerQuery
: IRequest<Customer>
{
 public Guid CustomerId { get; set; }

 public GetCustomerQuery
 (Guid CustomerId)
 {
 this.CustomerId = CustomerId;
 }
}

Create a Request Handler in MediatR
You need a handler to handle the request you just cre-
ated. Essentially, a handler contains the necessary logic
that should be executed to handle an incoming request
in MediatR. To create a handler in MediatR, create an in-
terface that implements the IRequestHandler<TRequest,
TResponse> interface as shown below:

public class GetCustomerQueryHandler
: IRequestHandler
<GetCustomerQuery, Customer>
{
 private readonly
 ICustomerRepository _repository;

 public GetCustomerQueryHandler
 (ICustomerRepository repository)

CREATE TABLE Product (
 [Product_Id]
 UniqueIdentifier PRIMARY KEY,
 [Name] varchar(255) NOT NULL,
 [Description] Text NOT NULL,
 [Category] varchar(50) NOT NULL,
 [Price] DECIMAL(10, 2),
 [Quantity] INT,
 [Created_At] DATETIME,
 [Modified_At] DATETIME

);

CREATE TABLE Customer (
 [Customer_Id]
 UniqueIdentifier PRIMARY KEY,
 [FirstName] VARCHAR(50),
 [LastName] VARCHAR(50),
 Email VARCHAR(100),
 [Address] VARCHAR(255),
 [Phone] VARCHAR(15),
 	 [Created_At] DATETIME,
 [Modified_At] DATETIME
);

CREATE TABLE [Order] (
 [Order_Id]
 UniqueIdentifier PRIMARY KEY,
 [Customer_Id] UniqueIdentifier,
 [OrderDate] TIMESTAMP,
 [TotalAmount] DECIMAL(10, 2),

 [Created_At] DATETIME,
 [Modified_At] DATETIME,
 FOREIGN KEY (Customer_Id)
 REFERENCES Customer(Customer_Id)
);

CREATE TABLE OrderItem (
 [OrderItem_Id]
 UniqueIdentifier PRIMARY KEY,
 [Order_Id] UniqueIdentifier,
 [Product_Id] UniqueIdentifier,
 [Quantity] INT,
 [Price] DECIMAL(10, 2),
 [Created_At] DATETIME,
 [Modified_At] DATETIME,
 FOREIGN KEY (Order_Id)
 REFERENCES [Order](Order_Id),
 FOREIGN KEY (Product_Id)
 REFERENCES Product(Product_Id)
);

CREATE TABLE Cart (
 [Cart_Id]
 UniqueIdentifier PRIMARY KEY,
 [Customer_Id] UniqueIdentifier,
 [Created_At] DATETIME,
 [Modified_At] DATETIME,
 FOREIGN KEY (Customer_Id)
 REFERENCES Customer(Customer_Id)
);

Listing 1: Create the database tables

Figure 6: The database design of the
ShoppingCartSystem database

Building Microservices Architecture Using CQRS and ASP.NET Core

33codemag.com

 (GetCustomerQuery request,
 CancellationToken token)
 {
 return await _repository.
 GetCustomerById
 (request.CustomerId);
 }
}

Create a Notification in MediatR
You can also create notifications and notification han-
dlers using MediatR. Assume that you want to send no-
tifications when a customer record is deleted from the
database. To create a notification in MediatR, implement
the INotification interface, as shown below.

public class
CustomerDeletedNotification :
INotification
{
 public Guid CustomerId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

You’ll create a handler for the CustomerDeletedNitifica-
tion in the next section.

Create a Notification Handler in MediatR
To create a notification handler in MediatR, implement
the INotificationHandler<TNotification> interface, as
shown in the code snippet given below.

public class
CustomerDeletedNotificationlHandler :
INotificationHandler
<CustomerDeletedNotification>
{
 public async Task Handle(
CustomerDeletedNotification
notification,
CancellationToken token)
 {
 //Write your code here
 //to send notification(s)
 //when an existing customer record
 // is deleted from the data store
 }
}

Now that you know how to work with MediatR, in the sec-
tions that follow, you’ll implement a simple microservices-
based application that leverages the MediatR library.

Create the Shopping Cart System Database
Create a new database called ShoppingCartSystem using
the following script:

Create database ShoppingCartSystem

Next, create the Product, Customer, Order, OrderItem, and
the Cart database tables inside the ShoppingCartSystem
database using the script given in Listing 1.

Figure 6 demonstrates the database diagram of the Shop-
pingCartSystem database.

Create the Solution Structure
As evident from the database design, the ShoppingCart-
System application is comprised of the Product, Customer,
Cart, Order, and OrderItem microservices. So, you should
create five WebAPI projects for each of them in the solu-
tion you created earlier. You’ll also create solution folders
to organize the files in each of the projects. Figure 7
shows how the solution structure looks.

In this example, for the sake of simplicity and brevity,
you’ll create only the Product microservice. In the sec-
tions that follow, you’ll create classes and interfaces per-
taining to the Product microservices-based application.

Create the Product Microservice
In this example, you’ll build the Product microservice ap-
plication or the Product API. The product microservice
application is comprised of the following files:

•	 Product.cs: This represents the product model that
contains domain-specific data and (optionally)
business logic.

•	 IProductRepository.cs: This represents the IPro-
ductRepository interface that contains the decla-
ration of the operations supported by the product
repository.

•	 ProductRepository.cs: This represents the product
repository class that implements the members of the
IProductRepository interface.

•	 ProductDbContext.cs: This represents the product
data context used to perform CRUD operations for
the Product table in the database.

Figure 7: The Solution structure of the
ShoppingCartSystem

Building Microservices Architecture Using CQRS and ASP.NET Core

34 codemag.com

 "SCSDbSettings":
 "Write your connection string here."
 },
 "AllowedHosts": "*"
}

You’ll use this connection string to enable the applica-
tion to connect to the database in a section later in this
article.

Create the Model Classes
First off, create two solution folders, one named Models
and the other DataAccess. The former will contain one
or more model classes, and the latter will have the data
context and repository interfaces and classes. It should
be noted that you can always create multiple data con-
text classes in the same project. If your data context
class contains many entity references, it’s good practice
to split the data context among multiple data context
classes rather than having one large data context class.

Create a new class called Product in a file named Product.
cs inside the Models folder and write the following code
in there:

namespace SCS.Product.Models
{
 public record Product
 {
 public Guid Product_Id
 { get; set; }
 public string Product_Name
 { get; set; } = default!;
 public string Product_Description
 { get; set; } = default!;
 public string Product_Category
 { get; set; } = default!;
 public decimal Product_Price
 { get; set; } = default!;
 public int Product_Quantity
 { get; set; } = default!;
 public DateTime Created_At
 { get; set; } = DateTime.Now;
 public DateTime Modified_At
 { get; set; } = DateTime.Now;
 }
}

In this implementation, you’ll use only one model class:
Product.

Create the Data Context
In Entity Framework Core (EF Core), a data context is a
component used by an application to interact with the
database and manage database connections, and to query
and persist data in the database. Let’s now create the
data context class to enable the application to interact
with the database to perform CRUD (Create, Read, Update,
and Delete) operations.

To do this, create a new class named ProductDbContext
that extends the DbContext class of EF Core and write the
following code in there.

public class ProductDbContext :
DbContext

•	 GetProductByIdQuery.cs: This represents the query
for retrieving a product record based on its ID.

•	 GetProductByIdQueryHandler.cs: This represents
the query handler for the GetProductByIdQuery that
contains the logic for returning the product record.

•	 GetAllProductsQuery.cs: This represents the query
for retrieving all product records.

•	 GetAllProductsQueryHandler.cs: This represents
the query handler for the GetAllProductsQuery that
contains the logic for returning all product records.

•	 CreateProductCommand.cs: This represents the re-
quired operations to create a product record in the
database.

•	 CreateProductCommandHandler.cs: This represents
the command handler that contains the implemen-
tation of the CreateProductCommand operation.

•	 UpdateProductCommand.cs: This represents the
operations to be executed to update an existing
product record in the database.

•	 UpdateProductCommandHandler.cs: This repre-
sents the command handler that contains the im-
plementation of the UpdateProductCommand opera-
tion.

•	 DeleteProductCommand.cs: This represents the op-
erations to be executed to delete a product record
in the database.

•	 DeleteProductCommandHandler.cs: This repre-
sents the command handler that contains the imple-
mentation of the DeleteProductCommand operation.

•	 appsettings.json: This represents the application’s
settings file where you can configure the database
connection string, logging metadata, etc.

•	 Program.cs: Any ASP.NET Core application contains
a file where the startup code required by the appli-
cation resides. This file is named Program.cs where
the services required by your application are con-
figured. You can specify dependency injection (DI),
configuration, middleware, and much more informa-
tion in this file.

Specify the Database Connection String
Your application requires a connection string to establish
a connection to the database which, in turn, contains the
necessary information about the database connection and
any initialization parameters sent by a data provider to a
data source. Typically, a connection string contains the
name of the database to connect to, the instance name of
the database server where the database resides, and some
other settings pertaining to security of the database.

In ASP.NET Core, the application's settings are stored in
a file known as appsettings.json. This file is created by
default when you create a new ASP.NET Core project. You
can take advantage of the ConnectionString property to
retrieve or store the connection string for a database. You
can specify the connection string in the appsettings.json
file, as shown below:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "ConnectionStrings": {

Building Microservices Architecture Using CQRS and ASP.NET Core

codemag.com

36 codemag.com

{
 public DbSet <Models.Product>
 Products { get; set; }

 protected override void
 OnConfiguring
 (DbContextOptionsBuilder
 optionsBuilder)
 {
 base.OnConfiguring
 (optionsBuilder);
 }
}

In the preceding piece of code, the statement base.
OnConfiguring(optionsBuilder) calls the OnConfiguring
method of the base class of your ProductDbContext. Be-
cause the base class of the ProductDbContext class is Db-
Context, the call does nothing in particular.

You can specify your database connection string in the
OnConfiguring overloaded method of the ProductDbCon-
text class. However, in this implementation, you’ll store
the database connection settings in the AppSettings.json
file and read it in the Program.cs file to establish a data-
base connection.

Note that your custom data context class (the ProductDb-
Context class in this example), must expose a public con-
structor that accepts an instance of type DbContextOptions
<ApplicationDbContext> as an argument. This is needed to
enable the runtime to pass the context configuration using
a call to the AddDbContext() method to your custom DbCon-
text class. The following code snippet illustrates how you
can define a public constructor for your data context class.

public ProductDbContext
(DbContextOptions
<ProductDbContext> options,

IConfiguration configuration) :
base(options)
{
 _configuration = configuration;
}

Seed the Database
You might often want to work with data seeding when us-
ing Entity Framework Core (EF Core) to populate a blank da-
tabase with an initial or minimal data set. Data seeding is
a one-time process of loading data into a database. The EF
Core framework provides an easy way to seed the data us-
ing the OnModelCreating() method of the DbContext class.

To generate fake data in your ASP.NET Core application,
you can take advantage of the Bogus open-source library.
It helps you to seed your database by taking advantage of
randomly generated but realistic data. To use this library,
you should install the Bogus (https://www.nuget.org/
packages/bogus) library from NuGet into your project.

The following code snippet illustrates how you can gener-
ate data using random data from the Bogus library:

private Models.Product[]
GenerateProductData()
{
 var productFaker = new Faker <
 SCS.Product.Models.Product> ()
 .RuleFor(x => x.Product_Id,
 f => Guid.NewGuid())
 .RuleFor(x =>
 x.Product_Name, f =>
 f.Commerce.ProductName())
 .RuleFor(x => x.Product_Description,
 f => f.Commerce.ProductDescription())
 .RuleFor(x => x.Product_Category,
 f => f.Commerce.ProductMaterial())
 .RuleFor(x => x.Product_Price,

using Bogus;
using Microsoft.EntityFrameworkCore;

namespace SCS.Product.DataAccess
{
 public class ProductDbContext : DbContext
 {
 private readonly IConfiguration _configuration;
 public ProductDbContext
 (DbContextOptions<ProductDbContext> options,
 IConfiguration configuration) : base(options)
 {
 _configuration = configuration;
 }

 protected override void OnConfiguring
 (DbContextOptionsBuilder optionsBuilder)
 {
 _ = optionsBuilder.UseSqlServer(_configuration.
 GetConnectionString("SCSDbSettings")).
 EnableSensitiveDataLogging();
 }

 public DbSet<Models.Product>
 Products { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {

 modelBuilder.Entity< Models.Product>().
 ToTable("Product");
 modelBuilder.Entity< Models.Product>().
 HasKey (p => p.Product_Id);
 var products = GenerateProductData();
 modelBuilder.Entity<Models.Product>().
 HasData(products);
 }

 private Models.Product[] GenerateProductData()
 {
 var productFaker = new
 Faker<SCS.Product.Models.Product>()
 .RuleFor(x => x.Product_Id,
 f => Guid.NewGuid())
 .RuleFor(x => x.Product_Name,
 f => f.Commerce.ProductName())
 .RuleFor(x => x.Product_Description,
 f => f.Commerce.ProductDescription())
 .RuleFor(x => x.Product_Category,
 f => f.Commerce.ProductMaterial())
 .RuleFor(x => x.Product_Price,
 f => Math.Round(f.Random.Decimal
 (1000, 5000), 2));
 return productFaker.Generate
 (count: 5).ToArray();
 }
 }
}

Listing 2: The ProductDbContext class

Building Microservices Architecture Using CQRS and ASP.NET Core

37codemag.com

•	 Commands
•	 Create
•	 Update
•	 Delete

•	 Queries
•	 Get
•	 GetAll

Note that any command class should extend the
IRequest<T> interface pertaining to the MediatR library.

The DbContext class in the EF Core
library is not thread safe.
Refrain from sharing data context
between threads.

The GetProductById Query
To read data from the database, take advantage of queries
and query handers. In this example, you'll implement two
types of queries and query handlers, one of them to read
a product record by ID and the other to retrieve a list of
all product records from the data store.

The following code snippet illustrates how you can define
a query named GetProductByIdQuery inside the /Queries
solution folder of the project to retrieve a product record
from the database based on the product ID.

using MediatR;

namespace SCS.Product.Queries
{
 public record GetProductByIdQuery :
 IRequest<Models.Product>
 {
 public Guid Id { get; set; }
 }
}

Next, create a new .cs file named GetProductByIdHan-
dler.cs inside the /Queries solution folder that contains
a class named GetProductByIdQueryHandler that, in turn,
encapsulates the logic required to retrieve a product re-
cord from the data store, as shown in Listing 3.

The GetAllProductsQuery
Next, create a file named GetAllProductsQuery in a file
having the same name with a .cs extension inside the /
Queries folder and write the following code in there:

using MediatR;

namespace SCS.Product.Queries
{
 public record GetAllProductsQuery :
 IRequest<List<Models.Product>>;
}

The GetAllProductsQueryHandler class encapsulates the
logic for retrieving a list of all product records from the
database, as shown in Listing 4.

 f => Math.Round(f.Random.Decimal
 (1000, 5000), 2));
 return productFaker.
 Generate(count: 5).ToArray();
}

Invoke the GenerateProductData method in the OnModel-
Creating method to populate the database with randomly
generated data, as shown in the following piece of code:

protected override
void OnModelCreating
(ModelBuilder modelBuilder)
{
 modelBuilder.Entity
 <Models.Product> ().
 ToTable("Product");
 modelBuilder.Entity
 <Models.Product> ().
 HasKey(p => p.Product_Id);

 var products =
 GenerateProductData();
 modelBuilder.Entity
 <Models.Product> ().
 HasData(products);
}

The complete source code of the ProductDbContext class
is given in Listing 2.

Register the ProductDb data context instance as a service
with the services container of ASP.NET Core using the fol-
lowing piece of code in the Program.cs file.

builder.Services.AddDbContext
<ProductDbContext>(options =>
options.UseSqlServer(@"Data Source=
<<Specify the data source here>>;
Initial Catalog=
<<Specify the initial catalog here>>;
Trusted_Connection=True;
TrustServerCertificate=True;
Integrated Security=True;"));

If your application needs to perform multiple units of
work, it’s advisable to use a DbContext factory instead. To
do this, register a factory by calling the AddDbContext-
Factory method in the Program.cs file of your project, as
shown in the following code example:

builder.Services.AddDbContextFactory
<ProductDbContext>(options =>
{
 options.UseSqlServer
(builder.Configuration
["ConnectionStrings:SCSDbSettings"]);
});

Query Product Data from
the Database
In this example, you'll create the following commands
and queries:

Building Microservices Architecture Using CQRS and ASP.NET Core

38 codemag.com

 IRequest<Models.Product>
 {
 public Guid Id { get; set; }
 public string Product_Name
 { get; set; } = default!;
 public string Product_Description
 { get; set; } = default!;
 public string Product_Category
 { get; set; } = default!;
 public decimal Product_Price
 { get; set; } = default!;
 public DateTime Created_At
 { get; set; } = DateTime.Now;
 public DateTime Modified_At
 { get; set; } = DateTime.Now;
 }
}

The CreateProductCommand should have a corresponding
handler to persist the product data into the data store. To
do this, create another .cs file named CreateProductCom-
mandHandler.cs and replace the default generated source
code with the code given in Listing 5.

Code Explanation
The following series of steps explain how the CreatePro-
ductHandler works:

•	 The CreateProductCommandHandler contains an
asynchronous method named Handle that accepts
an instance of CreateProductCommand and a Cancel-
lationToken object as a parameter.

•	 Inside the Handle method, a new Product object is
created.

•	 This new object is populated with the data retrieved
from the CreateProductCommand instance passed to
the Handle method as a parameter.

•	 The new Product instance is finally saved into the
database by making a call to the SaveChangesAsync
method on the data context instance.

•	 The product ID of the newly created record is then
returned.

Create the UpdateProductCommand
Now, create a command named UpdateProductCommand
under the /Commands solution folder to update a prod-
uct record in the database, as shown in the code snippet
given below:

using MediatR;

namespace SCS.Product.Commands
{
 public record UpdateProductCommand :
 IRequest<Product>
 {
 public Guid Product_Id
 { get; set; }
 public string
 Product_Name
 { get; set; } = default!;
 public string
 Product_Description
 { get; set; } = default!;
 public string
 Product_Category

Create, Update, and Delete Products
Now that you know how to query data from the Product
database table, let’s understand how you can create a new
product record, update an existing product record, and
delete a product record from the database. To do this, you
need to create commands to handle each of the Create,
Update, and Delete operations.

Create the CreateProductCommand
Create a new .cs file named CreateProductCommand.cs
inside the /Commands folder of the project and replace
the default generated source code with the code snippet
given below:

using MediatR;

namespace SCS.Product.Commands
{
 public record CreateProductCommand :

using MediatR;
using SCS.Product.DataAccess;

namespace SCS.Product.Queries
{
 public class GetProductByIdQueryHandler :
 IRequestHandler<GetProductByIdQuery,
 Models.Product>
 {
 private readonly
 IProductRepository _repository;

 public GetProductByIdQueryHandler
 (IProductRepository repository)
 {
 _repository = repository;
 }

 public async Task<Models.Product>
 Handle(GetProductByIdQuery productRequest,
 CancellationToken cancellationToken)
 {
 return await
 _repository.GetByIdAsync
 (productRequest.Id);
 }
 }
}

Listing 3: The GetProductByIdQueryHandler class

using MediatR;
using SCS.Product.DataAccess;

namespace SCS.Product.Queries
{
 public class GetAllProductsQueryHandler :
 IRequestHandler<GetAllProductsQuery,
 IEnumerable<Models.Product>>
 {
 private readonly IProductRepository _repository;

 public GetAllProductsQueryHandler
 (IProductRepository repository)
 {
 _repository = repository;
 }

 public async Task<IEnumerable<Models.Product>>
 Handle(GetAllProductsQuery request,
 CancellationToken cancellationToken)
 => await _repository.GetAllAsync();
 }
}

Listing 4: The GetAllProductsQueryHandler

Building Microservices Architecture Using CQRS and ASP.NET Core

39codemag.com

•	 The Product instance is finally deleted by making a
call to the SaveChangesAsync method on the data
context instance.

•	 An appropriate exception message is thrown if the
ProductId pertaining to the product record to be de-
leted doesn’t exist in the database.

 { get; set; } = default!;
 public decimal Product_Price
 { get; set; } = default!;
 public DateTime Created_At
 { get; set; } = DateTime.Now;
 public DateTime Modified_At
 { get; set; } = DateTime.Now;
 }
}

The UpdateProductCommand should have a corresponding
handler to update a product record based on the product
ID. To do this, create another .cs file named UpdatePro-
ductCommandHandler.cs and write the source code given
in Listing 6 in there.

Code Explanation
The following series of steps explain how the UpdatePro-
ductHandler works:

•	 The UpdateProductCommandHandler contains an
asynchronous method named Handle that accepts
an instance of UpdateProductCommand and a Can-
cellationToken object as a parameter.

•	 Inside the Handle method, the Product record based
on its ID is retrieved from the database.

•	 This Product object is updated with the data re-
trieved from the UpdateProductCommand instance
passed to the Handle method as a parameter.

•	 The updated Product instance is finally saved into
the database by making a call to the SaveChang-
esAsync method on the data context instance.

•	 The Product instance is then returned.

Create the DeleteProductCommand
Next, create another command named DeleteProductCom-
mand under the /Commands solution folder to delete a
product record in the database, as shown in the code
snippet given below.

using MediatR;

namespace SCS.Product.Commands
{
 public record
 DeleteProductCommand(Guid Id) :
 IRequest;
}

The DeleteProductCommand should also have a corre-
sponding handler to delete a product record based on
the product ID. To do this, create another .cs file named
DeleteProductCommandHandler.cs and write the source
code given in Listing 7 in there.

Code Explanation
The following series of steps explain how the DeletePro-
ductHandler works:

•	 The DeleteProductCommandHandler contains an
asynchronous method named Handle that accepts
an instance of DeleteProductCommand and a Can-
cellationToken object as a parameter.

•	 Inside the Handle method, the Product record to be
deleted based on its ID is retrieved from the data-
base.

using MediatR;
using SCS.Product.DataAccess;

namespace SCS.Product.Commands
{
 public class CreateProductCommandHandler
 (IProductRepository productRepository) :
 IRequestHandler<CreateProductCommand,
 Models.Product>
 {
 public async Task<Models.Product>
 Handle(CreateProductCommand productCommand,
 CancellationToken cancellationToken)
 {
 var product = new Models.Product
 {
 Product_Name = productCommand.Product_Name,
 Product_Description =
 productCommand.Product_Description,
 Product_Category =
 productCommand.Product_Category,
 Product_Price = productCommand.Product_Price,
 Created_At = DateTime.UtcNow,
 Modified_At = DateTime.UtcNow
 };

 await productRepository.CreateAsync(product);
 return product;
 }
 }
}

Listing 5: The CreateProductCommandHandler class

using MediatR;
using SCS.Product.DataAccess;

namespace SCS.Product.Commands
{
 public class UpdateProductCommandHandler
 (IProductRepository productRepository) :
 IRequestHandler<UpdateProductCommand,
 Models.Product>
 {
 public async Task<Models.Product> Handle
 (UpdateProductCommand productRequest,
 CancellationToken cancellationToken)
 {
 var product = await
 productRepository.GetByIdAsync
 (productRequest.Id);

 if (product != null)
 {
 product.Product_Name =
 productRequest.Product_Name;
 product.Product_Description =
 productRequest.Product_Description;
 product.Product_Category =
 productRequest.Product_Category;
 product.Product_Price =
 productRequest.Product_Price;
 product.Modified_At = DateTime.UtcNow;
 await productRepository.UpdateAsync(product);
 return product;
 }

 return default;
 }
 }
}

Listing 6: The UpdateProductCommandHandler class

Building Microservices Architecture Using CQRS and ASP.NET Core

40 codemag.com

 {
 public Task<Ienumerable
 <Models.Product>> GetAllAsync();

 public Task<Models.Product>
 GetByIdAsync(Guid id);

 public Task CreateAsync
 (Models.Product product);

 public Task UpdateAsync
 (Models.Product product);

 public Task DeleteAsync
 (Models.Product product);
 }
}

The complete source code of the ProductRepository class
is given in Listing 8.

Create the ProductController Class
Now, create a new controller named ProductController in
the Controllers folder of the project. The following code
snippet shows how you can take advantage of constructor
injection to pass an instance of the query handler using
the constructor and then use it to retrieve all product
records from the database.

private readonly IRequestHandler
 <GetAllProductsQuery,
 IEnumerable
 <Models.Product>>
 _getAllProductQueryHandler;

public ProductController
(IRequestHandler
<GetAllProductsQuery, IEnumerable
<Models.Product>>
getAllProductsQueryHandler)
{
 _getAllProductQueryHandler =
 getAllProductsQueryHandler;
}

[HttpGet("GetAllProducts")]
public async Task <IEnumerable
<Models.Product>> GetAllProducts()
{
 return await
 _getAllProductQueryHandler.Handle
 (new GetAllProductsQuery(),
 new CancellationToken());
}

The following code snippet shows the action methods for
creating, updating, and deleting product records. The first
code snippet shows the CreateProduct action method that
creates a new product record in the database.

[HttpPost(nameof(CreateProduct))]
public async Task<IActionResult>
CreateProduct(CreateProductCommand command)
{
 try
 {

Create the ProductRepository Class
A repository class is an implementation of the Repository de-
sign pattern and is one that manages data access. The appli-
cation takes advantage of the repository instance to perform
CRUD operations against the database. Now, create a new
class named ProductRepository in a file having the same name
with a .cs extension. Then write the following code in there:

public class ProductRepository :
IProductRepository
{

}

In the Product model class,
you’ll observe the usage of Models.
Product when referring to the
Product class. This is needed
because the names of the project
and the model class are identical.
You can avoid this by using
different names anyway.

The ProductRepository class, illustrated in the code
snippet below, implements the methods of the IProduc-
tRepository interface. Here is how the IProductRepository
interface should look:

namespace SCS.Product.DataAccess
{
 public interface IProductRepository

using MediatR;
using SCS.Product.DataAccess;

namespace SCS.Product.Commands
{
 public class DeleteProductCommandHandler
 (IProductRepository productRepository) :
 IRequestHandler<DeleteProductCommand>
 {
 public async Task Handle
 (DeleteProductCommand productRequest,
 CancellationToken cancellationToken)
 {
 var product = await
 productRepository.
 GetByIdAsync(productRequest.Id);

 if (product != null)
 {
 await productRepository.
 DeleteAsync(product);
 }
 else
 {
 throw new Exception
 ($"Product with Id
 {productRequest.Id} not found.");
 }
 }
 }
}

Listing 7: The DeleteProductCommandHandler class

Building Microservices Architecture Using CQRS and ASP.NET Core

41codemag.com

 new CancellationToken());
 return Ok
 ("Product record deleted successfully");
 }
 catch (Exception ex)
 {
 return StatusCode
 (StatusCodes.Status500InternalServerError,
 $"Error deleting product: {ex.Message}");
 }
}

Listing 9 shows the complete source of the ProductCon-
troller class.

Register the Service Instances
with IServiceCollection
The following code snippet illustrates how you can reg-
ister the IRequestHandler instances added as a transient
service to the IServiceCollection.

 await _createProductCommandHandler.Handle
 (command, new CancellationToken());
 return Ok
 ("Product record added successfully");
 }
 catch (Exception ex)
 {
 return StatusCode
 (StatusCodes.Status500InternalServerError,
 $"Error adding product: {ex.Message}");
 }
}

Similarly, the UpdateProduct action method shown in the
code example below is used to update or alter an existing
product record in the database.

[HttpPut(nameof(UpdateProduct))]
public async Task<IActionResult>
UpdateProduct(UpdateProductCommand command)
{
 try
 {
 await _updateProductCommandHandler.Handle
 (command, new CancellationToken());
 return Ok("Product record updated
 successfully");
 }
 catch (Exception ex)
 {
 return StatusCode(StatusCodes.
 Status500InternalServerError,
 $"Error updating product: {ex.Message}");
 }
}

Finally, the DeleteProduct action method given below is
responsible for deleting an existing product record in the
database.

The action verbs HttpGet, HttpPost,
HttpPut, HttpDelete, and HttpPatch
are specified using attributes in the
action methods in ASP.NET Core to
handle various types of requests. If
you've not specified any action verb
in an action method, the runtime
will consider the request as a
HttpGet request by default.

[HttpDelete("DeleteProduct")]
public async Task<IActionResult>
DeleteProduct(DeleteProductCommand
deleteProductCommand)
{
 try
 {
 await _deleteProductCommandHandler.Handle
 (deleteProductCommand,

using Microsoft.EntityFrameworkCore;

namespace SCS.Product.DataAccess
{
 public class ProductRepository : IProductRepository
 {
 private readonly ProductDbContext _dbContext;

 public ProductRepository
 (ProductDbContext dbContext)
 {
 _dbContext = dbContext;
 _dbContext.Database.EnsureCreated();
 }

 public async Task<Models.Product>
 GetByIdAsync(Guid id)
 {
 return await
 _dbContext.Set
 <Models.Product>().FindAsync(id);
 }

 public async Task<Ienumerable
 <Models.Product>> GetAllAsync()
 {
 return await
 _dbContext.Set
 <Models.Product>().ToListAsync();
 }

 public async Task CreateAsync
 (Models.Product entity)
 {
 await _dbContext.Set<Models.Product>().
 AddAsync(entity);
 await _dbContext.SaveChangesAsync();
 }

 public async Task UpdateAsync
 (Models.Product entity)
 {
 _dbContext.Set<Models.Product>().
 Update(entity);
 await _dbContext.SaveChangesAsync();
 }

 public async Task DeleteAsync(Models.Product entity)
 {
 _dbContext.Set<Models.Product>().Remove(entity);
 await _dbContext.SaveChangesAsync();
 }
 }
}

Listing 8: The ProductRepository Class

SPONSORED SIDEBAR

CODE Is Hiring!

CODE Staffing is
accepting resumes for
various open positions
ranging from junior to
senior roles. We have
multiple openings
and will consider
candidates who seek
full-time employment or
contracting opportunities.

For more information:
www.codestaffing.com.

Building Microservices Architecture Using CQRS and ASP.NET Core

42 codemag.com

using MediatR;
using Microsoft.AspNetCore.Mvc;
using SCS.Product.Commands;
using SCS.Product.Queries;

namespace SCS.Product.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class ProductController: Controller
 {
 private readonly IRequestHandler
 <GetProductByIdQuery, Models.Product>
 _getProductByIdQueryHandler;
 private readonly IRequestHandler
 <GetAllProductsQuery , IEnumerable
 <Models.Product>>
 _getAllProductsQueryHandler;

 private readonly IRequestHandler
 <CreateProductCommand , Models.Product>
 _createProductCommandHandler;
 private readonly IRequestHandler
 <UpdateProductCommand , Models.Product>
 _updateProductCommandHandler;
 private readonly IRequestHandler
 <DeleteProductCommand>
 _deleteProductCommandHandler;

 public ProductController(
 IRequestHandler <GetProductByIdQuery,

 Models.Product>
 getProductByIdQueryHandler,
 IRequestHandler <CreateProductCommand,

 Models.Product>
 createProductCommandHandler,
 IRequestHandler
 <GetAllProductsQuery,

 IEnumerable <Models.Product>>
 getAllProductsQueryHandler,
 IRequestHandler
 <UpdateProductCommand,
 Models.Product>
 updateProductCommandHandler,
 IRequestHandler
 <DeleteProductCommand >
 deleteProductCommandHandler)
 {
 _getProductByIdQueryHandler = =
 getProductByIdQueryHandler;
 _getAllProductsQueryHandler = =
 getAllProductsQueryHandler;

 _createProductCommandHandler = =
 createProductCommandHandler;
 _updateProductCommandHandler = =
 updateProductCommandHandler;
 _deleteProductCommandHandler = =
 deleteProductCommandHandler;
 }

 [HttpGet("GetProductById")]
 public async Task <Models.Product>
 GetProductById
 (GetProductByIdQuery getProductByIdQuery)
 {
 return await
 _getProductByIdQueryHandler.Handle
 (getProductByIdQuery,
 new CancellationToken());
 }

 [HttpGet(nameof(GetAllProducts))]
 public async Task <IEnumerable

 <Models.Product>>
 GetAllProducts()
 {
 return await
 _getAllProductsQueryHandler.
 Handle
 (new GetAllProductsQuery(),
 new CancellationToken());
 }

 [HttpPost(nameof(CreateProduct))]
 public async Task <IActionResult>
 CreateProduct(CreateProductCommand command)
 {
 try
 {
 await
 _createProductCommandHandler.
 Handle
 (command,
 new CancellationToken());
 return Ok
 ("Product record added successfully");
 }
 catch (Exception ex)
 {
 return StatusCode(StatusCodes.
 Status500InternalServerError, $
 "Error adding
 product: {ex.Message}");
 }
 }

 [HttpPut(nameof(UpdateProduct))]
 public async Task <IActionResult>
 UpdateProduct(UpdateProductCommand command)
 {
 try
 {
 await _updateProductCommandHandler.
 Handle(command,
 new CancellationToken());
 return Ok
 ("Product record updated successfully");
 }
 catch (Exception ex)
 {
 return StatusCode(StatusCodes.
 Status500InternalServerError,
 $ "Error updating
 product: {ex.Message}");
 }
 }

 [HttpDelete("DeleteProduct")]
 public async Task <IActionResult>
 DeleteProduct(DeleteProductCommand
 deleteProductCommand)
 {
 try
 {
 await_deleteProductCommandHandler.Handle
 (deleteProductCommand,
 new CancellationToken());
 return Ok
 ("Product record deleted successfully");
 }
 catch (Exception ex)
 {
 return StatusCode(StatusCodes.
 Status500InternalServerError,
 $ "Error deleting
 product: {ex.Message}");
 }
 }
 }
}

Listing 9: The ProductController class

builder.Services.AddScoped
<IProductRepository,
ProductRepository>();
builder.Services.AddTransient

<IRequestHandler
<GetProductByIdQuery,
Models.Product>> ();
builder.Services.AddTransient

Building Microservices Architecture Using CQRS and ASP.NET Core

43codemag.com

successfully” is returned as part of the response, as shown
in Figure 10.

Best Practices
Here are some of the best practices to follow when work-
ing with CQRS:

•	 Define distinct Commands and Queries.
•	 Commands in a CQRS implementation should be

task-based (i.e., CreateOrder, UpdateUser) and not
data-centric.

<IRequestHandler
<GetAllProductsQuery,
IEnumerable<Models.Product>>,
GetAllProductsQueryHandler>();
builder.Services.AddTransient
<IRequestHandler
<CreateProductCommand,
Models.Product>,
CreateProductCommandHandler>();
builder.Services.AddTransient
<IRequestHandler
<UpdateProductCommand,
Models.Product>,
UpdateProductCommandHandler>();
builder.Services.AddTransient
<IRequestHandler
<DeleteProductCommand>,
DeleteProductCommandHandler>();

In addition, register the IproductRepository instance
with the service collection, as shown below:

builder.Services.AddScoped
<IProductRepository, ProductRepository>();

The complete source code of the Program.cs file is given
in Listing 10.

Sequence Diagram of
the GetAllProducts Flow
The sequence diagram of the GetAllProducts HttpGet flow
is shown in Figure 8:

Execute the Application
Finally, run the application and launch the popular API
tool Postman. Figure 9 shows the output upon execution
of the getproductbyid endpoint.

When you run the createproduct endpoint and specify the
details of the new product to be added to the database
in the body of the request, a new product record is added
to the Product table and the text “Product record added

global using Models = SCS.Product.Models;
using MediatR;
using Microsoft.EntityFrameworkCore;
using SCS.Product.Commands;
using SCS.Product.DataAccess;
using SCS.Product.Queries;
using System.Reflection;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddMediatR
(cfg => cfg.RegisterServicesFromAssembly
(Assembly.GetExecutingAssembly()));

builder.Services.AddScoped
<IProductRepository, ProductRepository>();
builder.Services.AddControllers();

builder.Services.AddDbContext
<ProductDbContext>(options =>
{
options.UseSqlServer
(builder.Configuration
["ConnectionStrings:SCSDbSettings"]);
});

var app = builder.Build();

// Configure the HTTP request pipeline.

app.UseAuthorization();

app.MapControllers();

app.Run();

Listing 10: The Complete Program.cs file

Figure 8: The sequence diagram of the GetAllProducts HttpGet flow

Building Microservices Architecture Using CQRS and ASP.NET Core

44 codemag.com

•	 Queries in a typical CQRS implementation should
only return data without changing the state.

•	 Your write model should be normalized to ensure
data integrity and consistency.

•	 Take advantage of MediatR for mediating commands
and queries.

•	 You can leverage AutoMapper to transfer domain
models to data transfer objects.

Where Do We Go from Here?
This article taught you about the CQRS design pattern,
its benefits, components, challenges, and how to use it

in microservices-based applications. You also learned how
to take advantage of this design pattern to implement
microservices-based applications that are scalable, ef-
ficient, and maintainable. By splitting the application's
CRUD operations into two sections, namely, the command
and query sides, the CQRS pattern promotes flexibility
in designs, enhances security, improves performance,
and helps scale your application easily. I'll discuss more
design patterns related to microservices architecture in
future articles.

Figure 9: The getproductbyid endpoint in action

Figure 10: The createproduct endpoint in action

� Joydip Kanjilal
�

Building Microservices Architecture Using CQRS and ASP.NET Core

45Title articlecodemag.com

UAV

codemag.com46 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

ONLINE QUICK ID 2501051

Exploring LangChain: A Practical
Approach to Language Models and
Retrieval-Augmented Generation (RAG)
LangChain is a powerful framework for building applications that incorporate large language models (LLMs). It simplifies the
process of embedding LLMs into complex workflows, enabling the creation of conversational agents, knowledge retrieval
systems, automated pipelines, and other AI-driven applications. At its core, LangChain follows a modular design that allows

developers to build “chains,” or sequences of actions, with
customizable components like prompt templates, model
settings, response parsing, and memory management. It
also supports integration with external data sources such
as document databases, search indices, APIs, and more—
a feature commonly referred to as Retrieval-Augmented
Generation (RAG). This flexibility empowers developers to
create tailored solutions for diverse tasks, from customer
support bots to data analysis tools that extract insights
from extensive datasets.

With a growing suite of tools and agents, LangChain is
a top choice for developers aiming to leverage LLMs for
dynamic, data-driven, and interactive applications. It
offers extensive customization options and is actively
maintained to support the latest advancements in LLMs
and AI.

In this article, I’ll guide you through the basics of using
LangChain and its components. You'll learn how to com-
bine different modules to create functional applications,
including a RAG application for querying private docu-
ments using LLMs.

A Basic LangChain Example
The easiest way to get started with LangChain is to begin
with a simple example. First, let’s install the following
libraries using the pip command:

!pip install langchain
!pip install langchain-openai

For this example, you’ll be using LLMs from OpenAI, so
you need to apply for an OpenAI API key and then save
the API key in an environment variable:

import os

replace with your own API Key
os.environ['OPENAI_API_KEY'] = "OpenAI API Key"

Do remember that OpenAI operates with a pay-for-use
model, where costs are typically based on usage, like the
number of tokens processed in language model queries.
Go to https://platform.openai.com/docs/overview to
sign up for an OpenAI account.

Components In LangChain
In a LangChain application, components are connected
or "chained" to create complex workflows for natural lan-
guage processing. Each component in the chain serves
a specific purpose, like prompting the model, managing
memory, or processing outputs, and they pass informa-
tion to each other to enable more sophisticated applica-
tions. By chaining these components, you can build sys-
tems that not only generate responses but also retrieve
information, maintain conversational context, summarize
content, and much more. This modular approach allows
flexibility, letting you create pipelines that can adapt to
various tasks and data inputs based on the needs of your
application.

In this basic example, you’ll use the following compo-
nents:

•	 PromptTemplate: This component helps create a
structured template for the prompt. It allows you to
specify placeholders that can be dynamically filled
with specific inputs (like a question or context)
each time the prompt is used. This makes it easier
to standardize prompts while customizing them for
each query.

•	 ChatOpenAI: This component interfaces with Ope-
nAI's chat models, enabling the generation of re-
sponses based on the provided prompt and any
contextual information. It acts as the core of the
application, where the language model generates
responses to the user's inputs.

•	 StrOutputParser: This component processes the raw
output from the model into a usable format, such as
extracting only the text content. It simplifies the
response so that it can be easily displayed or further
processed in your application.

By chaining these components, you can build a stream-
lined flow from prompt creation to response parsing, pro-
viding a solid foundation for more advanced LangChain
applications. Figure 1 shows how these components are
chained together.

Let’s create the first component: PromptTemplate:

Wei-Meng Lee
weimenglee@learn2develop.net
http://www.learn2develop.net
@weimenglee

Wei-Meng Lee is a tech-
nologist and founder of
Developer Learning Solu-
tions (www.learn2develop.
net), a technology company
specializing in hands-on
training on the latest
technologies. Wei-Meng
has many years of training
experiences and his
training courses place
special emphasis on the
learning-by-doing approach.
His hands-on approach
to learning programming
makes understanding the
subject much easier than
reading books, tutorials, and
documentation. His name
regularly appears in online
and print publications such
as DevX.com, MobiForge.
com, and CODE Magazine.

Figure 1: Chaining all the components in a LangChain application

codemag.com 47Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

Invoking the Chain
To use the chain to answer a question, call its invoke()
method and pass in a dictionary containing the ques-
tion key and setting its value to the question you’re
asking:

chain.invoke({"question": "Who is Steve Jobs?"})

The invoke() method in LangChain returns the final pro-
cessed output after it flows through each component in
the chain. You will see something like the following:

Steve Jobs was an American entrepreneur, inven-
tor, and business magnate best known as the co-
founder of Apple Inc. He was born on February
24, 1955, and passed away on October 5, 2011.
Jobs played a crucial role in the development of
revolutionary products such as the Macintosh
computer, iPod, iPhone, and iPad. He was known
for his visionary approach to technology and de-
sign, as well as his emphasis on user experience.
In addition to his work at Apple, Jobs was also
the CEO of Pixar Animation Studios and played a
significant role in the production of acclaimed
films like "Toy Story." His leadership style and
focus on innovation have left a lasting impact
on the technology industry and popular culture.

This invoke() method simplifies
the interaction with your LangChain
application by handling all
components in sequence and
directly providing the final answer.

Maintaining Conversations with Memory
If you've used ChatGPT before, you know it can handle
follow-up questions seamlessly. For example, after asking,
"Who is Steve Jobs?" you might follow up with, "What
are some of the companies he founded?" ChatGPT under-
stands that "he" refers to Steve Jobs and can provide
relevant information about the companies he founded.
This ability to maintain context across questions is pos-
sible because ChatGPT uses memory to keep track of the
conversation.

The LangChain application that you built earlier, however,
doesn’t have memory of the previous conversation. To
prove that, ask a follow-up question:

chain.invoke({"question":
 "What company did he found?"})

And you will get the following response from the model:

Could you please provide more context or specify
who you are referring to? This will help me give
you a more accurate answer.

from langchain import PromptTemplate

template = '''
Question: {question}
Answer: '''

prompt = PromptTemplate(
 template = template,
 input_variables = ['question']
)

Basically, the PromptTemplate contains a string tem-
plate that specifies the structure of the prompt, contain-
ing a Question field where {question} acts as a place-
holder. When the template is used, this placeholder will
be replaced with the actual question input.

The next component to create is the ChatOpenAI:

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4o-mini")

Here, you’re making use of the “gpt-4o-mini” model from
OpenAI.

The third component is the StrOutputParser:

from langchain_core.output_parsers \
import StrOutputParser

output_parser = StrOutputParser()

The StrOutputParser is used to handle the output from
your model and parse it as a straightforward string. This
is useful when working with responses that don’t require
complex parsing or structuring. StrOutputParser will en-
sure that the model's output is returned as a raw string.

Chaining the Components
Finally, you can now combine your components into a
single chain by linking the PromptTemplate, ChatOpe-
nAI model, and StrOutputParser. This chaining approach
allows a streamlined pipeline where you can input a ques-
tion, have it processed through each component, and re-
ceive a parsed response.

create the chain
chain = prompt | model | output_parser

In LangChain, the | operator is used to
combine multiple components (such
as PromptTemplate, ChatOpenAI,
and StrOutputParser) into a chain.
This "piping" operator allows you
to create a seamless workflow
where the output of one component
is automatically passed as the input
to the next.

codemag.com

•	 memory.load_memory_variables({}): This method
retrieves the current memory variables stored in
the ConversationBufferMemory. By passing an
empty dictionary, you are requesting all memory
variables without any filters.

•	 ["history"]: This accesses the specific history vari-
able from the retrieved memory. It provides the en-
tire context of the conversation up to that point.

So now when you ask a question, you create a dictionary
with two keys: question and history:

response = chain.invoke(
 {"question" : question,
 "history" :
 memory.load_memory_variables({})["history"]})
print(response)

Essentially, whenever you ask a question, you are also
passing back the history of the conversation to the model
so that it can provide the context for the current ques-
tion.

When the model returns a response, you should save the
context to the ConversationBufferMemory instance us-
ing the save_context() method. This method allows you
to store both the question and the answer, thereby updat-
ing the conversation history. Here’s how you can do this:

memory.save_context(
 {"question": question},
 {"answer": response})

Listing 1 shows the complete application that can main-
tain a conversation with the model.

Two questions were asked. The model prints out the fol-
lowing output:

Steve Jobs was an American entrepreneur, inven-
tor, and business magnate best known for co-

To maintain a conversation with the model, you can use
the ConversationBufferMemory component in Lang-
Chain. The ConversationBufferMemory component
helps store the ongoing conversation’s context, allowing
the model to remember previous inputs and responses.
This memory buffer enables the model to refer back
to earlier parts of the conversation, making follow-up
questions and references more coherent.

To maintain a conversation effectively, you should mod-
ify the prompt template to include two placeholders:
one for the conversation history and one for the current
question. This structure allows the model to consider
the entire context of the conversation when generating
a response:

Define the prompt template
template = '''
Previous conversation:
{history}
Question: {question}
Answer: '''

Create the PromptTemplate with history
prompt = PromptTemplate(
 template = template,
 input_variables = ['history', 'question']
)

To store the history of the conversation, create an in-
stance of the ConversationBufferMemory class:

Set up conversational memory
memory = ConversationBufferMemory()

To retrieve the history of the conversation whenever
you ask the model a question, you can use the following
statement:

memory.load_memory_variables({})["history"]}

Here’s how the above statement works:

from langchain.memory import ConversationBufferMemory
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain import PromptTemplate

Define the prompt template
template = '''
Previous conversation:
{history}
Question: {question}
Answer: '''

Create the PromptTemplate with history
prompt = PromptTemplate(
 template = template,
 input_variables = ['history', 'question']
)

Set up conversational memory
memory = ConversationBufferMemory()

chain = prompt | \
 ChatOpenAI(model="gpt-4o-mini") | \

 StrOutputParser()

Invoke the chain with a question and the memory
will track history
question = "Who is Steve Jobs?"
response = chain.invoke(
 {"question" : question,
 "history" : memory.load_memory_variables({})["history"]})
print(response)

memory.save_context(
 {"question": question},

{"answer": response})

Ask another question to continue the conversation
question = "What company did he found?"
response = chain.invoke({"question": question,
 "history" : memory.load_memory_variables({})
["history"]})
print(response)

memory.save_context({"question": question},
 {"answer": response})

Listing 1: Maintaining a conversation with the model

48 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

There are a couple of techniques to prevent context
length limitations. Here are the two most common ways
to resolve this issue:

•	 Truncating the chat history: Limit the conversa-
tion history to the most recent exchanges.

•	 Summarizing the past interactions: Instead of
including the full conversations in the past, sum-
marize them to keep the context.

With the first approach, you can send in only the most recent
two messages by filtering the last two messages, like this:

response = chain.invoke(
 {"question": question,
 "history" :
 memory.chat_memory.messages[-2 * 2:]})

Remember, each conversation has two components Hu-
manMessage and AIMessage. Hence you need to multi-
ply by two in the above statement.

For the second approach, the idea is that once the con-
versation history becomes too lengthy, you should sum-
marize the previous interactions into a more concise for-
mat. This helps manage memory usage and maintain a

founding Apple Inc. in 1976. He played a key role
in the development of revolutionary products
such as the Macintosh computer, iPod, iPhone,
and iPad, which helped to transform the tech-
nology and consumer electronics industries. Jobs
was known for his visionary leadership, design-
focused approach, and emphasis on user experi-
ence. He was also the CEO of Pixar Animation
Studios, contributing to the success of animated
films like "Toy Story." Jobs passed away on Oc-
tober 5, 2011, but his legacy continues to influ-
ence technology and design today.
	
Steve Jobs co-founded Apple Inc. in 1976.

The ConversationBufferMemory class provides two ways
to access the chat history:

•	 memory.load_memory_variables({})["histo-
ry"] provides a formatted and concise view of the
conversation history, ideal for use in prompts.

•	 memory.chat_memory.messages gives direct
access to the raw messages in a structured format,
suitable for deeper inspection or manipulation.

Let’s examine the result returned by memory.chat_mem-
ory.messages:

[HumanMessage(content='Who is Steve Jobs?'),
 AIMessage(content='Steve Jobs was an American
entrepreneur, inventor, and business magnate
best known for co-founding Apple Inc. in 1976.
He played a key role in the development of
revolutionary products such as the Macintosh
computer, iPod, iPhone, and iPad, which helped to
transform the technology and consumer electronics
industries. Jobs was known for his visionary
leadership, design-focused approach, and emphasis
on user experience. He was also the CEO of Pixar
Animation Studios, contributing to the success of
animated films like "Toy Story." Jobs passed away
on October 5, 2011, but his legacy continues to
influence technology and design today.'),

HumanMessage(content='What company did he found?'),
AIMessage(content='Steve Jobs co-founded Apple Inc.
in 1976.')]

Observe that each question contains two objects: Hu-
manMessage (question asked by the user) and AIMes-
sage (response from the model).

Sticking within the LLM Context Size
Although using a ConversationBufferMemory object to
maintain an ongoing conversation by passing back the
history can be effective, there is one potential prob-
lem: memory overload or context length limitations.
Most language models, including those based on the GPT
architecture, have a maximum token limit for the input
they can process at one time. If the conversation history
becomes too lengthy, you may exceed this token limit.
Also, as the context grows, the computational load in-
creases. This can lead to slower responses and increased
resource consumption, affecting the performance of your
application.

from transformers import pipeline

def summarize_history():
 long_history = memory.load_memory_variables({})["history"]

 # load the model to perform summarization
 summarizer = pipeline("summarization",
 model="facebook/bart-large-cnn")
 summary = summarizer(long_history,
 max_length=150,
 min_length=30,
 do_sample=False)

 # clear the memory after summarizing
 memory.clear()

 # Save summarized context
 memory.save_context(
 { "summary": summary[0]['summary_text'] },
 { "answer": "" })

Listing 2: Summarizing the history using Hugging Face transformers’ pipeline object

while True:
 question = input('Question: ')
 if question.lower() == 'quit': break
 # Invoke the chain with a question and the
 # memory will track history
 response = chain.invoke(
 {"question" : question,
 "history" :
 memory.load_memory_variables({})["history"]})
 print(response)

 memory.save_context({"question": question},
 {"answer": response})

 # if more then 4 messages, summarize the history
 if len(memory.chat_memory.messages) > 8:
 summarize_history()

Listing 3: Modifying the code to summarize the chat history if it has more than four
history entries

49Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

You can now modify your program so that if the history
contains more than four questions, summarize the his-
tory by calling the summarize_history() function (see
Listing 3).

You can now chat for as long as you want!

Asking Multiple Questions
The invoke() method allows you to pass a question to the
chain. Instead of passing this method a single dictionary,
you can pass it a list of dictionaries if you want to ask
multiple questions in one go. Listing 4 shows how this
is done.

Based on the questions, the chain returns the following
result:

1. �The population of Singapore is approximately
5.6 million people as of 2023.

2. �The question of whether the egg or chicken
came first is a philosophical and scientific de-
bate. From a biological perspective, it's gener-
ally accepted that the egg came first, as birds
evolved from reptiles, which laid eggs long
before chickens existed.

Prompt for Language Translation
Up to this point, the examples have primarily focused on
querying the language model (LLM) with questions. How-
ever, you can enhance the functionality of the prompt
template to facilitate task-oriented requests. For instance,
you can modify the prompt to instruct the LLM to perform
specific tasks, such as translating a sentence from one
language to another. By adjusting the prompt structure,
you enable the model to understand the context of the
task and respond accordingly, effectively broadening the
scope of interactions beyond mere inquiries.

The example shown in Listing 5 demonstrates how to cre-
ate a translation chain, which integrates a prompt tem-
plate, a language model, and an output parser to facilitate
translating sentences between languages. The PromptTem-
plate is structured to take in the source language, target
language, and the sentence to be translated. The code al-
lows users to invoke the chain with specific input values,
resulting in the desired translation. In this example, the
English sentence "How are you?" is translated into Chinese.

The chain returns the following result: 'Translation:
？'.

Exploring Alternatives to OpenAI LLMs
Until now, our focus has been on OpenAI's large language
models (LLMs). Although these models deliver excellent
results, they also involve operational expenses. A viable
alternative to consider is leveraging models from Hugging
Face, which can provide similar capabilities without the
associated costs.

To make use of the Hugging Face models in LangChain,
you need to install the following libraries:

!pip install langchain_community
!pip install langchain-huggingface

relevant context without overwhelming the model with
excessive detail. Listing 2 shows how you can make use
of the Hugging Face transformers’ pipeline object to per-
form the summarization:

Note that you need to install the transformers library us-
ing the pip command:

!pip install transformers

from langchain import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers \
import StrOutputParser

template = '''
Question: {question}
Answer: '''

create the three components
prompt = PromptTemplate(
 template = template,
 input_variables = ['question'])
model = ChatOpenAI(model="gpt-4o-mini")
output_parser = StrOutputParser()

create the chain
chain = prompt | model | output_parser

set fof questions to ask
qs = [
 {'question': 'What is the population of Singapore?'},
 {'question': 'Which comes first? Egg or Chicken?'},
]

ask multiple qns
res = chain.invoke(qs)
print(res)

Listing 4: Asking multiple questions at once

from langchain_core.output_parsers \
import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain import PromptTemplate

template = '''
Translate the following sentence
from {source_language} to
{target_language}:{sentence}
Translation:
'''

prompt = PromptTemplate(
 template = template,
 input_variables = ['source_language',
 'target_language',
 'sentence']
)

chain = prompt | \
 ChatOpenAI(model="gpt-4o-mini") | \
 StrOutputParser()

chain.invoke(
 {
 'source_language':'English',
 'target_language':'Chinese',
 'sentence':'How are you'
 })

Listing 5: Modifying the prompt for language translation task

50 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

could be expanded to handle documents stored in vari-
ous formats, such as PDF, Word, or plain text. By in-
tegrating document loaders and retrieval mechanisms,
the application could process and extract relevant in-
formation from these files, enabling the language model
to answer questions based on a much broader range of
sources. This extension makes the RAG approach espe-
cially useful for applications in knowledge management,
customer support, and research, where information of-
ten exists in diverse document formats.

Installing the Libraries
For this example, you need to install the following libraries:

!pip install langchain docarray tiktoken

Once the libraries are installed, import the relevant mod-
ules:

from langchain_community.vectorstores import \
 DocArrayInMemorySearch
from langchain_core.output_parsers import \
 StrOutputParser
from langchain_core.prompts import \
 ChatPromptTemplate
from langchain_core.runnables import \
 RunnableParallel, RunnablePassthrough
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
import os

You also need to ensure that your OpenAI API key is set:

replace with your own API Key
os.environ['OPENAI_API_KEY'] = "OpenAI API Key"

Defining the Text
Next, define a variable called text (see Listing 7) to
store a paragraph that provides information about diabe-
tes. You’ll use this paragraph as the reference content for

Listing 6 shows how you use the HuggingFaceEndPoint
class to use the tiiuae/falcon-7b-instruct model to an-
swer questions.

The tiiuae/falcon-7b-instruct model
is a large language model
developed by the Technology
Innovation Institute, featuring
approximately 7 billion parameters
designed for instruction-based
tasks. It excels in understanding
and following instructions, making
it suitable for various natural
language processing applications
such as answering questions,
generating text, summarizing
content, and engaging in dialogue.

Note that when you use the HuggingFaceEndPoint class,
the inferencing is performed on Hugging Face’s server.
You will see the following printout from the application:

\nSteve Jobs was an American entrepreneur who co-
founded Apple Inc. and was instrumental in the creation
of the personal computer and the development of the
digital media industry. He is widely considered one of the
most influential innovators of the 20th century.

Implementing RAG with LangChain
Retrieval-Augmented Generation (RAG) is a robust tech-
nique in natural language processing that synergizes the
retrieval of relevant information with the generation of
contextually appropriate responses. This combination
enhances tasks such as question answering, dialogue
generation, and content creation, allowing organiza-
tions to deliver more accurate and pertinent answers to
user queries. In the previous examples, the large lan-
guage models (LLMs) used were pre-trained on a static
dataset, which restricts their knowledge to the informa-
tion available at the time of training. This limitation
can hinder their ability to provide up-to-date or specific
answers, especially when dealing with rapidly changing
information or niche topics. RAG addresses this chal-
lenge by integrating real-time data retrieval, enabling
models to access and incorporate fresh information into
their responses.

In this section, I’ll guide you through the process of
creating a RAG application using LangChain. In this ex-
ample, I’ll provide a long paragraph of text as the input
and leverage a large language model (LLM) to answer
questions related to that text. This approach will dem-
onstrate how RAG can enhance the model's ability to
generate accurate and contextually relevant responses
by combining the retrieval of information with genera-
tive capabilities. In a real-world scenario, this example

import os
from langchain import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.output_parsers import StrOutputParser

replace with your own access token
os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'Hugging Face token'

template = '''
Question: {question}
Answer:
'''

prompt = PromptTemplate(
 template = template,
 input_variables = ['question']
)

hub_llm = HuggingFaceEndpoint(
 repo_id = 'tiiuae/falcon-7b-instruct',
 # lower temperature makes the output more deterministic
 temperature = 0.1
)

chain = prompt | hub_llm | StrOutputParser()
chain.invoke({"question": "Who is Steve Jobs?"})

Listing 6: Using the Hugging Face LLM for the LangChain application

51Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

2.	 Store the embeddings in a vector database: After creat-
ing embeddings for each segment of the document, store
them in a vector database (e.g., Pinecone, Weaviate, or
FAISS). This database indexes the embeddings, enabling
quick and efficient retrieval based on semantic similarity.

3.	 Retrieve relevant document sections: Search the vec-
tor database for sections of the document with embed-
dings similar to the question's embedding. This retrieves
the most contextually relevant parts of the document.

4.	Pass retrieved sections to the LLM for answer gen-
eration: Finally, pass the retrieved sections along
with the question to the LLM. By doing this, the
model can generate an informed answer based on the
content of the document rather than relying solely
on its pre-trained knowledge.

Figure 2 shows the process.

the Retrieval-Augmented Generation (RAG) application,
allowing the model to answer questions based on this
specific text.

Steps to Performing RAG
To get a large language model (LLM) to answer questions
based on a specific document, follow these steps:

1.	Perform word vector embeddings on the document:
Word vector embeddings convert the document text
into a numerical representation that captures the
semantic meaning of the words and sentences. This
allows the model to understand relationships be-
tween concepts in the document, making it easier to
retrieve relevant information. Each sentence or pas-
sage is transformed into a vector, which helps locate
information relevant to the question.

Figure 3: Document chunking with overlap

Figure 2: Steps for performing RAG

52 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

Chunking with Overlaps
Before performing word vector embeddings, it’s important
to break down the documents into chunks because of:

1.	Context Size Limits: LLMs and vector databases
have constraints on the length of text they can pro-
cess at once. Chunking ensures that each segment
stays within these limits, preventing issues with
model input size and vector database compatibility.

2.	 Improved Semantic Representation: Smaller, fo-
cused chunks allow for more precise embeddings that
capture specific meanings, enhancing the accuracy
of similarity searches. Larger segments may combine
too many ideas, making it difficult for the model to
retrieve the most relevant information.

3.	Efficient Retrieval: Chunking enables a more tar-
geted retrieval process. When a user asks a ques-
tion, smaller segments can be selectively retrieved
based on relevance. This makes retrieval faster and
prevents overwhelming the model with unnecessary
information.

text = '''
Diabetes mellitus is a chronic metabolic disorder
characterized by high blood sugar levels, which can lead
to serious health complications if not effectively
managed. There are two primary types of diabetes: Type
1 diabetes, which is an autoimmune condition where the
immune system mistakenly attacks insulin-producing beta
cells in the pancreas, leading to little or no insulin
production; and Type 2 diabetes, which is often
associated with insulin resistance and is more prevalent
in adults, though increasingly observed in children and
adolescents due to rising obesity rates. Risk factors
for developing Type 2 diabetes include genetic
predisposition, sedentary lifestyle, poor dietary
choices, and obesity, particularly visceral fat that
contributes to insulin resistance. When blood sugar
levels remain elevated over time, they can cause damage
to various organs and systems, increasing the risk of
cardiovascular diseases, neuropathy, nephropathy, and
retinopathy, among other complications. Management of
diabetes requires a multifaceted approach, which
includes regular monitoring of blood glucose levels,
adherence to a balanced diet rich in whole grains,

fruits, vegetables, and lean proteins, and engaging in
regular physical activity. In addition to lifestyle
modifications, many individuals with Type 2 diabetes
may require oral medications or insulin therapy to help
regulate their blood sugar levels. Education about the
condition is crucial, as it empowers individuals to make
informed decisions regarding their health. Furthermore,
the role of technology in diabetes management has grown significantly, with
continuous glucose monitors and
insulin pumps providing real-time feedback and improving
the quality of life for many patients. As research
continues to advance, emerging therapies such as
glucagon-like peptide-1 (GLP-1) receptor agonists and
sodium-glucose cotransporter-2 (SGLT2) inhibitors are
being explored for their potential to enhance glycemic
control and reduce cardiovascular risk. Overall, with
appropriate management strategies and support,
individuals living with diabetes can lead fulfilling
lives while minimizing the risk of complications
associated with the disease.
'''

Listing 7: The variable containing the block of text

def split_text_with_overlap(text, chunk_size, overlap_size):
 # Split the text into sentences
 sentences = text.split('. ')
 chunks = []
 current_chunk = ""

 for sentence in sentences:
 # Check if adding this sentence exceeds the chunk size
 if len(current_chunk) + len(sentence) + 1 <= chunk_size:
 if current_chunk: # If it's not the first sentence
 current_chunk += ". "
 current_chunk += sentence
 else:
 # Store the current chunk
 chunks.append(current_chunk.strip())
 # Create a new chunk with the overlap
 # Add the last `overlap_size` sentences from
 # the current chunk
 overlap_sentences = \
 current_chunk.split('. ')[-overlap_size:]

 current_chunk = '. '.join(overlap_sentences) + \
 ". " + sentence

 # Add any remaining chunk
 if current_chunk:
 chunks.append(current_chunk.strip())

 return chunks

Define chunk size and overlap size
chunk_size = 300
overlap_size = 1 # Number of sentences to overlap

Split the text into chunks with overlap
text_chunks = split_text_with_overlap(
 text, chunk_size, overlap_size)

Print the resulting chunks
for i, chunk in enumerate(text_chunks):
 print(f"Chunk {i+1}:\n{chunk}\n")

Listing 8: Performing chunking with overlap

Figure 3 shows that a document is typically broken down
into chunks with overlap, which involves dividing a block
of text into segments that share a portion of their con-
tent. This method is particularly beneficial for maintain-
ing context across adjacent chunks, ensuring that critical
information is not lost during processing. By including
overlapping sections, the model can better understand
relationships between sentences and provide more accu-
rate responses to queries, especially when dealing with
complex topics that span multiple segments.

Now that you understand the process, let’s define a func-
tion named split_text_with_overlap() that splits a block
of text into a specific chunk size with a specific number
of sentence to overlap (see Listing 8).

The block of text is now split into 10 chunks (see Figure 4).

You’ll now use the DocArrayInMemorySearch class to
store document embeddings in memory for efficient simi-
larity search:

53Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

•	 RunnableParallel
•	 PromptTemplate
•	 ChatOpenAI
•	 StrOutputParser

A retriever object is a component
designed to fetch relevant
information from a dataset,
document collection, or knowledge
base based on a given query or
context.

Listing 9 shows how the various components are created
and then chained together.

The component of interest here is the RunnableParal-
lel component. RunnableParallel is a class in LangChain
that allows you to execute multiple tasks or operations
in parallel:

setup_and_retrieval = RunnableParallel(
 {
 "context": retriever,
 "question": RunnablePassthrough()
 }
)

In this implementation, the setup_and_retrieval object
is designed to handle two parallel tasks: retrieving con-
text from a retriever and passing through a question with-
out any modifications.

Creating the Chain
Finally, the various components are chained together:

chain = setup_and_retrieval | \
 prompt | \
 model | \
 output_parser

You can now start asking questions pertaining to the
block of text:

chain.invoke('What is Type 2 diabetes?')

You will get the following response:

Type 2 diabetes is often associated with insulin
resistance and is more prevalent in adults, al-
though it is increasingly observed in children
and adolescents due to rising obesity rates. It
is a chronic metabolic disorder characterized by
high blood sugar levels, which can lead to serious
health complications if not effectively managed.
Risk factors for developing Type 2 diabetes include
genetic predisposition, sedentary lifestyle, poor
dietary choices, and obesity, particularly visceral
fat that contributes to insulin resistance.

template = """Answer the question based only on the
following context:
{context}
Question: {question}
"""

uses a model from OpenAI
model = ChatOpenAI(model = "gpt-4o-mini")

creates the prompt
prompt = ChatPromptTemplate.from_template(template)

creats the output parser
output_parser = StrOutputParser()

RunnableParallel is used to run multiple processes or
operations in parallel
setup_and_retrieval = RunnableParallel(
 {
 "context": retriever,
 "question": RunnablePassthrough()
 }
)

creating the chain
chain = setup_and_retrieval | prompt | model | output_parser

Listing 9: Chaining all the components

creates an DocArrayInMemorySearch store and
insert data
vectorstore = DocArrayInMemorySearch.from_texts(
 text_chunks,
 embedding = OpenAIEmbeddings(),
)

You’ll use the chunks that you have created and perform word
vector embeddings using the OpenAIEmbeddings class.

OpenAIEmbeddings is a class
provided by LangChain that allows
you to generate vector embeddings
for text using OpenAI's models.
These embeddings are vector
representations that capture
the semantic meaning of the
text, enabling efficient similarity
searches, document retrieval, and
other natural language processing
(NLP) tasks where understanding
the meaning of text is crucial.

Creating a Retriever Object
You can now convert the vector store into a retriever ob-
ject, which can be used to search and retrieve relevant
documents based on a query:

retriever = vectorstore.as_retriever()

You can now create a LangChain application using the
following components:

54 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

it is an autoimmune condition where the immune
system attacks insulin-producing beta cells in the
pancreas, leading to little or no insulin production.
For Type 2 diabetes, it is often associated with insu-
lin resistance and is influenced by risk factors such
as genetic predisposition, sedentary lifestyle, poor
dietary choices, and obesity, particularly visceral fat
that contributes to insulin resistance.

Here's another question:

chain.invoke('What causes diabetes?')

And you get the following response:

Diabetes is caused by high blood sugar levels, which
can result from various factors. For Type 1 diabetes,

Figure 4: The block of text is split into 10 chunks with overlaps

55Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

In this section, you’ll replace OpenAI's models with those
from Hugging Face. First, you’ll use the “BAAI/bge-small-
en-v1.5” model for embedding:

from langchain.embeddings import \
 HuggingFaceEmbeddings

embedding_model = \
HuggingFaceEmbeddings(
 model_name="BAAI/bge-small-en-v1.5")

The model BAAI/bge-small-en-v1.5 is
a pre-trained language model
developed by the BAAI (Beijing
Academy of Artificial Intelligence).
It’s part of the BGE (BERT-based
generative embedding) series and
is designed for various natural
language processing tasks, including
embedding generation.

Like the example, earlier, you’ll use the DocArrayInMemo-
rySearch class to store document embeddings in memory:

from langchain_community.vectorstores import \
 DocArrayInMemorySearch

vectorstore = DocArrayInMemorySearch.from_texts(
 text_chunks,
 embedding = embedding_model,
)

retriever = vectorstore.as_retriever()

Using the vector store created, you’ll create a retriever.

Changing the Embedding Model
For the RAG application you've developed so far, you've
used OpenAI for the following components:

•	 Word vector embeddings: OpenAI's models have
been employed to convert text documents into nu-
merical representations (embeddings) that capture
the semantic meaning of the text. This allows you to
effectively compare and retrieve relevant informa-
tion based on user queries.

•	 Large language model (LLM): You've used OpenAI's
LLM to generate responses and answer questions
based on the retrieved context. This model lever-
ages its training on vast amounts of text to provide
coherent and contextually appropriate answers.

Although OpenAI’s models are efficient, using them can
come with trade-offs, particularly concerning privacy.
When you send data to OpenAI for processing—whether for
generating embeddings or responses—there is a potential
risk of exposing sensitive information. This is because of:

1.	Data transmission: Queries and documents must be
transmitted over the internet to OpenAI's servers,
which could expose them to interception or unau-
thorized access.

2.	Data storage: Depending on the terms of service, the
data you send might be stored by OpenAI for train-
ing or improvement purposes, which raises concerns
about how that data is used and who has access
to it.

3.	Compliance: Organizations handling sensitive infor-
mation, especially in regulated industries, may face
compliance challenges when using cloud-based solu-
tions, as they need to ensure that they meet data
protection regulations.

For those concerned about privacy, alternative solutions,
such as local or self-hosted models (like those from Hug-
ging Face), can be considered. These models allow you to
maintain control over your data, ensuring that sensitive
information remains within your own infrastructure.

from langchain_core.runnables import RunnableParallel,
 RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
import torch

determine the device
if torch.backends.mps.is_available():
 device = torch.device("mps")
else:
 device = torch.device(
 "cuda" if torch.cuda.is_available() else "cpu")

Load a Hugging Face pipeline for text generation
generator = pipeline('text2text-generation',
 model='facebook/bart-large',
 max_length=500,
 device=device)

Create a LangChain LLM wrapper
model = HuggingFacePipeline(pipeline=generator)

template = """Answer the question based only on the
following context:
{context}
Question: {question}
"""

creates the prompt
prompt = ChatPromptTemplate.from_template(template)

creates the output parser
output_parser = StrOutputParser()

setup_and_retrieval = RunnableParallel(
 {
 "context": retriever,
 "question": RunnablePassthrough()
 }
)

creating the chain
chain = setup_and_retrieval | prompt | model | output_parser

Listing 10: Changing the LLM to a model hosted by Hugging Face

56 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com

� Wei-Meng Lee
�

Changing the LLM
Apart from using a model from Hugging Face for word vec-
tor embeddings, you’ll also use a large language model
(LLM) from Hugging Face to perform the response genera-
tion. This allows you to keep the entire pipeline local or
within the Hugging Face ecosystem, enhancing data priva-
cy and reducing dependency on external APIs. Listing 10
shows that you can make use of the facebook/bart-large
model via the pipeline object in the transformers library:

Load a Hugging Face pipeline for text generation
generator = pipeline('text2text-generation',
 model='facebook/bart-large',
 max_length=500,
 device=device)

Create a LangChain LLM wrapper
model = HuggingFacePipeline(pipeline=generator)

Also note that you can offload the processing to the GPU
(for Windows; if you have a supported NVIDIA GPU) or
MPS (if you have an Apple Silicon Mac):

determine the device
if torch.backends.mps.is_available():
 # for Apple Silicon Mac
 device = torch.device("mps")
else:

device = torch.device(
 "cuda" if torch.cuda.is_available()
 else "cpu")

Load a Hugging Face pipeline for text generation
generator = pipeline('text2text-generation',
 model='facebook/bart-large',
 max_length=500,
 device=device)

Using the chain created, you can now ask a question
where inference happens locally on your computer. This
set up ensures that both the embedding retrieval and the
large language model (LLM) processing occur on your own
hardware, reducing reliance on external servers and im-
proving data privacy:

chain.invoke('What is diabetes?')

You’ll get a response like the following:

Human: Answer the question based only on the fol-
lowing context:[Document(page_content='Diabetes
mellitus is a chronic metabolic disorder character-
ized by high blood sugar levels, which can lead
to serious health complications if not effectively
managed. There are two primary types of diabetes:
Type 1 diabetes, which is an autoimmune condition
where the immune system mistakenly attacks in-
sulin-producing beta cells in the pancreas, leading
to little or no insulin production; and Type 2 dia-
betes, a type of diabetes that is more often associ-
ated with insulin resistance and is more prevalent
in adults, though increasingly observed in children
and adolescents due to rising obesity rates')]Ques-
tion: What is diabetes? What is the most common
cause of type 2 diabetes?Human: If you can answer

this question, please do so in the following way:
Document('Diabetes is a disease that affects the
body's ability to produce and use insulin, the hor-
mone responsible for regulating blood sugar. It is a
condition that can be life-threatening if not prop-
erly managed'), Document('Type 2 diabetes is a seri-
ous condition')] Document(document('Diagnosis')]
Document(document(document_title='Type 2
Diabetes')Document(Document_description)
Document(doc_title)Document_content(document.
doc_content)Document-content(doc-content-1)
Document_content-2(doc)-content-3

The output from Hugging Face models can vary signifi-
cantly based on several factors, such as model type,
configuration, and input parameters. For example, gen-
eration models may produce different styles or lengths
of responses based on settings like temperature, max_
length, or top_k/top_p sampling parameters. When us-
ing Hugging Face models in applications, you may need
to tweak these settings or use output parsers to ensure
consistency in responses, especially in tasks like question
answering or summarization, where stable and contextu-
ally relevant outputs are important. I’ll leave this topic
for another article.

Summary
In this article, I walked you through the essential com-
ponents and practical applications of the LangChain
framework. It starts with a basic example to establish a
foundation, then explores chaining components, manag-
ing conversation memory, and using LangChain's memory
features to stay within LLM context limits. Additionally, it
covers language translation prompts, alternative models
beyond OpenAI, and a hands-on guide to implementing
Retrieval-Augmented Generation (RAG) for document-
based querying. With clear steps on chunking, creating
retriever objects, and customizing embeddings, I hope
this article provides you with a solid starting point for
using LangChain in various NLP tasks.

57Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

codemag.com58 Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

We fill this pages as
soon we have the
cover art

codemag.com 59Exploring LangChain: A Practical Approach to Language Models and Retrieval-Augmented Generation (RAG)

We fill this pages as
soon we have the
cover art

60 codemag.comSemantic Kernel Part 4: Agents

ONLINE QUICK ID 2501061

Semantic Kernel Part 4: Agents
This series started with the core concepts of Semantic Kernel (SK), then presented some hands-on coding, followed by more
advanced examples, including how to implement a basic RAG pattern and automatic function calling. At each step, I discussed
how SK treats artifacts like prompts as source code and how each feature builds on those that came before. In this installment,

I’m going to cover agents, an emerging approach to ac-
complishing complex tasks and you’ll see how they build
on what came before them and how they can be treated
as source code.

Why Agents?
With RAG and automatic function calling, you can do some
really amazing and advanced things. So, what do agents
add and why should you learn about them? An agent is
nothing more than a customized Large Language Model
(LLM) that may also have access to some specific capabili-
ties and/or data. Creating an agent could be as simple as
prefacing prompts to an LLM with something like, “You are
a helpful assistant who ensures that math calculations are
done correctly and produces a correct answer.” By provid-
ing this customization, you’re narrowing the responsibili-
ties of the LLM and creating an expert of sorts in a certain
area. An assistant created this way will, in fact, be much
better at producing correct results when math is involved.

Semantic Kernel calls this type of agent an assistant agent.
It’s one of two types of agents that SK supports. You might
be thinking that you could just add some verbiage like that
into your prompt and get the same result, and you’d be
right. Remember that I said agents can also be given ac-
cess to specific capabilities? What if I allowed my agent to
have access to MATLAB, or gave it the ability to create and
execute Python by giving it access to functions? That would
make the agent even better and more accurate with math.

Yes, you could also do this without an assistant, but you
can start to see how complex things can get with this ap-
proach. For example, if it looks like I need the LLM to do
math, I must add this blurb of instructions to my prompt
and allow access to the MATLAB, Python creation, and ex-
ecution functions. And you must follow this pattern for
every specialty skill you might need to use, every time you
need to use it. Following this approach, things will get
messy, fast.

Assistant Agents
Agents bring some sanity by allowing you to create pre-
configured experts and treat them as assets. The expert
is configured with specific instructions, access to specific
functions and capabilities, and perhaps even access to
specific knowledge. Then you can simply use the agent
when you need to. For example, if the agent isn’t sup-
posed to just be good at math, but also able to calculate
New Jersey state income taxes, you could, in addition to
giving it access to MATLAB and Python execution, make
a series of tax tables available to it and provide it with
certain formulas.

Pre-configuring agents like this makes them modular and
easy to use. To use the NJ state income tax assistant

agent, you only need to specify to use it in your SK code;
you don’t have to create it from scratch, configure it, and
provide the tax tables and formulas every time you need
to use it. Imagine creating dozens, or even hundreds of
such specialized agents, and only having to decide which
one to use, and not how to re-create, configure and test
it in every instance. A developer or team could be as-
signed responsibility for the agent and could handle its
enhancement, its testing, etc. The agent can be treated
like source code, much the same way you treat a software
library.

Let’s create a very basic assistant agent with Semantic
Kernel and then use it. Agents are still in alpha as I’m
writing this, so you’ll likely have to check the Include
prerelease checkbox in VS’s NuGet Package Manager to
see them. I’m using version 1.25.0-alpha of the Microsoft.
SemanticKernel.Agents.Core and Microsoft.SemanticKer-
nel.Agents.OpenAI packages in this article. There may be
breaking changes in later versions. The former provides
abstractions for using agents and the latter is a concrete
implementation that allows me to use them on OpenAI
and Azure OpenAI. If you use Azure OpenAI as I am, en-
sure that the region your model is deployed in supports
agents or you’ll get errors about invalid endpoints (the
agent endpoints). There are other implementations for
other platforms, and I expect more to be added as agent
functionality nears release.

Now you can create your first agent definition. To keep
things simple, I’m only going to provide instructions,
ignoring function calling and custom data for now. My
prompt will create an assistant agent that writes songs in
the style of Bob Dylan.

By providing this customization,
you’re narrowing the responsibilities
of the LLM and creating an expert
of sorts in a certain area.

You are Bob Dylan, the famous songwriter and
musician. Write a song about the provided
topic in the style of a folk song.

Now I’ll create my agent:

await OpenAIAssistantAgent.CreateAsync(
 kernel: kernel,
 clientProvider: provider,
 definition: new(_deployment)

Mike Yeager
www.internet.com

Mike is the CEO of EPS’s
Houston office and a skilled
.NET developer. Mike excels
at evaluating business
requirements and turning
them into results from
development teams.
He’s been the Project Lead
on many projects at EPS and
promotes the use of modern
best practices, such as
the Agile development
paradigm, use of design
patterns, and test-drive
and test-first development.
Before coming to EPS,
Mike was a business owner
developing a high-profile
software business in the
leisure industry. He grew the
business from two employ-
ees to over 30 before selling
the company and looking
for new challenges.
Implementation experience
includes .NET, SQL Server,
Windows Azure, Microsoft
Surface, and Visual FoxPro.

61codemag.com Semantic Kernel Part 4: Agents

(Outro)
So I sit and ponder, this love so deep,
And in the quiet, my patience keep,
For one small chime, a lifeline, dear,
To know you're out there, to bring you near.

As you can see, having an arsenal of pre-configured as-
sistant agents can be a powerful tool.

Chat Agents
But wait, there’s more! You can also create an agent that
can interact with other agents to work collaboratively.
That’s the idea behind chat agents, the other type of
agents SK supports. Here’s one of the scenarios Microsoft
uses as an example of chat agents. Suppose you want
your AI to write software for you. Can it really do that?
Yes! And no! Right now, it can write some basic software,
but you’re not out of a job, at least not yet. In this exam-
ple, I’ll ask the AI to create a simple calculator as a web
application. First, you’ll create three specialized agents,
a program manager, a software engineer, and a project
manager with the following instructions:

You are a Program Manager who will take the
user requirements and create a plan for creat-
ing an app. The Program Manager understands
the user requirements and will form detailed
documents with requirements and costs.

 {
 Name = "BobDylan",
 Instructions = bob
 });

Listing 1 shows the complete source code for this ex-
ample.

I can use my agent by creating a thread on the agent,
priming it with a user prompt, and handling the response
like this:

string threadId = await agent.CreateThreadAsync();

await agent.AddChatMessageAsync(threadId,
 new ChatMessageContent(AuthorRole.User,
 "waiting for a phone call"));

await foreach (ChatMessageContent message
 in agent.InvokeAsync(threadId))
 Console.WriteLine(message);

Sample output using GPT-4o looks like this:

(Verse 1)
In a room dim-lit, I sit and wait,
For a ring from a friend or a lover's fate,
The silence, oh it beckons, the world stands still,
As my heart beats on, against its will.

(Chorus)
Oh, I'm waiting for a phone call, seems like forever,
Through the night and the stormy weather,
Words unspoken, dreams on hold,
Stories untold, oh, the nights grow old.

(Verse 2)
The clock hands sway, in their timeless dance,
Holding onto hope, midst the sweet expanse,
Of memories we shared, and dreams we weave,
In this tapestry, of love and grief.

(Chorus)
Oh, I'm waiting for a phone call, seems like forever,
Through the night and the stormy weather,
Words unspoken, dreams on hold,
Stories untold, oh, the nights grow cold.

(Bridge)
Will the voice on the line, bring joy or pain?
Will it ease my mind, or drive me insane?
In this solitude, where shadows creep,
In the echo of silence, promises sleep.

(Verse 3)
Bound by the yearning, of a heart so true,
In a world divided, caught in two,
I'll hold this vigil, till the dawn's embrace,
Hoping to hear, your tender grace.

(Chorus)
Oh, I'm waiting for a phone call, seems like forever,
Through the night and the stormy weather,
Words unspoken, dreams on hold,
Stories untold, oh, the nights grow bold.

private static async Task AssistantAgents()
{
 var builder = Kernel.CreateBuilder()
 .AddAzureOpenAIChatCompletion(
 _defaultDeployment,
 _endpoint,
 _apiKey);

 var kernel = builder.Build();

 var bob = """
 You are Bob Dylan, the famous songwrite and musician.
 Write a song about the provided topic in the style
 of a folk song.
 """;
 var agent =
 await OpenAIAssistantAgent.CreateAsync(
 kernel: kernel,
 clientProvider: clientProvider,
 definition: new(_defaultDeployment)
 {
 Name = "BobDylan",
 Instructions = bob,
 EnableCodeInterpreter = true,
 });

 string threadId = await agent.CreateThreadAsync();

 await agent.AddChatMessageAsync(threadId,
 new ChatMessageContent(AuthorRole.User,

 "waiting for a phone call"));

 await foreach (ChatMessageContent message in
 agent.InvokeAsync(threadId))
 Console.WriteLine(message);
}

Listing 1: Complete source code for assistant agent sample. (Bob Dylan)

62 codemag.com

put some restrictions on it and specify a termination
strategy.

AgentGroupChat chat =
 new(ProgramManagerAgent,
 SoftwareEngineerAgent,
 ProjectManagerAgent)
{
 ExecutionSettings = new()
 {
 TerminationStrategy =
 new ApprovalTerminationStrategy()
 {
 Agents = [ProjectManagerAgent],
 MaximumIterations = 10,
 }
 }
};

Notice that you specify the agents to use in the construc-
tor. You then set some ExecutionSettings. In this case,
you only set the Termination Strategy by specifying that
the ProjectManagerAgent will decide when the chat is
done and you set MaximumIterations to 10, meaning that
if you don’t get an approval after 10 attempts, go ahead
and stop anyway.

Although you don’t explicitly create a thread for the chat
like you did with the assistant agent, you do something
very similar and the chat object handles the thread for you.

chat.AddChatMessage(
 new ChatMessageContent(AuthorRole.User, input));

await foreach (var content in chat.InvokeAsync())
 Console.WriteLine(
 $"\n# {content.Role} –
 {content.AuthorName ?? "*"}:
 '{content.Content}'");

In this case, you’re writing not just the final result, but
the entire conversation among the three agents to the
console so you can see how the agents collaborate to pro-
duce an answer. Unfortunately, the output is too long to
include here. I’ve included it with the sample code (down-
loadable from the article page at www.CODEMagazine.
com), as well as a sample HTML page, complete with CSS
and JavaScript produced by one of my test runs against
GPT-4o that runs as expected. For now, I’ll just recap the
conversation using the following user prompt. You can
find the full code for this sample in the source code that
accompanies this article.

I want to develop a calculator as a web app.
Keep it very simple, and get final approval
from the project manager.

The Program Manager begins by responding to the user
and creating a set of requirements for the app. For in-
stance, under Functional Requirements, it writes:

1. **Basic Arithmetic Operations**: The calcula-
tor should perform addition, subtraction, multi-
plication, and division.

You are a Software Engineer, and your goal is
develop a prototype web app using HTML and
JavaScript (JS) by taking into consideration all
the requirements from the Program Manager.

You are a project manager who will review soft-
ware engineer code, and make sure all client
requirements are completed. Once all client re-
quirements are completed, you can approve the
request by just responding "approve".

Again, I’m creating a very basic scenario. This example
has been tweaked from Microsoft’s original sample code
to make it a bit more reliable and easier to digest. I could
also give these agents access to functions and data to
make them more effective and powerful, but they do sur-
prisingly well without it. Notice that the project manager
instructions end by telling it to respond with only the
word “approve” when it’s satisfied with the results. You’ll
see why that’s important soon.

You can also create an agent
that can interact with other agents
to work collaboratively.

Similar to how you created the assistant agent earlier,
begin by creating the three chat agents:

ChatCompletionAgent ProgramManagerAgent
 = new()
 {
 Instructions = ProgamManager,
 Name = "ProgramManagerAgent",
 Kernel = kernel,
 };

ChatCompletionAgent SoftwareEngineerAgent
 = new()
 {
 Instructions = SoftwareEngineer,
 Name = "SoftwareEngineerAgent",
 Kernel = kernel
 };

ChatCompletionAgent ProjectManagerAgent
 = new()
 {
 Instructions = ProjectManager,
 Name = "ProjectManagerAgent",
 Kernel = kernel
 };

Next, create a new agent group chat among all the
agents. If you were to just turn the agents loose with
a prompt from the user, they might just end up chat-
ting forever, which could be very expensive and frus-
trating for the user. So, before you start the chat, let’s

Semantic Kernel Part 4: Agents

63codemag.com

It goes on to define project milestones and even esti-
mates development costs. It then asks the Software Engi-
neer agent if it needs any additional information and asks
it to approve the requirements. The Software Engineer
agent approves the requirements, creates a wireframe and
mockup of the application, then asks the Project Manager
if any changes are needed, and asks for approval. The
Project Manager creates a checklist of the requirements,
compares it to the prototype code, decides that the pro-
totype meets the requirements, and approves, terminat-
ing the chat.

The chat output is never exactly the same after each
run. Sometimes there are missing items or the need for
changes detected, resulting in one agent going back to a
previous agent to have it address the issues, and result-
ing in a longer conversation. What’s important is that the
agents communicate among themselves to reach the goal.

What’s amazing to me is that with very little configura-
tion and no access to functions or specialized data, the
system generally does a very good job of developing the
software asked for, as long as the request is basic. The re-
quirements aren’t always complete and correct, and code
doesn’t always run as written, but often, it does work.
Even though this sample is far from perfect, it produces
some truly useful output. One of the reasons for how well
this particular example works is that writing a calculator
app as a web page with HTML, CSS, and JavaScript is a
pretty common programming assignment, so there’s a lot
of source code for it, freely available on the web, to draw
from.

The more complex and unique the ask, the more advanced
the agents will have to become, and the more you’ll have
to provide access to your own source code so the LLM can
take advantage of it. In a larger context, you might also
include agents to perform additional tasks, such as QA
and testing.

Agents are a higher-level building
block for you to use.

Summary
As you can see, agents allow you to create larger and
more complex systems while remaining somewhat sane.
They allow you to abstract systems and build in a modular
way. Agents can be quite powerful and they make expand-
ing the capabilities of a system easier to manage. Agents
are a higher-level building block for you to use.

SPONSORED SIDEBAR

AI Executive Briefing

Experience the game-
changing impact of
AI through CODE
Consulting’s Executive
Briefing service. Uncover
the immense potential
and wide-ranging benefits
of AI in every industry.
Our briefing provides
strategic guidance for
seamless implementation,
covering crucial aspects
such as infrastructure, talent
acquisition, and leadership.

Discover how to effectively
integrate AI and propel
your organization into
future success.

Contact us today to
schedule your executive
briefing and embark on a
journey of AI-powered growth:
www.codemag.com/ai

� Mike Yeager
�

Semantic Kernel Part 4: Agents

64 codemag.com

ONLINE QUICK ID 2501071

The Infinite Monster Engine
As a weird kid in a rural town, I heard about something strange and possibly sinister. I watched the Dungeons and Dragons cartoon
on Saturday Morning TV. I saw the D&D advertisements in comic books. At the same time, moms on the evening news were
gnashing their teeth about the influence of Satan. You mean I can pretend to be a wizard and there might be real demons involved?

That’s a feature, not a bug. Still, I was poor and there was no
internet, no way for me to actually get my hands on the books.
D&D was a mystery to me. I didn’t know how it worked at all,
so I just gathered some friends and we made up our own rules.
I became a Dungeon Master. We played all the time, a hand-
ful of nerdy outcasts figuring out what features we needed to
implement into this system as we went along. The game grew
into this weird kludge of homebrewed calvinball.

In junior high, everything changed. We got our hands on a
Monster Manual. Well, it was a photocopy of a photocopy of
somebody’s cousin’s actual second edition Monster Manual.
I’m not kidding. We kept it in a three-ring binder and I
think I made my friends fight every single monster in that
thing. Over time, you could tell which were the most popu-
lar. The Flail Snail was pristine paper, white and unbent.
The page for the Drow was ragged and soft as an old dollar
bill. I think someone spilled chili on it.

Now there are more monster books out there than you
could ever use, but even then, prepping your game takes
time. Pick just the right foes for the encounter and make
sure they match the environment. Find something that’s
not too powerful, but not going to end with a total par-
ty kill. If you’ve found the perfect set of monsters in a
manual but they’re not the right difficulty rating, you may
have to do some power scaling to even things out.

Or you could make an Infinite Monster Engine.

This has been my cheat code for almost a year now. It’s
not complicated. Some of you are probably already doing it.
Just tell your favorite Large Language Model (LLM) what you
need. The better you style your prompt, the better results
you get. But what if I wanted to automate as much of that
as possible? Last time, I used the model to build a functional
game of Asteroids (https://codemag.com/Article/2411061/
Can-an-LLM-Make-a-Video-Game). Can we get it to build a
factory of tabletop role-playing game encounters?

The Game Master’s Preparations
I’m a planner, not a pantser. I want perfectly defined sal-
vos of horror prepared for my players and I want to spend
hours crafting that before a die is cast. Life is stupid
sometimes, so the Powers That Be keep me from spending
two weeks preparing for four hours. Not only that, but any
Game Master (GM) knows that players will go out of their
way to thwart your plans. Imagine: You’re mid-game,
ready to unleash your own custom Tomb of Noteworthy
Obstacles and Other Indignities upon your players, but
then the rogue gets a wild hair. They’re not going to the
Tomb. They’re going to explore the forest that you ran-
domly mentioned and would prefer they ignore. If you’re
agile, you can pull this off. You can pivot, but you weren’t
prepared for this, and traditional encounter builders limit
you to choosing between pre-made bad guys, leaving you

with generic "Goblin #3" or "Wolf.”

Building a Monster: What Are the Parameters?
How many monsters do we need? Any good GM will con-
sider encounter dynamics over quantity. A single creature
with a difficulty of Level 5 will play very differently from five
creatures of Level 1 difficulty. I’ll limit it to 10 for our pur-
poses. Larger encounters can slow the game down to a crawl.
An encounter should provide meaningful choices, not just
numerical victories. With too many foes, the action economy
(how many actions each side gets) becomes off-kilter.

The Difficulty Rating is of particular importance, be-
cause with it, you can tell the LLM how to scale the en-
counter to be an appropriate match for the players. A
scale of 30 aligns with the Fifth Edition player level cap
and is intuitive for players and Game Masters alike.

Environment Dropdown options provide additional con-
text for the model to work off of when customizing mon-
sters. To make sure we get enough, I’ll provide a list of
biomes. Each one influences how the LLM interprets the
request. The Arctic option tells the LLM that the mon-
sters should be enemies who can navigate icy terrain and
thrive in subzero temperatures. The Jungle option should
lead the LLM to design creatures that live in dense vege-
tation and can engage in combat using three-dimensional
movement. Here are some popular options:

•	 Arctic
•	 Desert
•	 Forest
•	 Plains
•	 Jungle
•	 Mountain
•	 Swamp
•	 Cavern
•	 Underwater
•	 Urban

Size Categories are also generic, covering everything
from sprites and familiars to something the size of the
Great A’Tuin. Here are the ones I like:

•	 Tiny
•	 Small
•	 Medium
•	 Large
•	 Huge
•	 Gargantuan

Deciding on an assortment of Enemy Types will provide
the model with some common archetypes. Here are some
basic types:

•	 Humanoid
•	 Beast

Jason Murphy
Thestrangerous.substack.com
@jason-murphy.bsky.social

Jason is a writer, AI
enthusiast, and media
creator. As the producer
 and co-host of Hacking
the System on the
National Geographic
Channel, he stole cars
in Hollywood, made
improvised smoke bombs,
and prepared for the
apocalypse. On YouTube,
he co-created and hosted
the Modern Rogue, where
he explored hacking,
lock-picking, and trade-
craft. After publishing mul-
tiple speculative
fiction novels and writing
a produced screenplay,
Jason is currently exiled
in the desert, where he
stares into the future with
awe and terror. And he
still wants to make a
video game.

The Infinite Monster Engine

65codemag.com

Current Benchmarks
for LLMs

Although there are currently
no official performance
standards for LLMs, there
are some general metrics for
comparison. Not all LLMs are
made the same. Your mileage
may vary.

Some of these markers
include criteria like sentiment
analysis, common sense,
fairness and bias, and diverse
academic areas.

Currently, Claude 3.5 Sonnet
from Anthropic is marked as
one of the best for coding, but
these change rapidly because
the models are constantly
evolving.

1. Number of Enemies (number input) 2. Dif-
ficulty Rating (number input) 3. Environment
dropdown (Arctic, Desert, Forest, Plains, Jungle,
Mountain, Swamp, Cavern, Underwater, Urban)
4. Enemy Size dropdown (Tiny, Small, Medium,
Large, Huge, Gargantuan) 5. Enemy Type drop-
down (Humanoid, Beast, Demonic, Construct,
Elemental, Fey, Phantasmal, Eldritch, Corrupted,
Ethereal) 6. Additional Details (text area) The
app should call the OpenAI API to generate com-
plete and descriptive TTRPG stat blocks based on
these inputs and display them on a new page.
Use open-source mechanics generic or original
terms. Include error handling and form data
preservation. Include all necessary HTML tem-
plates and code comments explaining each part.

The LLM I’ve chosen for the build (not the API call) is
Claude 3.5 Sonnet. Every model will approach the prompt
a bit differently, but Claude is known for often having an
edge when it comes to coding. You may get a different
response than I did. These are not always consistent. Al-
ways question the LLM’s wisdom. It will be finicky. It will
sometimes change its mind and start doing things with
annoying inconsistency.

Visiting the Oracle: Claude’s Response
Figure 1 shows how Claude goes right to work. The model
provides two sections containing the HTML and the Py-
thon code. After the code, Claude breaks down each part

•	 Demonic
•	 Construct
•	 Elemental
•	 Fey
•	 Phantasmal
•	 Eldritch
•	 Corrupted
•	 Ethereal

The lists I provided are off the top of my head, but each
one has its own influence on both the narrative of the
encounter and the mechanics of combat. The model will
interpret each word and understand what it implies. For
instance, Beasts will use primal instincts or maybe pack
tactics. Phantasmal enemies will have incorporeal abili-
ties and likely some sort of spectral attack.

Persuasion Check: Engineering Your Prompt
A good prompt sets the tone for the conversation with
the LLM and provides the basis for this experiment. Craft-
ing the right prompt the right way is one of the most
important aspects of working with an LLM sidekick. Be as
thorough as possible from the get-go. That doesn’t mean
you won’t be able to adjust as you go along, but make
sure the LLM has a clear understanding of the project.
Writing a good prompt requires clarity and specificity.
Your request to the LLM has to be focused, actionable,
and provide enough context to steer the response.

Know what you want to achieve going in and communi-
cate that precisely. Instead of telling the LLM to “write
a story," tell it to write a 5000-word tale about a ma-
rauder on some forgotten coast. Always include relevant
background details to outline the request. The limits you
place on the request provide some focus. Tell the LLM
what to do and what not to do. Specify the audience, the
voice, or the style. If necessary, explicitly allow for mul-
tiple iterations and refining. Start with verbs like "Build,"
"Interpret," "Generate," or "Explain" to prompt specific
actions. Phrase your request to minimize misunderstand-
ing, like you’re trying to cast a Wish spell or bargain with
a demonic patron. Here are some ground rules:

•	 Define the goal clearly.
•	 Provide context.
•	 Set constraints or parameters.
•	 Be specific about style and tone.
•	 Ask for iteration or refinement.
•	 Incorporate examples.
•	 Use action-oriented language.
•	 Avoid ambiguity.

Think of the prompt as your plan. The more you plan,
the more specific you can be, and the fewer iterations
and corrections you’ll have to do down the line. Sure,
you could say, “code a ttrpg encounter builder,” but then
you’d spend the rest of the time massaging the LLM’s vari-
ous responses into what you could have said in one more
precise prompt.

After all of the sturm und drang, I come to this:

Create a generic fantasy TTRPG encounter build-
er web app using Flask and the OpenAI API.
The app should have a form with these fields: Figure 1: Claude is concise and provides an immediate solution.

The Infinite Monster Engine

66 codemag.com

engaging. MarkupSafe is a Python library that protects
web apps from XSS attacks that use special characters in
user input.

pip install flask
pip install openai
pip install markupsafe

The API key will vary by which LLM you choose to work
with. For these purposes, OpenAI’s API works seamless-
ly with Python. It’s incredibly easy to use. Sign up on
https://platform.openai.com/ to generate as many of the
alphanumeric keys as you need.

The Ancient Words: The Code
If you examine pieces of the working implementation,
starting with the core application code, you can see that
the entirety of it is lean and efficient. It offers an easy
way to implement your LLM’s API key.

client = OpenAI(api_key=
'your-openai-api-key-here')

Implement strict validation to ensure that all inputs meet
your requirements before making API calls.

if num_enemies < 1 or num_enemies > 10:
 raise ValueError
("Number of enemies must be between 1 and 10")

Using escape() prevents XSS attacks by sanitizing user
input.

environment = escape(request.form.get
('environment', ''))

Claude assigns a simple role to OpenAI that it thinks will
be best suited to the task. I do see one technical prob-
lem, however, and it’s a game-breaker. If you’re up to date
with OpenAI API protocols, you may see it, too.

Call OpenAI API response =
 openai.ChatCompletion.create(
 model="gpt-4
 ",

I’m going to leave it for now to see how Claude handles
the error.

Casting the Spell: Running the Code
The first time you run the file, you’re greeted with the
simple interface seen in Figure 2.

I tell the Infinite Monster Engine that I want seven mon-
sters with a difficulty rating of 3. This is an Arctic envi-
ronment and they’ll be tiny. Make them flesh eating ice
elves!

Unfortunately, I don’t get far. After I press Generate En-
counter, I get the first error.

“An error occurred while generating the encounter.
Please try again.”

That really doesn’t help at all, does it? I take that error
and feed it back into Claude.

of the program, lists some of its key features and security
notes, and shows how to implement the code.

Opening the blocks shows you clean and lean Python code
for the application.

from flask import Flask, render_template, request,
flash
import openai
from markupsafe import escape

app = Flask(__name__)
app.secret_key = 'your-secret-key-here'
Required for flash messages

OpenAI API Configuration
openai.api_key = 'your-openai-api-key-here'

Constants for form options
ENVIRONMENTS = ['Arctic', 'Desert', 'Forest',
'Plains', 'Jungle', 'Mountain', 'Swamp',

The HTML is similarly basic, prioritizing function over
form, but it also tells you exactly what you’ll need going
forward.

Preparing the Spells: Libraries, APIs, etc.
Before you run it, you have to set up the environment.
You’re going to need the Python libraries referenced, de-
termine which LLM you’ll use, and get the respective API
key. Flask is a lightweight web framework for Python that
allows you to build web applications quickly and with
minimal code. GPT-4's grasp of TTRPG mechanics hasn’t
failed me in the past. Its ability to maintain consistency
while introducing creative elements helps create encoun-
ters that are both mechanically sound and narratively

Figure 2: Brutally simple, it’s exactly what I imagined.

Getting the Right API Key

OpenAI’s API is incredibly easy
to use. You can generate keys
as needed with just a few
short clicks. Access to the API
does cost money, so make
sure you pay attention to the
token limits.

It’s not the only LLM on the
market, of course. I can’t speak
for the ease of use of the
others, but swapping them
out within this code is surely a
simple task.

Remember to never share
your API key with anyone!
That could be a very
expensive mistake.

The Infinite Monster Engine

67codemag.com

longer chats, you’ll reach your usage limit much faster.
Longer chats also push the limits of the LLM’s context
window. LLMs can appear to "forget" the context of a con-
versation over time due to the limitations of their con-
text window and the design of their architecture. Without
true memory, they are stateless and thus require explicit
repetition to hold onto the right context. As your con-
versation grows, the model can have difficulty tracking
multiple threads. You’re going to start a new chat, but
you’ll upload the files to Claude so that it doesn’t start
from zero. Figure 4 shows Claude’s clean interface.

The prompt I provide is short and to the point. I’m hoping
Claude can see the logic of its own code and immediately
make the adjustments I’m looking for.

“I see you're getting an error with the encoun-
ter generation. The error is likely occurring
because the OpenAI integration needs to be
updated to use their latest API client and for-
mat. Let me fix that by updating the API call
portion of the code.”

Claude doesn’t waste any time in identifying the issue. It
immediately creates a new version, a list of the changes,
and how to make sure the OpenAI Python library is up to
date. After it updates the code, it calls out the problem I
spotted earlier.

Key changes made:

•	 Updated the OpenAI import to use from openai im-
port OpenAI

•	 Changed the client initialization to use the new for-
mat with client = OpenAI()

•	 Updated the API call to use client.chat.completions.
create()

•	 Added more detailed error logging to help diagnose
issues

•	 Modified the error handler to display the specific
error message

It was using an outdated protocol to call OpenAI’s API, but
after the error, it finds and corrects it immediately. I made
the required changes and refreshed the page right away.
Now my current players are high-level murder hobos mas-
querading as liberators. They think they’re fancy. I want
them to reconsider their place in the world. I want to give
them something to cry about. From the Infinite Monster
Engine, I request three Huge Corrupted monsters with Dif-
ficulty Ratings of 15. These creatures live in the mountains
and are “Shambling, gigantic horrors that are mindless and
hungry.” Check out our new array of baddies in Figure 3.

Clutch your dice tightly, folks! This gang of beasts from Fig-
ure 3 is ready, armed with horrible tactics sure to instigate a
rousing battle. (I’ll let you know how it goes.) I asked for a
stat block. It provided everything I needed, without requir-
ing me to specify. Claude uses plain language for the request
to OpenAI, based on common TTRPG stat block require-
ments. You can see this in plain language in the code itself.

•	 Name and description
•	 Attributes
•	 AC/HP
•	 Movement
•	 Skills/Abilities
•	 Actions
•	 Saving throws
•	 Senses/Languages

Leveling Up
This is a great shortcut and can trim hours from your prep
time, but it could be better. I forgot XP and loot! Before
I go any further, let’s participate in some LLM hygiene.

Harvesting XP and Grinding for Loot: Basic Improvements
Best practice for conversations with Claude is to start
a new chat when your original becomes unwieldy. With

Figure 3: Witness the birth of a shambling abomination!

Figure 4: I reupload our files to a fresh conversation with Claude.

The Infinite Monster Engine

68 codemag.com

An Unfortunate Side Quest
Here’s where the car flies off the road. I just don’t know it
yet. Claude provides the updated files I requested, along
with a bulleted list of changes. I don’t bother with all of
that. I already provided a detailed roadmap in the form
of the three files, so I lazily copy and paste. How autono-
mous are you, Claude? As anyone would expect, some-
thing has gone awry in Figure 5.

I pass the error over to Claude.

Ah, we need to add the Flask-Markdown exten-
sion to handle Markdown formatting. Let's fix
this by modifying the app.py file and installing
the required dependency.

We’re dealing with markdown now? Since when? If you’re
not paying attention and keeping at least one hand on
the wheel, Claude will wreck the car. I let it. From here,
Claude leads us down a road of compounding errors.

Ah, I apologize—the package name has changed.
Let's use the current version of Flask-Markdown
called flask-markdown.

Claude: Ah yes—I just noticed that while I
updated the import statement in my code, I
shouldn't have included Flask-Markdown at all
since your HTML template doesn't require Mark-
down processing anymore.

<div class="max-w-2xl mx-auto bg-white rounded-lg shadow-md p-6">
 <h1 id="generated-encounter"
 class="text-3xl font-bold mb-6 text-center">
 Generated Encounter
 </h1>

 {% with messages = get_flashed_messages(with_categories=true)
 %}
 {% if messages %}
 {% for category, message in messages %}
 <div class="mb-4 p-4 rounded {% if category ==
 'error' %}bg-red-100 text-red-700{% else %}bg-green-100
 text-green-700{% endif %}">
 {{ message }}
 </div>
 {% endfor %}
 {% endif %}
 {% endwith %}

 <div class="stat-blocks space-y-8 whitespace-pre-wrap">
 {{ stat_blocks | safe }}
 </div>

 <div class="mt-6 text-center">
 <a href="{{ url_for('index') }}" class="bg-blue-500
 hover:bg-blue-700 text-white font-bold py-2 px-4
 rounded inline-block">
 Generate Another Encounter

 </div>

 <style>
 .stat-blocks h2 {

 @apply text-2xl font-bold mb-4 pb-2 border-b-2
 border-gray-300 text-blue-800;

 }

 .stat-blocks h3 {
 @apply text-xl font-semibold mb-3 mt-4
 text-gray-700;
 }

 .stat-blocks p {
 @apply mb-3 leading-relaxed;
 }

 .stat-blocks ul, .stat-blocks ol {
 @apply mb-4 pl-6;
 }

 .stat-blocks li {
 @apply mb-2;
 }

 .stat-blocks strong {
 @apply text-gray-700;
 }

 /* Special styling for XP and Loot sections */
 .stat-blocks h3:contains("XP"),
 .stat-blocks h3:contains("Loot") {
 @apply text-green-700 mt-6;
 }
 </style>
</div>

Listing 1: The final Python code

Figure 5: I’ve hit a strange snarl.

Figure 6: I guess I should have checked the uploads.

“Please use this existing code but make small
changes. Add loot and XP specific to each crea-
ture to every stat block. Also, please style the
Result page to be a bit easier to read.”

The Infinite Monster Engine

69codemag.com

down, as it discovers in Figure 6. The original files I
uploaded were correct functional code. They were, that
is, until I uploaded them to Claude. From the beginning,
Claude immediately parsed and interpreted the HTML files
incorrectly. It converted the HTML into markdown right
when I uploaded them, but of course didn’t update any of
the Python code required in the app.py file.

“Looking at the given HTML files, there's another
issue.”

With gentle prodding, Claude gets back on track. Some-
how, it had changed all of the original HTML to mark-

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 <title>TTRPG Encounter Builder</title>
 <link href="https://cdn.jsdelivr.net/npm/tailwindcss
 @2.2.19/dist/tailwind.min.css" rel="stylesheet">
</head>
<body class="bg-gray-100 min-h-screen p-8">
 <div class="max-w-2xl mx-auto bg-white
 rounded-lg shadow-md
 p-6">
 <h1 class="text-3xl font-bold mb-6 text-center">
 TTRPG Encounter Builder</h1>

 {% with messages =
 get_flashed_messages(with_categories=true) %}
 {% if messages %}
 {% for category, message in messages %}
 <div class="mb-4 p-4 rounded
 {% if category == 'error' %}bg-red-100
 text-red-700{% else %}bg-green-100
 text-green-700{% endif %}">
 {{ message }}
 </div>
 {% endfor %}
 {% endif %}
 {% endwith %}

 <form action="{{
 url_for('generate_encounter') }}"
 method="post" class="space-y-4">
 <div>
 <label class="block text-gray-700
 text-sm font-bold mb-2">
 Number of Enemies (1-10)
 </label>
 <input type="number" name="num_enemies"
 min="1" max="10"
 value="{{ form_data.num_enemies
 if form_data else '1' }}"
 class="w-full px-3 py-2 border
 rounded" required>
 </div>

 <div>
 <label class="block text-gray-700
 text-sm font-bold mb-2">
 Difficulty Rating (0-30)
 </label>
 <input type="number"
 name="challenge_rating" min="0"
 max="30" step="0.125"
 value="{{ form_data.challenge_rating
 if form_data else '1' }}"
 class="w-full px-3 py-2 border
 rounded" required>
 </div>

 <div>
 <label class="block text-gray-700
 text-sm font-bold mb-2">
 Environment
 </label>
 <select name="environment" class="w-full
 px-3 py-2 border rounded" required>
 {% for env in environments %}
 <option value="{{ env }}"

 {% if form_data and
 form_data.environment ==
 env %}selected{% endif %}>
 {{ env }}
 </option>
 {% endfor %}
 </select>
 </div>

 <div>
 <label class="block text-gray-700
 text-sm font-bold mb-2">
 Enemy Size
 </label>
 <select name="enemy_size"
 class="w-full px-3
 py-2 border rounded" required>
 {% for size in sizes %}
 <option value="{{ size }}"
 {% if form_data and
 form_data.enemy_size ==
 size %}selected{% endif %}>
 {{ size }}
 </option>
 {% endfor %}
 </select>
 </div>
 <div>
 <label class="block text-gray-700
 text-sm font-bold mb-2">
 Enemy Type
 </label>
 <select name="enemy_type"
 class="w-full px-3 py-2 border
 rounded" required>
 {% for type in types %}
 <option value="{{ type }}"
 {% if form_data and
 form_data.enemy_type ==
 type %}selected{% endif %}>
 {{ type }}
 </option>
 {% endfor %}
 </select>
 </div>

 <div>
 <label class="block text-gray-700
 text-sm font-bold mb-2">
 Additional Details
 </label>
 <textarea name="additional_details"
 rows="4" class="w-full px-3 py-2
 border rounded">{{
 form_data.additional_details
 if form_data else ''
 }}</textarea>
 </div>

 <button type="submit"
 class="w-full bg-blue-500
 hover:bg-blue-700 text-white font-bold
 py-2 px-4 rounded">
 Generate Encounter
 </button>
 </form>
 </div>
 </body>
</html>

Listing 2: Index.html

The Infinite Monster Engine

70 codemag.com

the adventure take us? What additions should we make?
Automating a chunk of the preparation can free you up to
be more creative. If this gives you the itch, think about
GenAI produced battle maps, initiative trackers, or NPCs
your players can actually chat with.

Now the Infinite Monster Generator gets its upgrade, as
in Figure 7.

A Plague-Infused Shard! I’ve always wanted one. Listing
1 offers a look at the final Python Code. Listing 2 reflects
the HTML input on the index page, and Listing 3 shows
the HTML for the output.

The Infinite Monster Engine is lean and functional, but
the work of a Game Master doesn’t stop there. Where does

<div class="max-w-2xl mx-auto bg-white rounded-lg
 shadow-md p-6">
 <h1 id="generated-encounter" class="text-3xl
 font-bold mb-6 text-center">
 Generated Encounter
 </h1>

 {% with messages = get_flashed_messages
 (with_categories=true) %}
 {% if messages %}
 {% for category, message in messages %}
 <div class="mb-4 p-4 rounded {% if
 category == 'error' %}bg-red-100
 text-red-700{% else %}bg-green-100
 text-green-700{% endif %}">
 {{ message }}
 </div>
 {% endfor %}
 {% endif %}
 {% endwith %}

 <div class="stat-blocks space-y-8
 whitespace-pre-wrap">
 {{ stat_blocks | safe }}
 </div>

 <div class="mt-6 text-center">
 <a href="{{ url_for('index') }}"
 class="bg-blue-500 hover:bg-blue-700
 text-white font-bold py-2 px-4 rounded inline-block">
 Generate Another Encounter

 </div>

 <style>
 .stat-blocks h2 {
 @apply text-2xl font-bold mb-4 pb-2
 border-b-2 border-gray-300 text-blue-800;
 }

 .stat-blocks h3 {
 @apply text-xl font-semibold mb-3 mt-4
 text-gray-700;
 }

 .stat-blocks p {
 @apply mb-3 leading-relaxed;
 }

 .stat-blocks ul, .stat-blocks ol {
 @apply mb-4 pl-6;
 }

 .stat-blocks li {
 @apply mb-2;
 }

 .stat-blocks strong {
 @apply text-gray-700;
 }

 /* Special styling for XP and Loot sections */
 .stat-blocks h3:contains("XP"),
 .stat-blocks h3:contains("Loot") {
 @apply text-green-700 mt-6;
 }
 </style>
</div>

Listing 3: Result.html

Figure 7: No one expects the Bouldergorged Plaguebeast!

� Jason Murphy
�

The Infinite Monster Engine

71Title articlecodemag.com

APPS
WITHOUT
COPILOTS
ARE NOW
LEGACY!
Microsoft has introduced Copilot-driven applications and announced that all Microsoft applications
will follow this approach going forward. This aims to capitalize on the extreme productivity gains
this new paradigm promises. The same applies to your own applications and systems.

We can help you build Copilots into your own applications.atered to what you do.

VISIT OUR COPILOT PAGE TO FIND OUT MORE ABOUT OUR SERVICES
AND TO SEE DEMONSTRATIONS AND EXAMPLES!

codemag.com/copilot
832-717-4445 ext. 9 • info@codemag.com©

sh
ut

te
rs

to
ck

72 codemag.comMy New Copilot+ PC

ONLINE QUICK ID 2501081

My New Copilot+ PC
I first saw the Copilot+ PC device on stage at the Microsoft BUILD conference in May 2024, during a demonstration of how
its NPU could dramatically speed up AI tasks running locally, and ever since, I’d wanted one. I was lucky to get one of the
few Qualcomm Windows on Snapdragon X Elite Dev Kits before they halted production. Although Qualcomm-powered

ARM Copilot+ PC laptops have been shipping since mid-
June, my Dev Kit didn’t arrive until mid-October, about
three months later, and I was eager to see what I could do
with its Hexagon NPU. Here’s how it’s going…

Windows on ARM
Thus far, as far as a new computer goes, I’m absolutely
thrilled. The Dev Kit immediately became my main com-
puter, and I won’t look back. The VPN I use (OpenVPN) as
well as a couple of other programs are not yet available
natively for Windows on ARM yet, but they install and run
absolutely fine under x64 emulation, and you wouldn’t
know they’re x64 apps unless you peek in Task Manager.
It does everything my Intel computers do, and I’ve not
had a single issue with it or any software running on
it. It boots almost instantly, it’s blazing fast, cool, and
quiet. I can even run Visual Studio in a Teams meeting
without everything slowing to a crawl, something I was
never quite able to accomplish on Intel.

I’d been toying with the idea of getting an ARM machine as
my next computer for a couple of years. I knew that Win-
dows for ARM64 with its impressive emulation of x86 and
x64 had been around for a few years and rumors were that
it was getting quite stable. I also knew that there were na-
tive ARM64 versions of Visual Studio 2022 and VS Code and
that the Office applications were being converted to native
ARM64. Any bits of Office that aren’t yet converted run in
emulation and communication between the two platforms
are handled automatically. This hybrid technology is called
ARM64EC and is available to all C++ application develop-
ers. When Copilot+ PCs were announced, it seemed that
the momentum was there to make Windows on ARM main-
stream. The only complaints I’d heard while waiting for my
machine to arrive were that a lot of games and some other
software, (e.g., third-party VPNs) don’t run on them yet
and won’t until the vendors build native ARM64 versions.
I’m not a gamer, but friends with their own ARM Copilot+
PCs tell me the gaming experience isn’t bad. Plus, I still
have my i7 laptop to use if I ever need it. So far, I haven’t.

Copilot+ PC Features
As announced at BUILD, Microsoft is planning on adding
an AI stack to the Windows OS, both for ARM and Intel.
In https://learn.microsoft.com/en-us/windows/ai/npu-
devices/#how-to-access-the-npu-on-a-copilot-pc, Microsoft
lists “Unique AI features supported by Copilot+ PCs with an
NPU” announced at the conference, which are meant to be
a starting point for capabilities to be built into Windows:

•	 Windows Studio Effects: A set of audio and video
NPU-accelerated AI effects from Microsoft including
Creative Filter, Background Blur, Eye Contact, Auto
Framing, Voice Focus. Developers can also add tog-
gles to their app for system level controls.

•	 Recall: The AI-supported UserActivity API that en-
ables users to search for past interactions using
natural language and pick up where they left off.

•	 Phi Silica: The Phi Small Language Model (SLM) that
enables your app to connect with the on-device
model to perform natural language processing tasks
(chat, math, code, reasoning) using an upcoming
release of the Windows App SDK.

•	 Text Recognition: The Optical Character Recogni-
tion (OCR) API that enables the extraction of text
from images and documents.

•	 Cocreator with Paint: A new feature in Microsoft
Paint that transforms images into AI Art.

•	 Super Resolution: An industry-leading AI technol-
ogy that uses the NPU to make games run faster and
look better.

I was eager to dive in. Because the Dev Kit computer isn’t
a laptop, I plugged in an HD web cam I’d been using on
a Linux machine sitting on my desk. The camera doesn’t
support IR, so I can’t use it for Windows Hello and, it
turns out, I can’t use it for Windows Studio Effects either.
It’s unclear what the requirements actually are. My friends
with Surface Copilot+ PCs say they like features of Win-
dows Studio Effects, such as having the OS blur the cam-
era background for meetings, as it does a better job than
Teams and doesn’t use as much power. But overall, their
reviews of Windows Studio Effects are, “meh… It’s nice.”

As you probably heard, Recall has been delayed for a va-
riety of reasons, including privacy issues. It's slated to be
rolled out December 2024, and requires you to be on the
Windows Insider Program, but we’ll see (this was written
in November 2024). It sounds interesting, but I’m not all
that excited about it, to be honest, and this isn’t the first
new release date it’s had.

One thing I was REALLY excited about is Phi Silica. I do
a lot of AI work and being able to tap into the GPU and
NPU on this machine with small language models like the
Phi-3 family, provided by the OS, would be game chang-
ing. Unfortunately, this doesn’t exist yet either. Program-
matic access to the local Phi models, when it does arrive, is
planned to be part of the Windows App SDK. This is the SDK
that includes things like WinUI3 (successor to UWP), power
management, app notifications, etc. Basically, it provides
high-level access to Windows-specific things so you don’t
have to resort to Win32. This makes sense because Win-
dows will host the AI stack and it’s not a cross-platform
feature. All a developer will have to do is make high-level
calls to use the models on Windows. These features were
supposed to be part of the 1.6 SDK release in September
2024, but have been bumped to at least v1.7, which is not
yet available, even in preview, as I write this.

Text Recognition is also of interest to me, but it’s also
supposed to be released as part of the SDK, and I haven’t

Mike Yeager
www.internet.com

Mike is the CEO of EPS’s
Houston office and a skilled
.NET developer. Mike excels
at evaluating business
requirements and turning
them into results from
development teams.
He’s been the Project Lead
on many projects at EPS and
promotes the use of modern
best practices, such as
the Agile development
paradigm, use of design
patterns, and test-drive
and test-first development.
Before coming to EPS,
Mike was a business owner
developing a high-profile
software business in the
leisure industry. He grew the
business from two employ-
ees to over 30 before selling
the company and looking
for new challenges.
Implementation experience
includes .NET, SQL Server,
Windows Azure, Microsoft
Surface, and Visual FoxPro.

73codemag.com My New Copilot+ PC

or for something that hasn’t been released yet. The things
I was able to accomplish only ran in Linux with Python.

ONNX to the Rescue (Sort of)
In my experience as a .NET developer, living and breathing
AI development on this device, the best, and easiest-to-
achieve results have come when I use ONNX. The ONNX mod-
el format and ONNX runtime are an attempt to standardize
access to local AI models, improve their performance, and
make them easier to run on a variety of hardware, including

had time to even look to see if it’s there yet. To be hon-
est, I have existing ways of doing OCR and it’s not high
on my priority list.

This brings us to Cocreator with Paint. This actually works!
I brought up Paint and it downloaded a model automati-
cally the first time I used Cocreator. I can create images
locally by giving it a prompt, and optionally by asking it to
base the image on something I’ve already drawn in Paint.
It uses my NPU, which is exciting because it’s the first time
I’ve seen the NPU do anything at all. Unfortunately, it’s
not nearly as good as other services I use online such as
Leonardo.ai, Ideogram, or Midjourney. Still, it’s fun, and it
can create images based on what I’ve already drawn, which
most online services don’t. I’ve used it to create images for
some upcoming AI presentations I’m working on and it’s
not bad for a v1 product that runs locally.

As a non-gamer, I haven’t tried Automatic Super Resolu-
tion (based on DirectX) to speed up frame rates on video
games. Based on community feedback so far, there’s not
a lot of excitement yet.

A disappointing one out of six was successful so far us-
ing Windows-provided AI features. However, it’s still early
days. I’m reminded that it was two years after the Wright
brothers’ first flight before they could take off, fly in a
circle, and land.

AI Development on ARM
Phi Silica was a disappointment, but I think it will be a real-
ity soon. Until then of course, I’m a developer and I’m most
excited about doing “real” development. I mainly use C# and
TSQL, but I also write a little C++ for an open-source project
named Photino that’s a .NET-powered Electron look-alike.
For C++ developers, there are some things to celebrate. Many
legacy projects can be cross compiled for ARM32 or ARM64
(on either hardware) just by adding a new configuration to
the Configuration Manager in Visual Studio and recompiling.
If you can’t convert all your code and assets at once, you can
select ARM64EC just as easily and port your application over
time. In addition, Qualcomm has a lot of drivers and sample
code available, if you’re into that sort of thing. They have a
fairly active Slack workspace and are very responsive. How-
ever, at this point, if you’re not a C++ or Python developer
working on Linux, there’s not a whole lot you can accomplish
on the CPU or GPU.

I spent several weeks configuring Windows Subsystem for
Linux (WSL), installing and configuring various versions
of Python for x86, x64, and ARM64, downloading SDKs
and drivers from Qualcomm, running through tutorials,
and troubleshooting with support on Slack. I did end up
getting one small image manipulation model to run on my
NPU, but I was unable to get any transformer models to
run on either the GPU or NPU. This kind of work requires
a FAST internet connection, a LOT of hard disk space (the
built-in 1/2TB drive is just big enough to convert one
small language model like llama-v3-8b-instruct, or Phi-
3-medium-128k-instruct, and a lot of patience, because
compiling and quantizing models can take hours.

Again, there was a bit of a disappointment. Right now,
this type of development is very low level, very finnicky,
and you’ll often find yourself waiting for a bug resolution

using Microsoft.ML.OnnxRuntimeGenAI;
using System.Diagnostics;
using System.Text;

namespace MyNewCopilot_PC;

internal class Program
{
 //Download from https://huggingface.co/microsoft/
 //Phi-3.5-mini-instruct-onnx/tree/main

 private static readonly string modelDir =
 @"<your localpath>\cpu_and_mobile\
 cpu-int4-awq-block-128-acc-level-4";

 static async Task Main(string[] args)
 {
 Console.WriteLine($"Loading model: {modelDir}");
 var sw = Stopwatch.StartNew();
 using var model = new Model(modelDir);
 using var tokenizer = new Tokenizer(model);
 sw.Stop();
 Console.WriteLine($"Model loading took {sw.ElapsedMilliseconds} ms");

 var systemPrompt = "You are a helpful assistant.";
 var userPrompt = "Tell me about Taos New Mexico. Be brief.";
 var prompt = $@"<|system|>{systemPrompt}<|end|><|user|>{userPrompt}<|end|>
<|assistant|>";

 await foreach (var part in InferStreaming(prompt, model,
 tokenizer))
 Console.Write(part);
 }

 public static async IAsyncEnumerable<string>
 InferStreaming(string prompt, Model model, Tokenizer tokenizer)
 {
 using var generatorParams = new GeneratorParams(model);
 using var sequences = tokenizer.Encode(prompt);
 generatorParams.SetSearchOption("max_length", 2048);
 //generatorParams.SetSearchOption("top_p", 0.5);
 //generatorParams.SetSearchOption("top_k", 1);
 //generatorParams.SetSearchOption("temperature", 0.8);
 generatorParams.SetInputSequences(sequences);
 generatorParams.TryGraphCaptureWithMaxBatchSize(1);

 using var tokenizerStream = tokenizer.CreateStream();
 using var generator = new Generator(model, generatorParams);
 StringBuilder stringBuilder = new();
 while (!generator.IsDone())
 {
 string part;
 await Task.Delay(10).ConfigureAwait(false);
 generator.ComputeLogits();
 generator.GenerateNextToken();
 part = tokenizerStream.Decode(generator.GetSequence(0)[^1]);
 stringBuilder.Append(part);
 if (stringBuilder.ToString().Contains("<|end|>")
 || stringBuilder.ToString().Contains("<|user|>")
 || stringBuilder.ToString().Contains("<|system|>"))
 break;

 if (!string.IsNullOrWhiteSpace(part))
 yield return part;
 }
 }
}

Listing 1: Complete source code for Phi3.5 ONNX sample.

74 codemag.com

 v

Jan/Feb 2025
Volume 26 Issue 1

Group Publisher
Markus Egger

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Writers in This Issue
Joydip Kanjilal	 Wei-Meng Lee
Sahil Malik	 Jason Murphy
Paul D. Sheriff	 Mike Yeager

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext. 26
tammy@code-magazine.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	 Ingram Periodicals, Inc.
	 International Bonded Couriers (IBC)
	 Media Solutions
	 Source Interlink International

Subscriptions

Circulation Manager
Colleen Cade
832-717-4445 ext. 28
ccade@codemag.com

US subscriptions are $29.99 USD for one year.
Subscriptions outside the US are $50.99 USD.
Payments should be made in US dollars drawn
on a US bank. American Express, MasterCard,
Visa and Discover credit cards accepted.
Back issues are available. For subscription
information, email subscriptions@code-magazine.com
or contact customer service at 832-717-4445 ext. 9.

Subscribe online at
www.code-magazine.com

CODE Developer Magazine
EPS Software Corporation / Publishing Division
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379 USA
Phone: 832-717-4445

CODE COMPILERS

CPUs, GPUs, NPUs, and even within browsers using WebGPU.
The easiest path is to find a model, already converted to
ONNX format and tuned for the hardware you want to run
it on, download it to your machine, and then use the ONNX
runtime along with an Execution Provider (EP) created for
your hardware. By default, ONNX uses CPU if no provider is
mentioned or as a fallback if the specialized provider can’t
be used, like, for example, if you run the model on a ma-
chine that doesn’t have an NPU or supported GPU.

ONNX can make development easier on several levels that are
very important if you want to run models locally. Language
Transformer models in particular (there are many other types
of models), start out life pretty huge. Even relatively small
models designed to run locally, like Phi3.5-mini, include sev-
eral GBs of data, stored as 32bit floating point numbers. Few
models require that amount of precision. For use on GPUs,
models are often “quantized” down to 16bit floating-point
numbers, cutting the model size to about half (models aren’t
all data). CPUs tend to work best with 8bit or even 4bit
integers, making the resulting models even smaller. There
are even 1bit models that show a lot of promise. Although
there may be some loss of capability from the quantizing
process, there are several techniques that result in negligible
differences in capability. In addition to taking up less space
and being faster to load, smaller models also run faster at
runtime. An ONNX format model quantized for CPU tends to
run multiple times faster than the original non-quantized
model. In addition, converting to ONNX, even while retain-
ing the 32bit floating point, will make the model smaller and
faster due to things like “fusing” operations and activations.
Other techniques such as “distillation” can also be applied
to reduce model size and improve performance.

Learning to optimize models well is a large topic, even
with tools like Olive that significantly streamline the pro-
cess of making ONNX models. Luckily, others have done
a lot of this work for you and in many cases, you can
simply download an ONNX model tuned for CPU and just
use it. The Phi-3.5-mini-instruct-onnx model for CPU and
mobile is only about 2.6GB and it performs about as well
as ChatGPT 3.5, in my experience, and you can download
it, ready to go, here: https://huggingface.co/microsoft/
Phi-3.5-mini-instruct-onnx/tree/main/cpu_and_mobile/
cpu-int4-awq-block-128-acc-level-4.

Next, create a new .NET application. A Console app will
do. And add the Microsoft.ML.Runtime.OnnxRuntimeGe-
nAI NuGet package. I’m using version 0.5.0 for this ar-
ticle. Replace the contents of the Program.cs file with the
code shown in Listing 1. Modify the path to the folder
containing your copy of the Phi model that you down-
loaded above and run the code.

You should see output similar to:

Model loading took 2685 ms
Taos, New Mexico, is a picturesque town in the
Sangre de Cristo Mountains, known for its vibrant
arts scene, historic adobe buildings, and annual
art fairs. It's a hub for Native American and
Hispanic cultures, offering a unique blend of
traditions, art, and music. The town also

� Mike Yeager
�

SPONSORED SIDEBAR

Adding Copilots
to Your Apps

The future is here now
and you don’t want to get
left behind. Unlock the
true potential of your
software applications by
adding Copilots.

CODE Consulting can
assess your applications
and provide you with
a roadmap for adding
Copilot features and
optionally assist you in
adding them to your
applications.

Reach out to us today
to get your application
assessment scheduled:
www.codemag.com/ai

My New Copilot+ PC

YOUR PARTNER
FOR CUSTOM
SOFTWARE
SOLUTIONS

CONTACT US TODAY. NO STRINGS. NO COMMITMENT.

codemag.com/code
832-717-4445 ext. 9 • info@codemag.com

©
sh

ut
te

rs
to

ck

REAL BUSINESS VALUE FOR AI	 CUSTOM APPLICATION DEVELOPMENT
TRAINING / MENTORING	 CONTINGENT IT STAFFING

Is your development team struggling to complete business-critical projects on time?
Are you looking to harness cutting-edge technologies, including Al, for maximum impact?

CODE EXCELS IN:
• �AI integration for enhanced functionality
• �.NET web and desktop development
• �Azure cloud migration and transformation

• �Blazor development
• �Mobile app creation
• �Staffing, training and mentoring

Let CODE transform your software challenges into competitive advantages.

UNLOCK
STAFFING
EXCELLENCE

STAFFING

Top-Notch IT Talent, Contract Flexibility, Happy Teams, and a
Commitment to Customer Success Converge with CODE Staffing

Our IT staffing solutions are engineered to drive your business forward while
saving you time and money. Say goodbye to excessive overhead costs and
lengthy recruitment efforts. With CODE Staffing, you’ll benefit from contract
flexibility that caters to both project-based and permanent placements. We
optimize your workforce strategy, ensuring a perfect fit for every role and
helping you achieve continued operational excellence.

Ready to Discuss Your IT Staffing Needs?

Visit our website to find out more about how we are changing
the staffing industry.

Website: codestaffing.com

Yair Alan Griver (yag)
Chief Executive Officer

Direct: +1 425 301 1590

Email: yag@codestaffing.com

