
EVENT
SOURCING

J U L
AUG
2022

Text, Text, Text, Text, Text, Text, Text
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Text Text Text
Text Text

Text Text Text
Text Text

Text Text Text
Text Text

DevIntersection

DevIntersection

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $50.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Back issues are available. For subscription information, send e-mail to subscriptions@codemag.com or contact
Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �FIDO2 and WebAuthn

If your system relies on username and passwords for security,
you may be in trouble. Sahil shows you that true security
can be simpler than you think.
Sahil Malik

14 	 �YARP: I Did It Again
Yet Another Reverse Proxy (YARP) might sound like something you’d rather
not do, but Shawn shows you how it can improve performance if you’ve got
microservices, load balancing issues, URL writing, or tight security issues.
Shawn Wildermuth

20 	 �Simplifying ADO.NET Code
in .NET 6: Part 2
The second installment in Paul’s new series refactors the code you built in
Part 1 to make it more reusable. You’ll also learn to get data from a view,
handle multiple result sets, get a scalar value, and call stored procedures.
Paul D. Sheriff

34 	 �Customized Object-Oriented and
Client-Server Scripting in C#
You need full control of how your functionality is implemented. Vassili tells
you how to use classes and objects for great control, and how to implement
them in C# in this article about object-oriented and client-server scripting.
Vassili Kaplan

40 	 �Benchmarking .NET 6 Applications
Using BenchmarkDotNet:
A Deep Dive
You already know you need to identify and maintain standards before you ship
your app. Joydip looks at how to set benchmarks and why they’re essential.
Joydip Kanjilal

50 	 �Event Sourcing and CQRS
with Marten
After examining persisted system states in a relational database,
Jeremy discovers that he needs to use the Marten library to provide
robust support for Event Sourcing.
Jeremy Miller

62 	 �Putting Data Science into
Power BI
Power BI seems to have everything you need for data analytics.
Helen shows you how to get the most out of it and how to make
some cool charts, too.
Helen Wall

70 	 �Getting Started with
Cloud Native Buildpacks
Take advantage of modern container standards using cloud-native
buildpacks. Peter shows you how.
Peter Mbanugo

Columns
74 	 �CODA: On Consulting

and Organizations
There’s more to the role of a consultant than showing up and
pounding out line after line of code. John explains the nuances.
John V. Petersen

Departments
6 	 Editorial

16 	 �Advertisers Index

73 	 Code Compilers

LEAD

6 codemag.comEditorial

EDITORIAL

6

� Rod Paddock
�

codemag.com

Does your development team lack skills or time to complete all your business-critical software projects?

CODE Consulting has top-tier developers available with in-depth experience in .NET,

web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/code
832-717-4445 ext. 9 • info@codemag.com

MORE THAN JUST
A MAGAZINE!

TRAINING/MENTORING SECURITY

CUSTOM SOFTWARE DEVELOPMENT
STAFFING

8 codemag.comFIDO2 and WebAuthn

ONLINE QUICK ID 2209021

FIDO2 and WebAuthn
Authentication has been an essential part of applications for some time now because applications need to know some
information about the user who’s using the application. For the longest time, the solution to this has been username and
passwords. Username passwords are popular because they’re convenient to implement. But they aren’t secure. There are many

issues with passwords. First, there’s the problem of transmit-
ting this password securely. If you send the password over
the wire, a man-in-the-middle could sniff it. That pretty much
necessitated SSL over such communication or the equivalent
of creating a hash of the password that’s sent over the wire
instead of the actual password. But even those techniques
didn’t solve the problem of the server securing the password,
or a secure hash of the password. Or, for that matter, keeping
you safe from replay attacks. Increasingly complex versions
of this protocol were created, to the point where you could,
with some degree of confidence, say that you were safe from
man-in-the-middle attacks or replay attacks.

Users created a simple, easy to remember password, and
brute force techniques guessed those passwords. So we
came up with complex requirements for passwords, such
as your password must contain an upper case, lower case,
special character, and minimum length—and yet people still
picked poor passwords. When they didn’t pick poor pass-
words that were easy to remember, they would reuse pass-
words across different systems. Or they would use password
managers to store their passwords, until the password man-
ager itself got compromised.

But even then, you’re not safe from passwords being leaked.
Worse, leaked passwords are not detected—you don’t know
if your password has been leaked until the leak is discov-
ered. And these leaks could occur on a poorly implemented
service. This means, no matter what you do, you’re still in-
secure.

Don’t Despair
There are solutions. There are concepts like MFA or one-
time passwords that can be used in addition to your usual
password. This is what you’ve experienced when you enter
a credential, but in addition, you have to enter a code sent
to you via SMS or from an authenticator app on your phone.

MFA and one-time passwords are great. In fact, I’d go to the
extent of saying that if there’s a service you‘re using that
uses only username password, just assume it’s insecure, and
don’t use it for anything critical. Additionally, pair it with
common-sense practices like own your domain name, and a
separate email address from your normal use email address
for account recovery. Secret questions and answers that
aren’t easy to guess, and answers that don’t make sense
to anyone.

As great as MFA and one-time passwords are, they’re still
not a perfect picture. There are a few big issues with this
approach.

First, they are cumbersome to manage for the end user. I
work with this stuff on a daily basis, and I find it frustrating
to manage 100s of accounts, multiple authenticator apps,
and I worry that if I ever broke my phone accidentally, I’d

be transported to neanderthal times immediately. I can’t
imagine how a common non-technology-friendly person
deals with all this.

Second, MFAs and one-time passwords are both cumbersome
and expensive for the service provider. All those SMS messag-
es and push notifications cost money. This creates a barrier to
entry for someone trying to get a service off the ground. Then
there’s the question of which authenticator app to trust and
whether that app be trusted. Is SMS good enough?

Third, there’s the issue of phishing. As great as MFA is,
someone can set up a service that looks identical to a legit
service, and unless you have very keen eyes watching every
step, you may fall for it. Unfortunately, even the best of us
is tired and stressed at times, and that’s when you fall for
this. In fact, the unscrupulous service that pretends to be a
legit service could simply forward your requests to the legit
service after authentication while stealing your session. So
you may think everything is hunky dory but your session has
effectively been stolen.

Finally, there is authentication fatigue. Hey, I just want to
login and use a system. Zero trust dictates that you assume
a breach, so it’s common for services to over-authenticate.
This creates authentication fatigue, and an already fatigued
user could blindly approve an MFA request, especially if it’s
cleverly disguised. It only takes one mistake for a hacker to
get in the house, then they can do plenty of damage, poten-
tially remaining undetected for a long time.

What am I Trying to Solve?
I’m not trying to secure passwords or make a better MFA so-
lution here. The fundamental problem I wish to solve here is
how an application can securely trust a user’s identity, such
that the identity is not cumbersome to manage, is secure,
convenient, and not stealable.

Let’s refine this problem further. The problem I’m really
trying to solve is that a user goes through a registration
process, typically the first time you encounter the user. The
next time the user shows up on the application, you want to
make sure it’s the same person behind the user ID. You want
to do so with 100% confidence, and you want to do so with
relative ease for users and the application.

If you had a clean slate to architect this with the technology
available today, how would you do it?

Imagine if, during registration, the user generates a key
pair. This is a typical certificate. There’s a private key, and
there’s a public key. With the private key, you can sign stuff,
you can encrypt stuff, but you never share that private key.
You can keep the private key in your private possession for-
ever. But the public key is public information. With the pub-
lic key, you can only decrypt or verify the signature.

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting with
fellow geeks in real time.
His talks and trainings are
full of humor and practical
nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

9codemag.com FIDO2 and WebAuthn

Protocols
The overall concept sounds great, but if various services
don’t speak a common language, this concept will never
gain foothold. This is why this concept has been solidified as
protocols. Like anything else in identity, protocols around
this concept have been evolving.

The word “FIDO” comes from the FIDO alliance, which is the
organization pushing for this standard. You can check them
out at https://fidoalliance.org. If you check out their web-
site, you’ll see them describe specs on UX guidelines around
strong authentication, but more interestingly, they talk of
specific specs such as FIDO universal second factor (FIDO
U2F), FIDO universal authentication framework (UAF), and
FIDO2, which includes W3C’s Web authentication (WebAu-
thn) spec, and FIDO client-to-authenticator protocol (CTAP).

All right, that was a lot of acronyms I just threw at you. Let’s
break it down in Figure 2. FIDO2 is the umbrella term of
what I’m concerned with here. When the user needs to reg-
ister or authenticate, they interact with an external authen-
ticator or a platform authenticator. An external authentica-
tor could be a USB key, such as a YubiKey. It looks just like
USB flash storage but may have additional biometric protec-
tion on it. Or the user could use a platform authenticator,
such as FaceID, TouchID, Windows Hello, etc. When the user
interacts with a relying party (the service you are trying to
access), it uses a protocol called WebAuthn.

Registration Process
When a user first lands on a site, they create an account.
This is called the registration process. Here’s how it would
work if you were to do this under the FIDO2 protocol.

The user lands on the site, and says, “hey, I want to register
a key.” The server then generates a challenge, a random
string, and passes it over TLS to the user along with a bunch
of other information. A critical part of this information is
the relying party ID. The relying party ID must match the
TLD or top-level domain of the site the user is on. This is
verified with the SSL cert being used by the server. Once the
client has verified the identity of the server, the client then

During registration, you generate a key pair that’s unique
for the service, and the public portion of that key pair is
shared with the service. The server then stores it securely
and connects it with this particular user (you).

Next time you wish to authenticate, the server generates a
challenge that’s just a random string. This challenge is com-
municated over to the user securely over HTTPS. This chal-
lenge is encrypted or signed by you using your private key
that’s unique to this service. This encrypted or signed string
is now sent back to the service. The service can now validate
the signature via the public key associated with the user.

This sounds like something that could work, but a few inter-
esting things happened here. At no point was the private key
communicated anywhere except on your device. As you’ll see
later in this article, there are plenty of hardware devices that
allow for the storage of this private key securely.

There’s also no need for a cumbersome MFA prompt or the
maintenance of it. There’s also no risk of SMS spoofing or
your phone number rolling over to the next subscriber.

There’s no additional cost for the service to send MFA
prompts. The service just needs to remember a mapping of
the public key with the user, so it’s no worse than remem-
bering a password. This can be paired with existing MFA
techniques, if you choose to do so.

Sounds like we’re on to something interesting here. Let’s
dig further.

Hardware Support
I’ve boiled the problem down to the much simpler problem
of keeping your private keys secure. The good news is that
there exists a lot of interesting hardware to help you do so.
These look like USB keys, or even NFC keys, that securely
store your private keys. An example of this key is a YubiKey,
as shown in Figure 1.

These private keys require some interaction from the user to
extract the private key briefly when it is needed. Addition-
ally, you now see things like trusted platform module (TPM)
requirements baked into Windows 11 and MacOS/iOS, sup-
porting things like TouchID on Macs and FaceID on phones,
which, paired with secure enclaves, give you a pretty neat
solution around storing these keys securely in iCloud.

The Apple ecosystem moves faster because they have full con-
trol on the end-to-end story, and it also helps that they make a
phone. I’m particularly excited about the possibility of roaming
these keys using iCloud. What this means for the end user is
that they just use their devices as they normally do. They don’t
need to carry a separate dongle or device or risk losing it. And
yet they gain the convenience of never having to bother with a
password while remaining secure. This is the holy grail of securi-
ty—security and convenience, so users won’t try to work around
inconveniences. All this is pretty new at the time of writing this
article; the support for this technology was introduced in iOS 15
and future versions of OSs will improve this and make it more ac-
cessible. I’m quite excited about where this is headed.

Hardware aside, you probably need a common understand-
ing of protocols for this standard to be implemented, right?
Let’s talk about that next.

Figure 1: YubiKeys

Figure 2: FIDO2 and its moving parts

10 codemag.com

Why are there multiple credential IDs? It’s because you want
to support more than one key per user, just in case one key
gets lost. Or perhaps one key lends you a greater level of
access than the other.

The user now receives the challenge. At this point, the
user’s computer verifies the server identity, and uses the
credential ID to find the appropriate key. It then increments
the counter so it stays in synch with the server, and it signs
the challenge using the private key.

This challenge is then communicated back to the server,
which then verifies the signed challenge with the public key,
and increments the counter. This entire process can be seen
in Figure 4.

Set Up FIDO2 Auth in Azure AD
Many websites support FIDO2. Microsoft has been a promi-
nent participant in this ecosystem as well, along with
Google, AWS and many others. Azure AD fully supports
FIDO2 authentication for its users. This means that if your
application uses Azure AD for authentication, you can
make use of FIDO2 easily today. Additionally, you can also
lock down access to critical resources such as the Azure
Portal or Office 365 using FIDO2. Strong Auth that’s con-
venient for users is a win for everyone. If users use FIDO2,
they are less susceptible to MFA fatigue and accidentally
completing the MFA challenge. They’re also more secure
as a result.

Let’s see how you can go about setting up FIDO2 authentica-
tion in Azure AD. To follow through these steps, you’ll need
a physical FIDO2 key. I’m using a YubiKey.

Start by logging into the Azure Portal at portal.azure.com
as a tenant admin, and then navigate to the Azure Active Di-
rectory blade. In that blade, look for Security, and navigate
to Authentication Methods. Here, under policies, choose
FIDO2 security key, and choose to enable it for select us-
ers. As you can see in Figure 5, I’ve chosen to enable it for
testuser10.

generates a public-private key pair. The private key is never
sent over the wire. But the public key, along with the signed
challenge, is sent back to the server. Along with this, it also
sends a credential ID generated by the security key.

The server then verifies the signed challenge with the public
key. If it passes signature verification, the server then stores
the credential ID and the public key, and sets the counter
to zero. Every time an authentication is performed, this
counter increments, to prevent the cloning of keys. There
should be only one instance of the key in the wild, and if
the counter isn’t sequential, authentication is denied. This
entire process can be seen in Figure 3.

Authentication Process
At a later time, the user lands on the site and wishes to au-
thenticate themselves. The server communicates back to the
user a randomly generated challenge, which is just a string,
and a list of credential IDs for the user.

Figure 3: The registration process

Figure 4: The authentication process

Figure 5: Enabling testuser10 to use FIDO2 as an authentication method

FIDO2 and WebAuthn

11codemag.com

In my case, I use this key for numerous purposes, so it’s
locked with a PIN. As soon as I plug it in, I’m asked to enter
the PIN. Once I do that, the browser then asks me if I wish
to use this key with the given website, which is, in this case,
login.microsoftonline.com. Although it’s not very difficult
to build FIDO2 authentication right on your website, most

Note that, optionally, you can configure FIDO2 at the tenant
level under the Configure tab in the same area. This can be
seen in Figure 6. There are a number of settings here, and
you can allow users to set up FIDO keys themselves. The other
option is for an admin to set these keys for the user. You can
choose to enforce attestation or not. Usually, attestation is
useful in enterprise scenarios where you want to disallow cer-
tain keys from being used. However, using any key is better
than a username password, so it’s okay to leave this set to
“no”. You can restrict keys to certain well-known keys, so us-
ers don’t just buy their own keys and start registering them.
You’d do this by adding AAGUIDs of the keys. This creates a
huge management overhead, but it’s incredibly secure.

As you can see from Figure 6, I’ve allowed self-service set
up. Also, as you can see from Figure 5, I’ve enabled testus-
er10 to use FIDO2 as an authentication method. In a rela-
tively modern browser (I’m using Chrome), in a non-private
window, visit https://myprofile.microsoft.com and sign in
as the user you’ve enabled FIDO2 authentication for. In my
case, that’s testuser10@sahilmalikgmail.onmicrosoft.com.
Note that you may already have MFA enabled on this user, Figure 6: Configure FIDO2 settings at the tenant level.

Figure 7: Add an authentication method for the user.

Figure 8: Security key type

and that’s okay—one user can have numerous authentica-
tion methods.

Once signed in, visit the “Security” section and click on Add
method, as shown in Figure 7.

When prompted, choose Security key as the authentica-
tion method you’d like to use, and click Add. You’ll then be
prompted to pick what kind of device you wish to use. This
can be seen in Figure 8.

I have a USB-C YubiKey, so I’ll pick “USB device”. Next, I’m
shown a message saying that I should have my key ready,
and when prompted, plug in the key and touch the key’s
sensor or button to finish setting it up. As soon as I click
Next, I’m redirected to a new window to finish set up.

Here, Azure AD shows you a message, but the real authen-
tication dance is built into the browser using the WebAuthn
protocol. The browser now prompts you to plug your security
key in. This can be seen in Figure 9.

FIDO2 and WebAuthn

12 codemag.com

identity providers already support this, and delegating this
responsibility to them is usually what we do these days any-
way. This can be seen in Figure 10.

To allow this key to be used with login.microsoftonline.com,
you now have to touch the key. This proves physical posses-
sion of the key. Remember: The key, if cloned, can easily be
detected using an ever-increasing counter.

As soon as I touch the key, I’m shown a third prompt, asking
me if I allow the site (in this case AAD), to see the details of
my key. Say Allow. This can be seen in Figure 11.

What’s interesting is that all this was built right into the
browser. AAD has been patiently waiting for your key to be
registered before moving further. At this point, your key is
registered, and AAD asks you to name it. Giving it a mean-
ingful name, I called mine SahilKey, and I soon see a mes-
sage confirming that the key is ready for use. This can be
seen in Figure 12.

Now let’s see the sign-in experience.

Go ahead and sign out from myprofile.microsoft.com.
You can do so by clicking the person-like icon on the top
right-hand corner and choosing Signout. Now relaunch the
browser, and visit any site protected by the same AAD. I’ll
just use myprofile.microsoft.com again. Enter your user-
name, (testuser10 in my case), and pick “Sign in with Win-
dows Hello or a security key.”

Here’s a pet peeve. I’m on a Mac, and this system should be
smart enough to not confuse the user with “Windows hello”
on a Mac. But I digress.

I do have a security key, so I’ll click on that link. Chrome
now shows me a bunch of options to sign in using. This can
be seen in Figure 13.

The exact list you see may be different. You may also be
prompted for Bluetooth permissions at this point. I intend
to use a USB YubiKey, so I pick USB security key. Now
Chrome takes you through a simple sign-in process that in-
volves touching the key, entering a PIN, and boom, you’re
signed in.

See how easy that was? Not only that, when I signed in us-
ing FIDO2, I didn’t have to enter a password or remember a
password, and the server’s workload is also greatly reduced.
Plus, I never sent anything sensitive over the wire. It’s a
win-win for all.

What if you lose the key? Well, you can always fall back to
a back-up authentication method, such as an authenticator
app in Azure AD. However, it’s also not atypical to register
more than one security key.

Summary
Passwords suck and I hate dealing with them. I like MFA, but
it’s so inconvenient to deal with MFA sometimes. FIDO2 is
supported by a number of organizations. And it really sim-
plifies the log-in process while keeping my credentials se-
cure. Some of the places I use FIDO2 already are Facebook,
Twitter, GitHub, my Azure and Google accounts, plus a few
others. If you wish to see who supports FIDO2, visit www.

Figure 10: Chrome prompting you if you
wish to use your FIDO2 key with AAD

Figure 11: Sending information about the key

Figure 12: FIDO2 key is ready for use with AAD.

Figure 9: Chrome prompts you to plug your key in.

FIDO2 and WebAuthn

13codemag.com

dongleauth.info. You’d be pleasantly surprised to see how
many sites already support FIDO2.

No doubt this identity and security space will continue to
evolve, but everyone has, at this point, unanimously agreed
to kill passwords. If username password is your line of de-
fense, I have bad news for you.

FIDO2 keys aren’t perfect. There’s a physical key that you
must carry. But with platform authenticators, and technolo-
gies such as FaceID that are better at identifying individuals
than fingerprints, the keys really are very compelling argu-
ment.

The best part is that almost every major identity provider
already supports it, and it’s not hard to set up. If I use a
username password as the only protection on a website, I
just assume it to be insecure. I won’t use anything useful
if it at least doesn’t support MFA. But MFA is inconvenient.
So if a site gives me the option to use FIDO2 keys, that’s my
solution.

How about you? Do you have any critical sites that you use
just username password on?

Figure 13: Many ways to sign in.

®

 The Smart Choice for Text
Retrieval® since 1991

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Developers:
• SDKs for Windows, Linux, macOS
• Cross-platform APIs cover C++, Java

and recent .NET (through .NET 6)
• FAQs on faceted search, granular data

classification, Azure, AWS and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Instantly Search
Terabytes

� Sahil Malik
�

FIDO2 and WebAuthn

14 codemag.comYARP: I Did It Again

ONLINE QUICK ID 2209031

YARP: I Did It Again
With developers becoming increasingly comfortable with microservices, reverse proxies have gained visibility. Inside
Microsoft, someone noticed that a number of teams were building reverse proxies for their own projects. Luckily, someone
realized that a single, reusable reverse proxy would be something that we could all benefit from. This led them to release

“Yet Another Reverse Proxy” or YARP. Let’s talk about what
reverse proxies are and how YARP works.

This bring us to two important questions: “What is a Reverse
Proxy?” and “How do I create a reverse proxy?”

What’s a Reverse Proxy?
If you’re like me, the word “proxy” is an overloaded term.
In different contexts, the word proxy means something dif-
ferent to different people. In this case, I’m talking about a
server that’s an intermediary between the caller and the re-
ceiver of a networking call (usually HTTP or similar). Before
you can understand a reverse proxy, let’s talk about forward
proxies (or proxy servers, as you might be familiar with).

A proxy server is a server that takes requests and re-exe-
cutes the call to the Internet (or intranet) on behalf of the
original caller. This can be used for caching requests to im-
prove speed of execution or for filtering content (as well
as other reasons). In Figure 1, you can see a typical proxy
server diagram.

A reverse proxy is very much like a proxy server, but, not
too surprisingly, in reverse. Instead of intercepting calls go-
ing outside the Internet/intranet, a reverse proxy intercepts
calls from the outside and forwards them to local servers.
Often the proxy server is the only accessible server in this
scenario. If you look at Figure 2, you can see that all calls
come into the reverse proxy. Often the caller has no idea
that there’s a reverse proxy.

Now that you have a general idea of what a reverse proxy is,
let’s talk about the why of reverse proxies.

Do I Need a Reverse Proxy?
Many projects have no need for a reverse proxy. You should
learn about them anyway, because it’s another arrow in your
development quiver to use when you need it. The use-case
for using a reverse proxy is fairly well defined. The reverse
proxy can be used in microservice scenarios where you don’t
want individual clients to know about the naming or topol-
ogy of your data center.

Reverse proxies are not only helpful in those microservices
projects. Here are some other reasons to use a reverse proxy:

•	 Service gatekeeping
•	 Load balancing
•	 SSL termination
•	 Security
•	 URL writing

Although you might want to use a reverse proxy for all of
these reasons, you don’t need all of these services. Use a
reverse proxy in the way your application works. You can use
reverse proxies as a product (e.g., CloudFlare) or built into
your own projects.

Let’s look at a new support in .NET projects called YARP.

Using YARP
The most obvious use-case for many of you reading this ar-
ticle is to use a reverse proxy to provide an API gateway for
microservices. A reverse proxy can expose a server that rep-
resents a single surface area for requests. The details of how
the service is implemented and where the actual service re-
sides are made opaque to the actual clients. This is what I call
service aggregation. In this case, a reverse proxy is used to
accept calls from clients and then pass them off to the under-
lying service (or cluster of services). This allows you to change
the composition of the microservice without breaking clients.

You can use service aggregation to marry disparate systems
without having to rewrite or change the underlying tech-
nology. For example, you might have a Java system from
an acquisition, a .NET project that’s built in-house, and a
Python machine learning project that you have to integrate.
By using a reverse proxy, you can create a union of all these
services to provide a single API service area for these differ-
ent technologies.

Now that you’ve seen a bit about what a reverse proxy is,
let’s see how to implement a reverse proxy it in a .NET Core
project using the YARP library. To get started, you need any
ASP.NET Core project. Let’s create an empty project (calling
it DidItAgain.Proxy):

> dotnet new web -n DidItAgain.Proxy

To use YARP, you just need to add the NuGet package:

> dotnet add package Yarp.ReverseProxy

Once installed, you can wire the middleware. First, you need
to add the reverse proxy services and configure it:

var bldr = WebApplication.CreateBuilder(args);

bldr.Services.AddReverseProxy();Figure 1: Proxy server

Shawn Wildermuth
shawn@wildermuth.com
wildermuth.com
twitter.com/shawnwildermut

Shawn Wildermuth has
been tinkering with com-
puters and software since
he got a Vic-20 back in the
early ’80s. As a Microsoft
MVP since 2003, he’s also
involved with Microsoft
as an ASP.NET Insider and
ClientDev Insider. He’s
the author of over twenty
Pluralsight courses, written
eight books, an interna-
tional conference speaker,
and one of the Wilder
Minds. You can reach
him at his blog at
http://wildermuth.com.
He’s also making his first,
feature-length documentary
about software developers
today called “Hello World:
The Film.” You can see
more about it at
http://helloworldfilm.com.

15codemag.com YARP: I Did It Again

 "Path": "/api/customers/{**catch-all}"
 }
 }
}

A route (named CustomerRoute in this example) is a set of
rules for matching the request and pointing to a Cluster via
the ClusterId. In this example, the route matches calls to
the proxy server that start with /api/customers/ and di-
rects them to the customer Cluster. Routes can match based
on various criteria:

•	 Path (like you’ve just seen)
•	 Headers
•	 Query string parameters
•	 HTTP method
•	 Host name

This gives you a lot of control over how the reverse proxy
matches URIs to other computers. Although typically used
as a façade to your own servers, it can be used to proxy to
wherever you want.

Programmatic Configuration
Although using the configuration file is a common way to
configure the proxy server, often you want to have a data-
driven approach or integrate the proxy with a service discov-
ery service (e.g., the Microsoft Tye project). To supply the
configuration file, you’ll need to create a class that imple-
ments the IProxyConfigProvider interface:

public class YarpProxyConfigProvider
 : IProxyConfigProvider
{
 public IProxyConfig GetConfig()
 {
 return new YarpProxyConfig();
 }

}

As you can see, you first add the proxy service dependencies
with AddReverseProxy. You need to configure it, but I’ll get
to that soon. Before you do that, let’s add the middleware:

var app = bldr.Build();

app.MapReverseProxy();

app.MapGet("/", () => "Hello World!");

app.Run();

Configuring the Reverse Proxy
In YARP, the reverse proxy needs to know what the pattern
is that you’re looking for in requests and where to pass the
requests to. It uses the term Routes for the request patterns
and uses Clusters to represent the computers(s) to forward
those requests. This means that you need a way of providing
the proxy with a set of Routes and Clusters. The most direct
is to use a section in your configuration files:

var proxy = bldr.Services.AddReverseProxy();
proxy.LoadFromConfig(
 bldr.Configuration.GetSection("Yarp"));

By calling the LoadFromConfig, the proxy expects a section
that conforms to the schema of the proxy configuration. It
doesn’t matter what you call the section, as long as it’s a
set of Routes and Clusters. For example, here’s the general
structure of the configuration section:

{
 ...
 "Yarp": {
 "Routes": {
 ...
 },
 "Clusters": {
 ...
 }
 }
}

Let’s start with the Cluster:

"Clusters": {
 "CustomerCluster": {
 "Destinations": {
 "customerServer": {
 "Address": "https://someurl.com/"
 }
 }
 }
}

A Cluster (named CustomerCluster) is just a destination
for an endpoint server(s). Note that there could be multiple
destinations and each could use different semantics to de-
termine where to locate an endpoint server and transform
it. Requests typically keep their paths and append them to
the address. This is typically matched with a Route:

"Routes": {
 "CustomerRoute": {
 "ClusterId": "CustomerCluster",
 "Match": {

Figure 2: Reverse proxy

16 codemag.com

You can see that the interface has three members. The Routes
and Clusters return a list of the Route and Clusters (with the
same structure you see in the config file above). The ChangeTo-
ken is used to notify the system of changes to the configura-
tion, if needed. Creation of the clusters looks like you’d expect:

private List<ClusterConfig> GenerateClusters()
{
 var collection = new List<ClusterConfig>();
 collection.Add(new ClusterConfig()
 {
 ClusterId = "FirstCluster",
 Destinations =
 new Dictionary<string, DestinationConfig>{
 {
 "server",
 new DestinationConfig()
 {
 Address = "https://someserver.com"
 }
 }
 }
 });
 return collection;
}

Although I’m hard-coding the configuration (which is re-
ally not any better than configuration files), you could use
code to determine how the clusters should be configured.
It’s similar to create routes:

private List<RouteConfig> GenerateRoutes()
{
 var collection = new List<RouteConfig>();
 collection.Add(new RouteConfig()
 {
 ClusterId = "FirstCluster",
 Match = new RouteMatch()
 {
 Path = "/api/foo/{**catch-all}"
 }
 });

 return collection;
}

Again, this should look a lot like the configuration file ex-
ample. There’s a difference in how you wire-up the services
for the reverse proxy:

using DidItAgain.Proxy;
using Yarp.ReverseProxy.Configuration;

var bldr = WebApplication.CreateBuilder(args);

bldr.Services.AddTransient<IProxyConfigProvider,
 YarpProxyConfigProvider>();

bldr.Services.AddReverseProxy();

var app = bldr.Build();

Notice that you’re adding your provider into the services
collection and adding the reverse proxy. When it’s con-
structed, it queries for the proxy config provider on its own
and finds yours.

The provider requires you to implement a class that repre-
sents the IProxyConfig interface. Although this interface is
simple, the IProxyConfig is where the building up of the
configuration happens. For example:

public class YarpProxyConfig : IProxyConfig
{
 readonly List<RouteConfig> _routes;
 readonly List<ClusterConfig> _clusters;
 readonly CancellationChangeToken _changeToken;
 readonly CancellationTokenSource _cts =
 new CancellationTokenSource();

 public YarpProxyConfig()
 {
 _routes = GenerateRoutes();
 _clusters = GenerateClusters();
 _cts = new CancellationTokenSource()
 _changeToken = new
 CancellationChangeToken(_cts.Token);
 }

 public IReadOnlyList<RouteConfig> Routes
 => _routes;
 public IReadOnlyList<ClusterConfig> Clusters
 => _clusters;
 public IChangeToken ChangeToken =>
 _changeToken;
}

Advertisers Index

CODE Consulting
	 www.codemag.com/code� 7

CODE Consulting
	 www.codemag.com/onehourconsulting� 75

CODE Legacy Modernize
	 www.codemag.com/modernize� 69

CODE Legacy Beach
	 www.codemag.com/modernize� 76

Component Source
	 www.componentsource.com/compare� 19

DevIntersection
	 www.devintersection.com� 2

dtSearch
	 www.dtSearch.com� 13

LEAD Technologies
	 www.leadtools.com� 5

Live on Maui
	 www.live-on-maui.com� 61

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

YARP: I Did It Again

17codemag.com

 "SessionAffinity": {
 "Enabled": true
 }
}

This tracks affinity with a cookie, although you can change
the behavior to use a header instead, as well as adding
other parameters. By using these two options of the clus-
ter, you can control the behavior of load balancing in the
reverse proxy.

To enable load balancing or session affinity, you’ll need to
opt in during the mapping of the proxy server:

app.MapReverseProxy(opt => {
 opt.UseLoadBalancing();
 opt.UseSessionAffinity();
});

With this, you can add only the features you want to use.

SSL Termination
Most of the websites that you visit use SSL now to ensure
end-to-end encryption of any data. This is a good thing. A
reverse proxy has this option to do something called SSL
Termination. This is just a fancy name for not using SSL in-
side a data center. As you can see in Figure 4, the SSL call
terminates with the proxy server.

SSL Termination allows you to decide whether you need en-
cryption to call the proxied servers. Often, within a data
center (or cluster), requests are forwarded without SSL so
that you can avoid having to manage certificates for each
server cluster. Whether you use SSL is just a matter of what
the cluster destination URL is:

"Clusters": {
 "CustomerCluster": {
 "Destinations": {
 "customerServer": {

Now that you’ve seen how to configure it, let’s talk about
how to configure the proxy for different features. From now
on, I go back to the configuration file because it’s easier to
show you how the Clusters and Routes are defined.

Load Balancing
An important use of reverse proxies is to provide general-
ized load balancing. Again, this allows the reverse proxy to
forward requests to more than one server that supplies a
specific service. Now you can scale out transparently to the
clients of your service(s). Although load balancing is avail-
able as a service in many cloud-deployed solutions, in some
cases, you’d want more control over it (or you’d use the load
balancing support indirectly).

When I say load balancing, I don’t mean just sharing load
between servers. There are different strategies to load bal-
ancing. For example, Figure 3 shows a typical round-robin
load balancing where calls are passed off to different serv-
ers in a linear fashion.

There are more strategies for load balancing, but this is
probably the most common scenario.

To implement load balancing, you need to specify the load
balancing type in the cluster:

"CustomerCluster": {
 "Destinations": {
 "customerServer1": { ... },
 "customerServer2": { ... }
 },
 "LoadBalancingPolicy": "RoundRobin"
}

The supported policies are:

•	 PowerOfTwoChoices (default): Picks two random des-
tinations and picks the one with the least number of
requests.

•	 FirstAlphabetical: Picks the next destination based
on name (useful for failover instead of sharing load).

•	 Random: Picks a random server without regard for
load.

•	 RoundRobin: Picks a server by going in order without
regard for load.

•	 LeastRequests: Picks a server based on the small-
est number of requests, but does require that it scan
through each destination. This is the slowest but has
the highest likelihood of dealing with overloaded
servers.

Although load balancing can help you achieve scalability,
it doesn’t do this by knowing about your servers. If you’re
completely stateless in those servers, just using the load
balancing policy is all you need. But sometimes you have
state (e.g., server state or session state) on the servers and
need to lock a client to a server once it’s been picked. To do
this, you can enable SessionAffinity:

"CustomerCluster": {
 "Destinations": {
 "customerServer1": { ... },
 "customerServer2": { ... }
 },
 "LoadBalancingPolicy": "RoundRobin",

Figure 3: Round Robin Load Balancing

YARP: I Did It Again

18 codemag.com

Source Code

The source code can
be downloaded at https://
github.com/wilder-minds/
yarp-code-magazine

 "ClusterId": "CustomerCluster",
 "Match": {
 "Path": "/api/customers/{**catch-all}"
 },
 "Transforms": {
 "PathPattern":
 "/api/v2/customers/{**remainder}"
 }
 }
},

In this case, it replaces the path with a new URL and any-
thing in the catch-all is added as the suffix. In this example,
the transform could be used to redirect to a versioned API.
The types of transforms include:

•	 Path prefix: Supports removing or adding a prefix to
the request path.

•	 Path set: Replaces a path with a static path.
•	 Path pattern: Like the example, allows you to use pat-

tern matching to recreate the endpoint URL.
•	 Query strings: Add, remove, or convert query strings

to other parts of the request (path, query string, or
header).

•	 HTTP method: Allows you to change the HTTP method
before it’s sent to the endpoint server.

•	 Headers: Allows you to have complex changes to
headers that are added/removed before a request is
sent to the endpoint server.

With the transformation support, you can really control how
the requests are formatted when you’re forwarding the re-
quest to the endpoint server.

Where Are We?
I hope, at this point, that you’ve seen the benefit of using a
proxy server and, by extension YARP. This utility server can
be plugged into your architectures to solve a series of dif-
ferent problems. I hope you find that YARP is easy to add to
a server and easy to configure.

 // http for no SSL or https for SSL
 "Address": "http://someurl.com/"
 }
 }
 }
}

Security
In most cases, you don’t have to do anything special to en-
able security through the proxy server. If UseAuthentica-
tion and/or UseAuthorization are enabled, the proxy server
forwards most credentials to the endpoint servers. Let’s
look at different types of authentication types:

•	 Cookies, Bearer Tokens, API Keys: As they are part of
the request, they’ll be forwarded.

•	 OAuth2, OpenIdConnect, WsFederation: As long as
they are configured as cookies, they flow through to
the endpoint servers.

•	 Windows, Negotiate, NTLM, Kerberos: These au-
thentication schemes are network connection based.
Because the connection is through the reverse proxy,
they aren’t supported in YARP’s reverse proxy.

In most cases, authentication flows through to the endpoint
servers. I’d be consistent with testing your authentication
schemes, though.

URL Rewriting
In some cases, you may want to change the URL before it’s
sent to the endpoint server. The reasons for this vary, but
one common case is to allow for a change to the API with-
out having to change the endpoint API server’s syntax. To
do this, you’ll want to introduce transforms into the con-
figuration. Transforms are added to the Routes so that it
is transformed before passing it to a Cluster. For example,
if you need to change the URL path, you can do it with a
transform:

"Routes": {
 "CustomerRoute": {

Figure 4: SSL Termination

� Shawn Wildermuth
�

YARP: I Did It Again

20 codemag.comSimplifying ADO.NET Code in .NET 6: Part 2

ONLINE QUICK ID 2209041

Simplifying ADO.NET Code in .NET 6:
Part 2
In the last article (Simplifying ADO.NET Code in .NET 6: Part 1), you wrote code to simplify ADO.NET and map columns to
properties in a class just like ORMs such as the Entity Framework do. You learned to use reflection to make creating a collection
of entity objects from a data reader and take advantage of attributes such as [Column] and [NotMapped]. In this article, you’re

going to refactor the code further to make it even more
generic. In addition, you’ll learn to get data from a view, get
a scalar value, handle multiple result sets, and call stored
procedures.

Refactor the Code for Reusability
In the last article (CODE Magazine, July/August 2022), you
added methods to the ProductRepository class to read prod-
uct data from the SalesLT.Product table in the Adventure-
WorksLT database. If you look at this code, all of it is com-
pletely generic and can be used for any table. As such, this
code should be moved to a base class from which you can
inherit. You can then have a ProductRepository, Customer-
Repository, EmployeeRepository, and other classes that can
all inherit from the base class yet add functionality that’s
specific for each table.

Create a Repository Base Class
Right mouse-click on the Common folder and create a new
class named RepositoryBase and add the code shown List-
ing 1. Notice that the properties are the same as what you
previously added to the ProductRepository class. The con-
structor for this class must be passed the generic Databas-
eContext class. After setting the DbContext property, the
Init() method is called to initialize all the properties to a
valid start state.

Add Search() Method Just for Products
Add a Search() method to the RepositoryBase class just be-
low the Init() method. This method is different from the
Search() method previously written in the ProductReposito-
ry class because it removes the using around the SqlServer-
DatabaseContext.

public virtual List<TEntity>
C Search<TEntity>() {
 List<TEntity> ret;

 // Build SQL from Entity class
 SQL = BuildSelectSql<TEntity>();
 // Create Command Object with SQL
 DbContext.CreateCommand(SQL);
 // Get the list of entity objects
 ret = BuildEntityList<TEntity>
 (DbContext.CreateDataReader());

 return ret;
}

You now need to move the BuildEntityList(), BuildCollumn-
Collection() and the BuildSelectSql() methods from the
ProductRepository class into this new RepositoryBase class.

Simplify the Product Repository Class
Now that you have a RepositoryBase class with all of the
methods moved from the ProductRepository class, you can
greatly simplify the ProductRepository class by having it
inherit from the RepositoryBase class. Modify the Produc-
tRepository.cs file to look like Listing 2.

In the ProductRepository class you must accept a database
context object in the constructor because without one,
there’s no way you could interact with the Product table. A
specific Search() method is created to return a list of Prod-
uct objects in the ProductRepository class, but it simply uses
the generic Search<TEntity>() method from the Repository-
Base class.

Add Database Context Class for the
AdventureWorksLT Database
Instead of using the generic DatabaseContext or SqlServer-
DatabaseContext classes directly, it’s a better practice to
create a database context class for each database you wish
to interact with. Right mouse-click on the project and add a
new folder named Models. Right mouse-click on the Models
folder and add a new class named AdvWorksDbContext that
inherits from the SqlServerDatabaseContext class, as shown
in Listing 3.

The AdvWorksDbContext class inherits from the SqlServer-
DatabaseContext because the AdventureWorksLT database
you are interacting with is in a SQL Server. An instance of
the ProductRepository class is created in the Init() method
and exposed as a public property named Products. The Adv-
WorksDbContext is passed to the constructor of the Produc-
tRepository class because it needs the services of a database
context to perform its functions against the Product table.

Try It Out
Now that you have made these changes, let's ensure that
you can still retrieve all records from the Product table.
Open the Program.cs file and add a new using statement at
the top of the file.

using AdoNetWrapperSamples.Models;

Remember that you removed the using from the Search()
method in the RepositoryBase class? You’re now going to
create the using wrapper around the AdvWorksDbContext
class to have all objects disposed of properly once you’ve
retrieved all records.

Remove all the lines of code from where you create the
ProductRepository class and the call to the Search() meth-
od. Add in the code shown in the snippet below. You can
now see the using statement that wraps up the instance

Paul D. Sheriff
http://www.pdsa.com

Paul has been in the IT
industry over 35 years. In
that time, he has success-
fully assisted hundreds
of company’s architect
software applications to
solve their toughest busi-
ness problems. Paul has
been a teacher and mentor
through various mediums
such as video courses,
blogs, articles and speaking
engagements at user groups
and conferences around
the world. Paul has many
courses in the www.plural-
sight.com library (http://
www.pluralsight.com/
author/paul-sheriff) on
topics ranging from .NET 6,
LINQ, JavaScript, Angular,
MVC, WPF, ADO.NET, jQuery,
and Bootstrap. Contact Paul
at psheriff@pdsa.com.

21codemag.com Simplifying ADO.NET Code in .NET 6: Part 2

of the AdvWorksDbContext class. This code should look fa-
miliar if you have used the Entity Framework (EF), as this
is typically how you interact with DbContext classes you
create with EF.

using AdvWorksDbContext db = new(ConnectString);

List<Product> list = db.Products.Search();

Console.WriteLine("*** Get Product Data ***");
// Display Data
foreach (var item in list) {
 Console.WriteLine(item.ToString());
}
Console.WriteLine();
Console.WriteLine(
 $"Total Items: {list.Count}");
Console.WriteLine();
Console.WriteLine(
 $"SQL Submitted: {db.Products.SQL}");
Console.WriteLine();

Run the console application and you should see the com-
plete list of product objects displayed. In addition, you
should see the SQL statement submitted by the classes you
created in this article.

Searching for Data
In addition to retrieving all records, you probably want to
add a WHERE clause to filter the records based on some
condition. For example, you might wish to locate all Prod-
uct records where the Name column starts with a specific
character and the ListPrice column contains a value greater
than a specific value. You want to have the wrapper classes
generate a SQL statement that looks like the following.

SELECT * FROM SalesLT.Product
WHERE Name LIKE @Name + '%'
 AND ListPrice >= @ListPrice

You need to add some new functionality to create this SQL
statement. You need to pass in values to fill into the @
Name and @ListPrice parameters. You also need to specify
what the operators (=, LIKE, or >=) are for each expression.
For example, you need to put a LIKE operator for the @
Name parameter and a greater-than or equal-to (>=) opera-
tor for the @ListPrice parameter.

Add a Product Search Class
To pass in the values to the Search() method, create a
class to hold the parameters you wish to use for the WHERE
clause. Right mouse-click on the project and add a new fold-
er named SearchClasses. Right mouse-click on the Search-
Classes folder and add a new class named ProductSearch
that looks like the code below.

#nullable disable

using AdoNetWrapper.Common;

namespace AdoNetWrapperSamples.SearchClasses;

public class ProductSearch {
 [Search("LIKE")]
 public string Name { get; set; }

#nullable disable

using AdoNetWrapper.Common;
using AdoNetWrapperSamples.Models;
using AdoNetWrapperSamples.EntityClasses;

namespace AdoNetWrapperSamples
 .RepositoryClasses;

public class ProductRepository
 : RepositoryBase {
 public ProductRepository(
 AdvWorksDbContext context)
 : base(context) { }

 public virtual List<Product> Search() {
 return base.Search<Product>();
 }
}

Listing 2: Modify the ProductRepository class to pass a Product object to the Search() method

#nullable disable

using AdoNetWrapper.Common;
using AdoNetWrapperSamples
 .RepositoryClasses;

namespace AdoNetWrapperSamples.Models;

public partial class AdvWorksDbContext
 : SqlServerDatabaseContext {
 public AdvWorksDbContext(string connectString)
 : base(connectString) { }

 protected override void Init() {
 base.Init();

 Products = new(this);
 }

 public ProductRepository Products { get; set; }
}

Listing 3: Create a DbContext class for each database you wish to interact with

#nullable disable

using System.ComponentModel.DataAnnotations
 .Schema;
using System.Data;
using System.Reflection;
using System.Text;

namespace AdoNetWrapper.Common;

public class RepositoryBase {
 public RepositoryBase(
 DatabaseContext context) {
 DbContext = context;
 Init();
 }

 protected readonly DatabaseContext DbContext;

 public string SchemaName { get; set; }
 public string TableName { get; set; }
 public string SQL { get; set; }
 public List<ColumnMapper> Columns { get; set; }

 protected virtual void Init() {
 SchemaName = "dbo";
 TableName = string.Empty;
 SQL = string.Empty;
 Columns = new();
 }
}

Listing 1: Add a base class for all the code that does not change between all repository classes

22 codemag.com

tor to use. Open the ColumnMapper.cs file in the Common
folder and add a ParameterValue property and a SearchOp-
erator property.

public class ColumnMapper {
 public string ColumnName { get; set; }
 public PropertyInfo PropertyInfo { get; set; }
 public object ParameterValue { get; set; }
 public string SearchOperator { get; set; }
}

Add Method to Build Search Column Collection
Open the RepositoryBase.cs file and add a new method
named BuildSearchColumnCollection(), as shown in List-
ing 4. This method is just like the BuildColumnCollection()
method you wrote in the last article. Create an array of Prop-
ertyInfo objects for each property in the TSearch class. Loop
through the array of properties and retrieve the value for
the current property of the search class. If the value is filled
in, create a new ColumnMapper object. Check for a [Search]
attribute and if found, see if the ColumnName and/or the
SearchOperator property exists. Override those properties
in the ColumnWrapper object if they do exist. Add the new
ColumnWrapper object into the ret variable to be returned
once all properties in the search class are processed.

Add Method to Create WHERE Clause for Searching
The next new method is used to build the actual WHERE
clause to be added to the SELECT statement. Add a new
method named BuildSearchWhereClause(), as shown in
Listing 5. Pass to this method the list of ColumnWrapper
objects created using the BuildSearchColumnCollection()
method. Iterate over the list of objects and build the WHERE
clause. Be careful when copying the code from the article as
I had to break lines in the sb.Append() due to formatting of
the article. The interpolated string belongs all on one line
with a space between each item except between the Param-
eterPrefix and the ColumnName properties.

Add Method to Create Parameters for Command Object
The last new method to build is called BuildWhereClause-
Parameters(), as shown in Listing 6. In this method, you
iterate over the same collection of ColumnMapper objects
you created in the BuildSearchColumnCollection() method.

 [Search(">=")]
 public decimal? ListPrice { get; set; }
}

Create the Name and ListPrice properties to use for search-
ing. All properties in this class should be nullable unless
you wish to require the user to enter at least one search
value prior to searching for records. All properties should be
decorated with the [Search] attribute unless you just wish
to use an equal (=) operator in the WHERE clause.

Add a Search Attribute Class
Microsoft doesn’t have a [Search] attribute, so it’s up to you
to create one. Right mouse-click on the Common folder and
add a new class named SearchAttribute, as shown in the
following code snippet.

#nullable disable

namespace AdoNetWrapper.Common;

[AttributeUsage(AttributeTargets.Property)]
public class SearchAttribute : Attribute {
 public string SearchOperator { get; set; }
 public string ColumnName { get; set; }

 public SearchAttribute(string searchOperator) {
 SearchOperator = searchOperator ?? "=";
 }
}

There are two properties needed for this attribute class,
SearchOperator and ColumnName. The SearchOperator
property is assigned to an equal sign (=) if one isn’t sup-
plied. If the ColumnName property is a null, the code you’re
going to use to create the WHERE clause will use the prop-
erty name of the search class.

Modify the ColumnWrapper Class
When building the collection of columns needed for the
WHERE clause, the process is going to be like the code used
to build the columns for the SELECT statement. However,
you’re going to need two additional items to keep track of:
the value to supply as a parameter and for the search opera-

protected virtual List<ColumnMapper>
 BuildSearchColumnCollection<TEntity,
 TSearch>(TSearch search) {
 List<ColumnMapper> ret = new();
 ColumnMapper colMap;
 object value;

 // Get all the properties in <TSearch>
 PropertyInfo[] props =
 typeof(TSearch).GetProperties();

 // Loop through all properties
 foreach (PropertyInfo prop in props) {
 value = prop.GetValue(search, null);

 // Is the search property filled in?
 if (value != null) {
 // Create a column mapping object
 colMap = new() {
 ColumnName = prop.Name,
 PropertyInfo = prop,
 SearchOperator = "=",

 ParameterValue = value
 };

 // Does Property have a [Search] attribute
 SearchAttribute sa = prop
 .GetCustomAttribute<SearchAttribute>();
 if (sa != null) {
 // Set column name from [Search]
 colMap.ColumnName =
 string.IsNullOrWhiteSpace(sa.ColumnName)
 ? colMap.ColumnName : sa.ColumnName;
 colMap.SearchOperator =
 sa.SearchOperator ?? "=";
 }

 // Create collection of columns
 ret.Add(colMap);
 }
 }

 return ret;
}

Listing 4: Create method to build collection of properties for the search columns

Simplifying ADO.NET Code in .NET 6: Part 2

23codemag.com

Add an instance of the ProductSearch class and initial-
ize the Name property to the value "C", and the ListPrice
property to be 50. Call the overloaded Search() method
you just added to the ProductRepository class and pass in
the instance of the ProductSearch class as shown in the
following code.

using (AdvWorksDbContext db = new(ConnectString));

ProductSearch search = new() {

Each time through, build a new SqlParameter object passing
in the column name and either the value to submit by itself,
or if the SearchOperator property is equal to "LIKE", you use
the value and add on a percent sign (%).

Overload Search() Method to Accept a Command Object
Add a new overload for the Search() method to accept a
Command object (Listing 7). This Search() method checks
to ensure that the Columns collection has been built from
the TEntity class. It then sets the DbContext.CommandOb-
ject property to the cmd object variable passed in. The
BuildEntityList() method is then called to create the list of
entity objects.

Modify the original Search() method to call the new overload
you just created, as shown in the following code snippet.

public virtual List<TEntity> Search<TEntity>() {
 // Build SQL from Entity class
 SQL = BuildSelectSql<TEntity>();

 // Create Command Object with SQL
 DbContext.CreateCommand(SQL);

 return Search<TEntity>(DbContext.CommandObject);
}

Overload Search() Method to Accept Search Class
Open the RepositoryBase.cs file and add another over-
loaded Search() method that takes two type parameters
TEntity and TSearch, as shown in Listing 8. After build-
ing the SELECT statement, call the BuildSearchColumnCol-
lection() method that uses the TSearch class to build a
collection of columns to be used in the WHERE clause. If
there are any search columns, call the BuildSearchWher-
eClause() to build the actual WHERE clause to add to the
SELECT statement. The SqlCommand object is built using
the new SELECT clause, and then parameters are added
with the values from the TSearch object. The SqlCommand
object is then passed to the Search() method that accepts
the command object.

Modify Product Repository Class
Now that you have the generic version of the Search()
method to accept a search entity object, you need to add a
Search() method to the ProductRespository class to accept
a ProductSearch class. Open the ProductRepository.cs file
and add a new using statement at the top of the file.

using AdoNetWrapperSamples.SearchClasses;

Add a new Search() method to the ProductRepository class
to call the Search<TEntity, TSearch>() method in the Re-
positoryBase class.

public virtual List<Product>
 Search(ProductSearch search) {
 return base
 .Search<Product, ProductSearch>(search);
}

Try It Out
Open the Program.cs file and add a new using statement at
the top of the file so you can use the ProductSearch class.

using AdoNetWrapperSamples.SearchClasses;

protected virtual string BuildSearchWhereClause
 (List<ColumnMapper> columns) {

 StringBuilder sb = new(1024);
 string and = string.Empty;

 // Create WHERE clause
 sb.Append(" WHERE");
 foreach (var item in columns) {
 sb.Append($"{and} {item.ColumnName}
 {item.SearchOperator}
 {DbContext.ParameterPrefix}
 {item.ColumnName}");
 and = " AND";
 }

 return sb.ToString();
}

Listing 5: Add a method to build a WHERE clause for searching

protected virtual void BuildWhereClauseParameters
 (IDbCommand cmd,
 List<ColumnMapper> whereColumns) {

 // Add parameters for each value passed in
 foreach (ColumnMapper item in whereColumns) {
 var param = DbContext.CreateParameter(
 item.ColumnName,
 item.SearchOperator == "LIKE" ?
 item.ParameterValue + "%" :
 item.ParameterValue);
 cmd.Parameters.Add(param);

 // Store parameter info
 Columns.Find(c => c.ColumnName ==
 item.ColumnName)
 .ParameterValue = item.ParameterValue;
 }
}

Listing 6: Add a method to build the parameters for the WHERE clause

public virtual List<TEntity>
 Search<TEntity>(IDbCommand cmd) {
 List<TEntity> ret;

 // Build Columns if needed
 if (Columns.Count == 0) {
 Columns = BuildColumnCollection<TEntity>();
 }

 // Set Command Object
 DbContext.CommandObject = cmd;

 // Get the list of entity objects
 ret = BuildEntityList<TEntity>
 (DbContext.CreateDataReader());

 return ret;
}

Listing 7: Add a Search() method that accepts a Command object

Simplifying ADO.NET Code in .NET 6: Part 2

24 codemag.com

Modify the constructor of the AdvWorksDbContext class to
pass in the current instance of AdvWorksDbContext to the
RepositoryBase class instance called Database.

public virtual void Init() {
 Database = new(this);
 Products = new(this);
}

Building Your Own Command Object
Open the Program.cs file and create a SQL string with the
same WHERE clause you created earlier (Listing 9). Create a
SqlCommand object by calling the CreateCommand() method
and pass in the sql variable. Add the parameters to the com-
mand object and pass in some hard-coded values. Call the
Search<Product>(cmd) method directly to retrieve the list of
rows in the Product table that match the search criteria.

Try It Out
Run the console application and you should see three prod-
ucts displayed, as shown in Figure 2.

Retrieve Data from a View
Now let's retrieve the data from a view in the Adventure-
WorksLT database named vProductAndDescription. If this

Figure 1: Build a WHERE clause to limit the total records returned

public virtual List<TEntity>
 Search<TEntity, TSearch>(TSearch search) {
 // Build SQL from Entity class
 SQL = BuildSelectSql<TEntity>();

 // Build collection of ColumnMapper objects
 // from properties in the TSearch object
 var searchColumns =
 BuildSearchColumnCollection<TEntity,
 TSearch>(search);

 if (searchColumns != null &&
 searchColumns.Any()) {
 // Build the WHERE clause for Searching
 SQL += BuildSearchWhereClause(searchColumns);

 }

 // Create Command Object with SQL
 DbContext.CreateCommand(SQL);

 // Add any Parameters?
 if (searchColumns != null &&
 searchColumns.Any()) {
 BuildWhereClauseParameters(
 DbContext.CommandObject, searchColumns);
 }

 return Search<TEntity>(DbContext.CommandObject);
}

Listing 8: Create an overloaded Search() method to accept a Product Search class

 Name = "C",
 ListPrice = 50
};

List<Product> list =
 db.Products.Search(search);

// REST OF THE CODE HERE

Run the console application and you should see three prod-
ucts displayed, as shown in Figure 1.

Create Generic Method to Submit SQL
Sometimes you may need a way to submit any SQL statement
to the database and have it return any list of objects you
want. Maybe you want to submit some SQL that has a few
tables joined together. Into which repository class would
you want to put that? Instead of worrying about where it
belongs, you can create a Database property on the Adv-
WorksDbContext class that’s of the type RepositoryBase and
just submit the SQL using a SqlCommand object. Open the
AdvWorksDbContext.cs file and add a new property of the
type RepositoryBase.

public RepositoryBase Database { get; set; }

Simplifying ADO.NET Code in .NET 6: Part 2

25codemag.com

view isn’t already in the AdventureWorksLT database, create
it using the following SQL:

CREATE VIEW vProductAndDescription AS
SELECT p.ProductID, p.Name,
 pm.Name AS ProductModel,
 pmd.Culture, pd.Description
FROM SalesLT.Product AS p
 INNER JOIN SalesLT.ProductModel AS pm
 ON p.ProductModelID = pm.ProductModelID
 INNER JOIN
 SalesLT.ProductModelProductDescription AS pmd
 ON pm.ProductModelID = pmd.ProductModelID
 INNER JOIN
 SalesLT.ProductDescription AS pd
 ON pmd.ProductDescriptionID =
 pd.ProductDescriptionID;

Add a new class named ProductAndDescription to map to
the vProductAndDescription view. Right mouse-click on the
EntityClasses folder and add a new class named Produc-
tAndDescription, as shown in Listing 10.

Try It Out
Open the Program.cs file and modify the code to call the
view using the Search() method on the Database property.

using AdvWorksDbContext db = new(ConnectString);

// Get all rows from view
List<ProductAndDescription> list =
 db.Database.Search<ProductAndDescription>();

Console.WriteLine("*** Get Product Data ***");
// Display Data

Figure 2: Add a WHERE clause to your SQL by using a search class and the [Search] attribute.

using AdvWorksDbContext db = new(ConnectString);

string sql = "SELECT * FROM SalesLT.Product ";
sql += "WHERE Name LIKE @Name + '%'";
sql += " AND ListPrice >= @ListPrice";

// Create Command object
var cmd = db.CreateCommand(sql);
// Add Parameters
cmd.Parameters.Add(
 db.CreateParameter("Name", "C"));
cmd.Parameters.Add(
 db.CreateParameter("ListPrice", 50));

// Call the SELECT statement
List<Product> list =
 db.Database.Search<Product>(cmd);

Console.WriteLine("*** Get Product Data ***");
// Display Data
foreach (var item in list) {
 Console.WriteLine(item.ToString());
}
Console.WriteLine();
Console.WriteLine($"Total Items:
 {list.Count}");
Console.WriteLine();

Listing 9: Create a SQL statement and a Command object to submit a search

foreach (var item in list) {
 Console.WriteLine(item.ToString());
}
Console.WriteLine();
Console.WriteLine(
 $"Total Items: {list.Count}");
Console.WriteLine();
Console.WriteLine(
 $"SQL Submitted: {db.Database.SQL}");

Run the console application and you should see over 1700
rows appear from the view. Many of these have a bunch of
questions marks. This is because the data in the table has
some foreign language characters.

#nullable disable

using System.ComponentModel
 .DataAnnotations.Schema;

namespace AdoNetWrapperSamples.EntityClasses;

[Table("vProductAndDescription",
 Schema = "SalesLT")]
public partial class ProductAndDescription {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string ProductModel { get; set; }
 public string Culture { get; set; }
 public string Description { get; set; }

 public override string ToString() {
 return $"Name={Name} -
 ProductModel={ProductModel} -
 Description={Description}";
 }
}

Listing 10: Add an Entity class to map the results returned from the view

Simplifying ADO.NET Code in .NET 6: Part 2

26 codemag.com

Try It Out
Modify the code in Program.cs to create an instance of this
new search class. Set the Culture property to the value
"en" so you only grab those records where the Culture field
matches this value. Call the overload of the Search() meth-
od to which you pass a search class.

ProductAndDescriptionSearch search = new() {
 Culture = "en",
};

// Perform a search for specific culture
List<ProductAndDescription> list =
 db.Database.Search<ProductAndDescription,
 ProductAndDescriptionSearch>(search);

Run the console application and you should see almost 300
rows of data returned from the view.

Find a Single Product
Now that you’ve learned how to create a WHERE clause, you
can use this same kind of code to locate a record by its pri-
mary key. The ProductID column in the SalesLT.Product table
is the primary key, so you want to create a SELECT statement
that looks like the following:

SELECT * FROM SalesLT.Product
WHERE ProductID = @ProductID

Use the [Key] Attribute
To do this, you must identity the property in the Product
class that holds the primary key. You’re going to do this
using the [Key] attribute class that .NET provides. Open the
Product.cs file and add a using statement.

using System.ComponentModel.DataAnnotations;

Add the [Key] attribute above the Id property.

Search Using a View
Just like you created a search class for the Product table,
you can also create a search class for searching when using
a view. Right mouse-click on the SearchClasses folder and
add a new class named ProductAndDescriptionSearch, as
shown in the code snippet below.

#nullable disable

using AdoNetWrapper.Common;

namespace AdoNetWrapperSamples.SearchClasses;

public class ProductAndDescriptionSearch {
 [Search("=")]
 public string Culture { get; set; }
}

public virtual TEntity Find<TEntity>
 (params Object[] keyValues)
 where TEntity : class {
 // To assign null, use 'where TEntity : class'
 TEntity ret = null;

 if (keyValues != null) {
 List<ColumnMapper> searchColumns;

 // Build SQL from Entity class
 SQL = BuildSelectSql<TEntity>();

 // Build a collection of ColumnMapper
 // objects based on [Key] attribute
 searchColumns = Columns
 .Where(col => col.IsKeyField).ToList();

 // Number of [Key] attributes on entity class
 // must match number of key values passed in
 if (searchColumns.Count != keyValues.Length) {
 throw new ApplicationException(
 "Not enough parameters passed to Find()
 method, or not enough [Key] attributes
 on the entity class.");
 }

 // Set the values into the searchColumns
 for (int i = 0; i < searchColumns.Count;

 i++) {
 searchColumns[i].ParameterValue =
 keyValues[i];
 searchColumns[i].SearchOperator = "=";
 }

 // Build the WHERE clause for Searching
 SQL += BuildSearchWhereClause(searchColumns);

 // Create command object with SQL
 DbContext.CreateCommand(SQL);

 // Add any Parameters?
 if (searchColumns != null &&
 searchColumns.Any()) {
 BuildWhereClauseParameters(
 DbContext.CommandObject, searchColumns);
 }

 // Get the entity
 ret = Find<TEntity>(DbContext.CommandObject);
 }

 return ret;
}

Listing 11: The Find() method retrieves a single entity from the table

public virtual TEntity
 Find<TEntity>(IDbCommand cmd)
 where TEntity : class {
 // To assign null, use 'where TEntity : class'
 TEntity ret = null;

 // Build Columns if needed
 if (Columns.Count == 0) {
 Columns = BuildColumnCollection<TEntity>();
 }

 // Get the entity
 var list = Search<TEntity>(cmd);

 // Check for a single record
 if (list != null && list.Any()) {
 // Assign the object to the return value
 ret = list[0];
 }

 return ret;
}

Listing 12: The overload of the Find() method executes the command

Simplifying ADO.NET Code in .NET 6: Part 2

27codemag.com

file and add the Find() method that accepts an integer value
that relates to the ProductID field in the Product table.

public virtual Product Find(int id) {
 return base.Find<Product>(id);
}

Try It Out
Open the Program.cs file and change the code to call
the Find() method, as shown in Listing 13. This method
should check to ensure that a single entity class is re-
turned. If the value returned is null, write a message into
the console window, otherwise, write the product entity
into the console window. Run the console application and
you should see a single product object displayed. You may
need to change the product ID to match an ID from your
SalesLT.Product table.

Get a Scalar Value
If you need to retrieve the value from one of the many ag-
gregate functions in SQL Server, such as Count(), Sum(),
Avg(), etc., expose a method named ExecuteScalar() from
the RepositoryBase class. To retrieve the count of all records
in the Product table, submit a SQL statement such as the
following:

SELECT COUNT(*) FROM SalesLT.Product;

Place this SQL statement into a Command object and call
the ExecuteScalar() method on the Command object. Open
the RepositoryBase.cs file and add a new method. Because
you don’t know what type of object you’re going to get back,
return an object data type.

public virtual object
 ExecuteScalar(IDbCommand cmd) {
 object ret;

 // Open the Connection
 DbContext.CommandObject.Connection.Open();

 // Call the ExecuteScalar() method
 ret = DbContext.CommandObject.ExecuteScalar();

 return ret;
}

[Key]
[Column("ProductID")]
public int Id { get; set; }

Open the ColumnMapper.cs file and add a new property
called IsKeyField so that as you are looping through and
building the list of properties, you can set this Boolean
property to true for the property decorated with the [Key]
attribute.

public bool IsKeyField { get; set; }

Open the RepositoryBase.cs file and add a using statement
at the top of the file.

using System.ComponentModel.DataAnnotations;

Locate the BuildColumnCollection() method and just below
the code where you check for a ColumnAttribute and set the
colMap.ColumnName, add the following code to check for
the [Key] attribute:

// Is the column a primary [Key]?
KeyAttribute key = prop
 .GetCustomAttribute<KeyAttribute>();
colMap.IsKeyField = key != null;

Add a Find() Method
Add a new method named Find() to the RepositoryBase
class, as shown in Listing 11. This method has the same
signature as the LINQ Find() method, where you pass in one
or more values to a parameter array. Most tables only have
a single field as their primary key, but in case a table has a
composite key, you need to have a parameter array for those
additional values.

The BuildSelectSql() method creates the SELECT statement,
and the Columns property. Next, the searchColumns vari-
able is created as a list of ColumnMapper objects with just
those columns where the IsKeyField property is set to true.
Ensure that the number of values passed into the parameter
array are equal to the number of properties with the [Key]
attribute. If these two numbers don’t match, throw an Ap-
plicationException object.

Loop through the collection of searchColumns and fill in
the ParameterValue property for each ColumnWrapper ob-
ject in the list. Set the SearchOperator property for each to
be an equal sign because you’re looking for an exact match.

Build the WHERE clause for the SELECT statement by using
the BuildSearchWhereClause() method you created earlier.
Build the SqlCommand object and then build the parameters
for the WHERE clause by calling the BuildWhereClausePa-
rameters() method.

Call the overload of the Find() method shown in Listing 12.
This method is responsible for passing the command object
to the Search() method and retrieving the results back. Check
the results to ensure values were found, and if there’s at least
one product in the list, assign the first item to the ret variable
to be returned from this method. If no values are found, a
null value is returned just like the LINQ Find() method.

Now that you have the generic Find() methods written in
the RepositoryBase class, open the ProductRepository.cs

using AdvWorksDbContext db = new(ConnectString);

Product entity = db.Products.Find(706);

Console.WriteLine("*** Get Product Data ***");
if (entity == null) {
 Console.WriteLine(
 "Can't Find Product ID=706");
}
else {
 // Display Data
 Console.WriteLine(entity.ToString());
 Console.WriteLine();
 Console.WriteLine(
 $"SQL Submitted: {db.Products.SQL}");
}
Console.WriteLine();

Listing 13: The Find() method returns a null if the record is not found, or it returns a valid
entity object

Simplifying ADO.NET Code in .NET 6: Part 2

28 codemag.com

Console.WriteLine(
 "*** ExecuteScalar(sql) Sample ***");
// Display Result
Console.WriteLine(rows);
Console.WriteLine();
Console.WriteLine(
 $"SQL Submitted: {db.Database.SQL}");
Console.WriteLine();

Run this application and you should see the total number
of products within the Product table appear in the console
window.

Multiple Result Sets
Sometimes, retrieving multiple result sets can help you cut
down the number of roundtrips to your SQL Server. A data
reader object supports reading one result set and then ad-
vancing to the next. Let's look at how this works with the
wrapper classes you’ve created so far.

Create New Search() Method Overload
Open up the RepositoryBase.cs file and create a new over-
load of the Search() method, as shown in Listing 14. This
method accepts both a command object and a data read-
er, and it’s responsible for calling the BuildEntityList()
method.

Modify the old Search() method to have it now call this new
overload, as shown in the code snippet below. Remove the
declaration of the ret variable, and modify the return state-
ment to call the new overloaded Search() method.

public virtual List<TEntity> Search<TEntity>
 (IDbCommand cmd) {
 // Build Columns if needed
 if (Columns.Count == 0) {
 Columns = BuildColumnCollection<TEntity>();
 }

 // Set Command Object
 DbContext.CommandObject = cmd;

 return Search<TEntity>(cmd,
 DbContext.CreateDataReader());
}

Add a Customer Entity Class
To illustrate multiple result sets, you need a new entity
class. In the AdventureWorksLT database, there’s a Custom-
er table. Let's create a new Customer.cs file and add the
code shown in Listing 15 to model that table.

Add a View Model Class
Instead of writing the code to handle multiple result sets
in the Program.cs file, create a new view model class to
encapsulate the functionality of reading both product and
customer data. Right mouse-click on the project and cre-
ate a folder named ViewModelClasses. Right mouse-click
on the ViewModelClasses folder and add a new class named
ProductCustomerViewModel.cs and add the code shown in
Listing 16.

The code in the LoadProductsAndCustomers() method cre-
ates a string with two SQL statements in it. An instance of

Add an overload of the ExecuteScalar() method to allow you
pass in a simple SQL statement. This method then creates
the Command object and passes it to the previous ExecuteS-
calar() overload for processing.

public virtual object
 ExecuteScalar(string sql) {
 // Store the SQL submitted
 SQL = sql;

 // Create Command object with SQL
 DbContext.CreateCommand(SQL);

 // Return the value
 return ExecuteScalar(DbContext.CommandObject);
}

Try It Out
Open the Program.cs file and add code to test this out.

using AdvWorksDbContext db = new(ConnectString);

string sql = "SELECT COUNT(*)
 FROM SalesLT.Product";
int rows = (int)db.Database.ExecuteScalar(sql);

public virtual List<TEntity>
 Search<TEntity>(IDbCommand cmd,
 IDataReader rdr) {
 List<TEntity> ret;

 // Build Columns if needed
 if (Columns.Count == 0) {
 Columns = BuildColumnCollection<TEntity>();
 }

 // Set Command Object
 DbContext.CommandObject = cmd;

 // Get the list of entity objects
 ret = BuildEntityList<TEntity>(rdr);

 return ret;
}

Listing 14: Add a new Search() method that takes an IDataReader object

#nullable disable

using System.ComponentModel.DataAnnotations;
using System.ComponentModel
 .DataAnnotations.Schema;

namespace AdoNetWrapperSamples.EntityClasses;

[Table("Customer", Schema = "SalesLT")]
public partial class Customer
{
 [Key]
 public int CustomerID { get; set; }
 public string Title { get; set; }
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string CompanyName { get; set; }

 public override string ToString() {
 return $"{LastName}, {FirstName}
 ({CustomerID})";
 }
}

Listing 15: Add a new entity class to illustrate how to get multiple result sets

Simplifying ADO.NET Code in .NET 6: Part 2

29codemag.com

in the server. Let's look at calling a stored procedure using
the ADO.NET wrapper classes. Create a stored procedure in
the AdventureWorksLT database named Product_Search, as
shon in Listing 17.

Create Parameter Class for Calling a Stored Procedure
Because the Product_Search stored procedure has four
parameters, you should create a class with four proper-
ties. Right mouse-click on the project and add a new folder
named ParameterClasses. Right mouse-click on the Param-
etersClasses folder and add a new class named Product-
SearchParam. The property names should match the param-
eter names within the stored procedure.

#nullable disable

using AdoNetWrapper.Common;

namespace AdoNetWrapperSamples.ParameterClasses;

public class ProductSearchParam {
 public string Name { get; set; }
 public string ProductNumber { get; set; }
 public decimal? BeginningCost { get; set; }
 public decimal? EndingCost { get; set; }
}

the AdvWorksDbContext class is created with a using block
so all connection objects are disposed of properly. Next a
SqlCommand object is created by calling the CreateCom-
mand() method on the database context object.

The Search<Product>() method is called to load the set of
product data. Call the NextResult() method on the data read-
er object to move to the next result set. Clear the current list
of ColumnWrapper objects because that list of columns is for
the Product data set. Finally, call the Search<Customer>()
method passing in the command object and the current data
reader object, which is now ready to loop through the cus-
tomer records.

Try It Out
To try this code out to make sure it works, open the Pro-
gram.cs file. Put the code shown below just after the code
that retrieves the connection string.

ProductCustomerViewModel vm = new(ConnectString);

vm.LoadProductsAndCustomers();

// Display Products
foreach (var item in vm.Products) {
 Console.WriteLine(item);
}

// Display Customers
foreach (var item in vm.Customers) {
 Console.WriteLine(item);
}

Run the application and you should see the list of products
and customers appear in the console window.

Search for Data Using a
Stored Procedure
Another common method of retrieving data from a data-
base is to call a stored procedure. If you have a three (or
more) table join, it’s a best practice to move that code to
a stored procedure or a view in your database. Keeping
complicated queries out of your C# code is better for read-
ability and maintenance. It also allows you to tune the join

#nullable disable

using AdoNetWrapperSamples.EntityClasses;
using AdoNetWrapperSamples.Models;

namespace AdoNetWrapperSamples.ViewModelClasses;

public class ProductCustomerViewModel {
 public ProductCustomerViewModel
 (string connectString) {
 ConnectString = connectString;
 }

 public string ConnectString { get; set; }
 public List<Product> Products { get; set; }
 public List<Customer> Customers { get; set; }

 public void LoadProductsAndCustomers() {
 string sql = "SELECT *
 FROM SalesLT.Product;";
 sql += "SELECT * FROM SalesLT.Customer";

 using AdvWorksDbContext db =
 new(ConnectString);

 // Create Command object
 var cmd = db.CreateCommand(sql);

 // Get the Product Data
 Products = db.Database.Search<Product>(cmd);

 // Advance to next result set
 db.DataReaderObject.NextResult();

 // Clear columns to get ready
 // for next result set
 db.Database.Columns = new();

 // Get the Customer Data
 Customers = db.Database
 .Search<Customer>(cmd, db.DataReaderObject);
 }
}

Listing 16: Create a class to wrap up both result sets

CREATE PROCEDURE [SalesLT].[Product_Search]
 @Name nvarchar(50) null,
 @ProductNumber nvarchar(25) null,
 @BeginningCost money null,
 @EndingCost money null
AS
BEGIN
 SELECT *
 FROM SalesLT.Product
 WHERE (@Name IS NULL OR
 Name LIKE @Name + '%')
 AND (@ProductNumber IS NULL OR
 ProductNumber LIKE @ProductNumber + '%')
 AND (@BeginningCost IS NULL OR
 StandardCost >= @BeginningCost)
 AND (@EndingCost IS NULL OR
 StandardCost <= @EndingCost)
END

Listing 17: Create a stored procedure to perform searching

Simplifying ADO.NET Code in .NET 6: Part 2

30 codemag.com

When you were building the WHERE clause for a dynamic SQL
statement, you only needed to create ColumnWrapper ob-
ject for those properties in the search class that had a value
in them. When calling a stored procedure, you need to cre-
ate a ColumnWrapper object for all parameters whether or
not there is a value in them. Locate the BuildSearchColumn-
Collection() method and within the foreach() loop, modify
the if statement that checks to see if the value is not null
to look like the following.

if (value != null ||
 (DbContext.CommandObject != null &&
 DbContext.CommandObject.CommandType ==
 CommandType.StoredProcedure)) {

One more location you need to change code to support
calling stored procedures is within the BuildWhereClause-
Parameters() method. As you loop through each Column-
Wrapper object to build the parameter, you’re going either
set the parameters' Value property to the value from the
search class, or a DBNull.Value. Also change it so the Param-
eterValue property is set back into the collection of entity
columns only if you are not calling a stored procedure. This
is because the parameter names passed to the stored pro-
cedure may not be the same names as the property names
in the entity column collection. Modify the BuildWhere-
ClauseParameters() method to look like the code shown in
Listing 19.

Try It Out
Open the Program.cs file and modify the code after retriev-
ing the connection string to look like Listing 20. Run the
console application and you should see only products with
names starting with the letter C appearing in the console
window.

Call Stored Procedure with No Parameters
If you have a stored procedure that doesn’t have any param-
eters, you can call that as well. Just pass a null value as the
first parameter to the new Search() overload you just added.
As an example, create the following stored procedure in the
AdventureWorksLT database:

CREATE PROCEDURE [SalesLT].[Product_GetAll]
AS

protected virtual void
 BuildWhereClauseParameters(IDbCommand cmd,
 List<ColumnMapper> whereColumns) {
 // Add parameters for each key value passed in
 foreach (ColumnMapper item in whereColumns) {
 var param = DbContext.CreateParameter(
 item.ColumnName,
 item.SearchOperator == "LIKE" ?
 item.ParameterValue + "%" :
 item.ParameterValue);

 // Add parameter value or DBNull value
 param.Value ??= DBNull.Value;

 cmd.Parameters.Add(param);

 if (cmd.CommandType !=
 CommandType.StoredProcedure) {
 // Store parameter info
 Columns.Find(c => c.ColumnName ==
 item.ColumnName)
 .ParameterValue = item.ParameterValue;
 }
 }
}

Listing 19: Modify the BuildWhereClauseParameters() method to set a DBNull.Value

public virtual List<TEntity>
 SearchUsingStoredProcedure<TEntity, TParam>
 (TParam param, string sql) {
 List<ColumnMapper> searchColumns = new();
 List<TEntity> ret;

 // Store the SQL submitted
 SQL = sql;

 // Build columns collection for entity class
 Columns = BuildColumnCollection<TEntity>();

 // Create Command Object with SQL
 DbContext.CreateCommand(SQL);

 // Set CommandType to Stored Procedure
 DbContext.CommandObject.CommandType =
 CommandType.StoredProcedure;

 if (param!= null) {

 // Build a collection of ColumnMapper objects
 // based on properties in the TParam object
 searchColumns = BuildSearchColumnCollection
 <TEntity, TParam>(param);

 // Add any Parameters?
 if (searchColumns != null &&
 searchColumns.Count > 0) {
 BuildWhereClauseParameters(
 DbContext.CommandObject, searchColumns);
 }
 }

 ret = BuildEntityList<TEntity>
 (DbContext.CreateDataReader());

 return ret;
}

Listing 18: Add new method to accept a SQL statement for calling a stored procedure

Add Method to Call Stored Procedure
Open the RepositoryBase.cs file and create a new method
named SearchUsingStoredProcedure(), as shown in Listing
18. In this method, pass in an instance of the parameter
class and a SQL string that contains the name of the stored
procedure. Assign the SQL string passed to the SQL property
and build the columns collection for the entity class collec-
tion to be returned.

Create the command object and assign the CommandType
property of the command object to the enumeration Com-
mandType.StoredProcedure. Check the param parameter to
ensure that it isn’t null. If not, build the collection of search
columns to use to build the set of parameters that will be
passed to the stored procedure. You can use the same Build-
WhereClauseParameters() method you used before, as this
adds parameters to the command object based on the set of
ColumnWrapper objects passed to it. Finally, call the stored
procedure and use the result set to build the collection of
entity objects.

Simplifying ADO.NET Code in .NET 6: Part 2

31codemag.com

Getting the Sample Code

You can download the
sample code for this
article by visiting
www.CODEMag.com
under the issue and article,
or by visiting www.pdsa.
com/downloads. Select
“Articles” from the Category
drop-down. Then select “
Simplifying ADO.NET Code in
.NET 6: Part 2” from the Item
drop-down.

 public int Size { get; set; }

 public OutputParamAttribute(
 ParameterDirection direction) {
 Direction = direction;
 }
}

The OutputParamAttribute class inherits from the Attribute
class and exposes three public properties. The Direction
property is the one exposed from the constructor, as that’s
the one you’re going to use the most.

Create Search Class with OutputParam Attribute
Any time you have a stored procedure with parameters, you
need to build a parameter class to map to those parameters.
Right mouse-click on the ParameterClasses folder, create a new
class named ProductGetAllParam, and enter the code shown
below into this new file. Notice that the Result property is deco-
rated with the new [OutputParam] attribute you just created.

#nullable disable

using AdoNetWrapper.Common;
using System.Data;

namespace AdoNetWrapperSamples.ParameterClasses;

public class ProductGetAllParam {
 [OutputParam(ParameterDirection.Output,
 Size = 10)]
 public string Result { get; set; }
}

Modify ColumnMapper Class
Because you now have additional properties within the
[OutputParam] attribute, you need to add these same prop-
erties to the ColumnMapper class. As you iterate over the
properties for a search class, you can store the data from
the [OutputParam] attribute into the ColumnMapper object
for use when calling the stored procedure. Open the Colum-
nMapper.cs file and add a Using statement.

using System.Data;

BEGIN
 SELECT *
 FROM SalesLT.Product;
END

Try It Out
Open the Program.cs file and modify the line of code that
sets the name of the stored procedure to call.

string sql = "SalesLT.Product_GetAll";

Next, modify the line of code that calls the SearchUsing-
StoredProcedure() method. The TEntity and TParam types
passed should both be the Product entity class. Pass a null
value to the first parameter to avoid creating any param-
eters for this stored procedure call.

List<Product> list = db.Database
 .SearchUsingStoredProcedure
 <Product, Product>(null, sql);

Run the console application and you should see all of the
product data displayed after making this call to the stored
procedure.

Stored Procedure with
Output Parameter
Stored procedures can not only have input parameters, but
output parameters as well. To retrieve the value from an
OUTPUT parameter, you need to ensure that you read the
parameter immediately after calling the stored procedure.
If you’re reading data using a data reader, you need to close
the reader, but NOT close the connection. To test this, cre-
ate the following stored procedure in the AdventureWorksLT
database:

CREATE PROCEDURE
 [SalesLT].[Product_GetAllWithOutput]
 @Result nvarchar(10) OUTPUT
AS
BEGIN
 SELECT *
 FROM SalesLT.Product;

 /* Set the output parameter */
 SELECT @Result = 'Success';
END

Create [OutputParam] Attribute
You need to inform the RepositoryBase class if you’re going
to have an OUTPUT parameter that needs to be returned.
An easy way to do this is to create another attribute. Right
mouse-click on the Common folder, create a new class
named OutputParamAttribute, and enter the code shown
below in this new file.

#nullable disable
using System.Data;
namespace AdoNetWrapper.Common;

[AttributeUsage(AttributeTargets.Property)]
public class OutputParamAttribute:Attribute {
 public ParameterDirection Direction
 { get; set; }
 public DbType DbType { get; set; }

using AdvWorksDbContext db = new(ConnectString);

string sql = "SalesLT.Product_Search";
ProductSearchParam param = new() {
 Name = "C"
};

List<Product> list = db.Database
 .SearchUsingStoredProcedure<Product,
 ProductSearchParam>(param, sql);

// Display Products
foreach (var item in list) {
 Console.WriteLine(item);
}

Console.WriteLine();
Console.WriteLine(
 $"Total Items: {list.Count}");
Console.WriteLine();
Console.WriteLine(
 $"SQL Submitted: {db.Database.SQL}");

Listing 20: Call a stored procedure using the SearchUsingStoredProcedure() method

Simplifying ADO.NET Code in .NET 6: Part 2

32 codemag.com

Param] attribute. If one is found, transfer the properties
found in the OutputParam into the ColumnWrapper object.
Within the foreach loop, after the code that checks for a
[Search] attribute, add the following code to check for an
[OutputParam] attribute.

// Does Property have an [OutputParam] attribute
OutputParamAttribute oa = Prop
 .GetCustomAttribute<OutputParamAttribute>();
if (oa != null) {
 colMap.Direction = oa.Direction;
 colMap.DbType = oa.DbType;
 colMap.Size = oa.Size;
}

Modify the BuildSearchWhereClause() Method
Now locate the BuildSearchWhereClause() method and mod-
ify the code in the foreach() to only retrieve those columns
where the Direction property is either Input or InputOut-
put. Those properties that have a Direction set to Output
don’t need to be included in the WHERE clause.

foreach (var item in columns
 .Where(c => c.Direction ==
 ParameterDirection.Input
 || c.Direction ==
 ParameterDirection.InputOutput)) {

Modify the BuildWhereClauseParameters() Method
Find the BuildWhereClauseParameters() method and modify
the foreach() to only retrieve those columns where the Di-
rection property is either Input or InputOutput.

foreach (ColumnMapper item in whereColumns
 .Where(c => c.Direction ==
 ParameterDirection.Input
 || c.Direction ==
 ParameterDirection.InputOutput)) {

Add a BuildOutputParameters() Method
For working with stored procedure OUTPUT parameters,
build a new method to handle those columns in the search
class that are decorated with the [OutputParam] attribute.
Create a new method named BuildOutputParameters that
accepts a Command object and a list of columns from the
search class. In the foreach() iterator, you’re only going
to extract those columns where the Direction property is
either Output or InputOutput.

protected virtual void BuildOutputParameters
 (IDbCommand cmd, List<ColumnMapper> columns) {
 // Add output parameters
 foreach (ColumnMapper item in columns
 .Where(c => c.Direction ==
 ParameterDirection.Output ||
 c.Direction ==
 ParameterDirection.InputOutput)) {
 var param = DbContext.CreateParameter(
 item.ColumnName, null);
 param.Direction = item.Direction;
 param.DbType = item.DbType;
 cmd.Parameters.Add(param);
 }
}

Add the following new properties to the ColumnWrapper class.

public ParameterDirection Direction
 { get; set; }
public DbType DbType { get; set; }
public int Size { get; set; }

Add a constructor to the ColumnMapper class to set the de-
fault parameter direction to Input. Also take this oppor-
tunity to initialize the SearchOperator the equal sign (=).

public ColumnMapper() {
 SearchOperator = "=";
 Direction = ParameterDirection.Input;
}

Modify the BuildSearchColumnCollection() Method
Open the RepositoryBase.cs file and modify the Build-
SearchColumnCollection() method to check for an [Output

protected virtual void GetOutputParameters
 <TParam>(TParam param,
 List<ColumnMapper> columns) {
 // Get output parameters
 foreach (ColumnMapper item in columns
 .Where(c => c.Direction ==
 ParameterDirection.Output ||
 c.Direction ==
 ParameterDirection.InputOutput)) {
 // Get the output parameter
 var outParam = DbContext
 .GetParameter(item.ColumnName);
 // Set the value on the parameter object
 typeof(TParam).GetProperty(item.ColumnName)
 .SetValue(param, outParam.Value, null);
 }
}

Listing 21: Create a new method to get the output parameter values

#nullable disable

using System.Data;
using System.Data.SqlClient;

namespace AdoNetWrapper.Common;

public class SqlServerRepositoryBase
 : RepositoryBase {
 public SqlServerRepositoryBase(
 SqlServerDatabaseContext context)
 : base(context) { }

 protected override void
 BuildOutputParameters(IDbCommand cmd,
 List<ColumnMapper> columns) {
 // Add output parameters
 foreach (ColumnMapper item in columns
 .Where(c => c.Direction ==
 ParameterDirection.Output)) {
 var param = (SqlParameter)DbContext
 .CreateParameter(item.ColumnName, null);
 param.Direction = item.Direction;
 param.DbType = item.DbType;
 // Need to set the Size for SQL Server
 param.Size = item.Size;
 cmd.Parameters.Add(param);
 }
 }
}

Listing 22: Create a SqlServerRepositoryBase class to override those methods that have
SQL Server specific functionality

Simplifying ADO.NET Code in .NET 6: Part 2

33codemag.com

Open the Program.cs file and modify the code to look like
the following.

string sql = "SalesLT.Product_GetAllWithOutput";
ProductGetAllParam param = new() {
 Result = ""
};

List<Product> list = db.Database
 .SearchUsingStoredProcedure<Product,
 ProductGetAllParam>(param, sql);

Add the following code after the loop displaying all the
items returned.

Console.WriteLine();
Console.WriteLine($"Output Param:
 '{param.Result}'");

Run the console application and you should see the OUTPUT
parameter named Result appear after all the products have
been displayed.

Summary
This article built more functionality into the wrapper class-
es around ADO.NET to give you the ability to add WHERE
clauses to SELECT statements. In addition, you saw how to
retrieve data from views and stored procedures. Multiple re-
sult sets can be handled, and you can now retrieve scalar
values. The best thing is that most of the code is going into
generic classes, so as you add more classes to work with
more tables, the code you write for each of those is minimal.

In the next article, you’ll learn to insert, update, and delete
data. You will also learn to submit transactions, validate
data using data annotations, and to handle exceptions.

Add GetOutputParameters() Method
After the stored procedure has been processed is when you
may retrieve any OUTPUT parameters. Create a new method
named GetOutputParameters() (shown in Listing 21) to it-
erate over the search columns and retrieve the value from
the stored procedure and place it into the appropriate prop-
erty of the search class.

Create SqlServerRespositoryBase Class
When using SQL Server to retrieve OUTPUT parameters, you
must set the Size property when adding the parameter to
the Command object. This might not be true for all .NET data
providers, but you need it for SQL Server. Unfortunately, the
Size parameter does not exist on the IDbCommand inter-
face, so you must create a SqlServerRepositoryBase class
that inherits from the RepositoryBase class and override the
BuildOutputParameters() method. Within this override, you
set the Size property on the parameter object. Right mouse-
click on the Common folder and add a new class named
SqlServerRepositoryBase. Place the code shown in Listing
22 into this new file.

Modify SearchUsingStoredProcedure() Method
Open the RepositoryBase.cs file and locate the SearchUs-
ingStoredProcedure() method. Within the If statement
(Listing 23) that checks that the param variable is not
null, add a new If statement immediately after the existing
If statement.

Move a little further down in this method and, just after the
call to the BuildEntityList() method and before the return
statement, add the following code to retrieve any output
parameters:

// Retrieve Any Output Parameters
if (searchColumns.Where(c => c.Direction ==
 ParameterDirection.Output ||
 c.Direction ==
 ParameterDirection.InputOutput).Any()) {
 // Must close DataReader for output
 // parameters to be available
 DbContext.DataReaderObject.Close();

 GetOutputParameters(param, searchColumns);
}

Try It Out
Open the AdvWorksDbContext.cs file and modify the Data-
base property to use the new SqlServerRepositoryBase class.

public SqlServerRepositoryBase Database
 { get; set; }

if (param != null) {
 // Build collection of ColumnMapper objects
 // based on properties in the TParam object
 searchColumns = BuildSearchColumnCollection
 <TEntity, TParam>(param);

 // Add any Parameters?
 if (searchColumns != null &&
 searchColumns.Count > 0) {
 BuildWhereClauseParameters(DbContext
 .CommandObject, searchColumns);
 }

 // Add any Output Parameters?
 if (searchColumns.Where(c => c.Direction ==
 ParameterDirection.Output ||
 c.Direction ==
 ParameterDirection.InputOutput).Any()) {
 BuildOutputParameters(DbContext.CommandObject,
 searchColumns);
 }
}

Listing 23: Modify the SearchUsingStoredProcedure() method to build output parameters

� Paul D. Sheriff
�

SPONSORED SIDEBAR:

Ready to Modernize
a Legacy App?

Need FREE advice on
migrating yesterday’s
legacy applications to
today’s modern platforms?
Get answers by taking
advantage of CODE
Consulting’s years of
experience by contacting
us today to schedule
your free hour of
CODE consulting call.
No strings. No
commitment. Nothing to
buy. For more information.
visit www.codemag.com/
consulting or email us at
info@codemag.com.

Simplifying ADO.NET Code in .NET 6: Part 2

34 codemag.comCustomized Object-Oriented and Client-Server Scripting in C#

ONLINE QUICK ID 2209051

Customized Object-Oriented and
Client-Server Scripting in C#
In this article, I’m going to talk about using a custom object-oriented scripting in C#. By “custom,” I mean that all you’re going
to see here is available to use and modify from GitHub. By “C#,” I mean that the scripting language is implemented in C#
and you can just include it in your project in order to adjust it as you wish. As a scripting language, I’m going to use CSCS

(customized scripting in C#). I’ve talked about this lan-
guage in a few previous CODE Magazine articles (see links
in the sidebar). CSCS is an open-source scripting language
that's very easy to integrate into your C# project.

You’re going to see how to use classes and objects in script-
ing, and also how they’re implemented in C#. It’s important
that you have a full control of how the object-oriented func-
tionality is implemented. For instance, you can have mul-
tiple inheritance in scripting, which is forbidden in C# or
in JavaScript. But you could also disable it if you think that
it’s against your beliefs. It’s important that you, and not
another architect, decide what features you want to have to
solve a particular problem.

The great thing about object-
oriented code is that it can
make small, simple problems
look like large, complex ones.
� Anonymous

As an example of using object-oriented scripting, I’m going
to take a look at a client-server application, where I’ll show
how you can send and receive objects. I’ll also show a simple
marshalling-unmarshalling mechanism (converting objects
to a string and back) to pass data across the wire. You can
use a similar approach for any custom client-server com-
munication, just using a couple of lines of a scripting code.

To distinguish between the C# code and CSCS scripting code,
all C# code is provided below with the syntax highlighting,
whereas all scripting code doesn’t use it.

Let’s start by looking at how you can set up scripting in your
.NET Visual Studio project.

Setting Up CSCS Scripting
One of the simplest ways to start using CSCS scripting is to
download the source code from GitHub (see https://github.
com/vassilych/cscs) and add the source code directly to
your C# .NET project. The license lets you modify and use
the code without any restrictions.

An example of including the CSCS Scripting Engine in a Win-
dows GUI project is a WPF project, available here:
https://github.com/vassilych/cscs_wpf.

Another example is a Xamarin iOS—Android mobile project
that can be downloaded from here: https://github.com/
vassilych/mobile.

CSCS is a functional language, syntactically very similar to
JavaScript. To add a new functionality to CSCS, you’ll need
to perform just these three steps:

1.	 Define a CSCS function name as a constant. When pars-
ing this constant, the CSCS parser triggers the appro-
priate implementation code.

2.	 Implement a new class, deriving from the ParserFunc-
tion class. The most important method is Evaluate().
It will be triggered when the constant defined in the
previous step is parsed.

3.	 Register the newly created class with the parser.

Let’s see how this is done using the implementation of the
power function .

First, you define an appropriate constant in the Constants.cs file:

public const string MATH_POW = ”Math.Pow”;

Next, you define the implementation:

class PowFunction : ParserFunction {
 protected override Variable Evaluate(
 ParsingScript script) {
 List<Variable> args = script.
 GetFunctionArgs();
 Utils.CheckArgs(args.Count, 2, m_name, true);
 Variable arg1 = args[0];
 Variable arg2 = args[1];

 arg1.Value = Math.Pow(arg1.Value,
 arg2.Value);
 return arg1;
 }
 public override string Description() {
 return "Returns a specified number \
 raised to the specified power.";
 }
}

Finally, the last step is registering this new functionality
with the parser at the program initialization stage:

ParserFunction.RegisterFunction(
 Constants.MATH_POW, new PowFunction());

You’re done now. As soon as the parser sees something like
Math.Pow(2, 5), the Evaluate() method above is triggered
and the correct value of 32 calculated.

Vassili Kaplan
VassiliK@gmail.com

Vassili is a former Microsoft
Lync developer. He’s been
studying and working in
a few countries, such as
Russia, Mexico, the USA,
and Switzerland.

He has a Masters in
Applied Mathematics with
Specialization in Computa-
tional Sciences from Purdue
University, West Lafayette,
Indiana and a Bachelor in
Applied Mathematics from
ITAM, Mexico City.

In his spare time, Vassili
works on the CSCS scripting
language. His other hobbies
are traveling, biking,
badminton, and enjoying a
glass of a good red wine.

You can contact him
through his website:
http://www.iLanguage.ch
or e-mail: vassilik@gmail.com

35codemag.com Customized Object-Oriented and Client-Server Scripting in C#

 }
}

You can now create new objects and use these classes as
usual:

obj1 = new Stuff1(10);
obj2 = new Stuff2(5);
print(obj1.X + obj2.Y); // prints 15.
print(obj1); // prints stuff1.obj1[x=10]

Now let’s use multiple inheritance, something you can’t do
in many modern languages. Let’s define a class that inherits
both the method implementations and variables from the
base classes:

class CoolStuff : Stuff1, Stuff2 {
 z = 3;
 CoolStuff(a=1, b=2, c=3) {
 x = a;
 y = b;
 z = c;
 }
 function addCoolStuff() {
 return x + addStuff2(z);
 }
 function ToString() {
 return "{" + x + "," + y + "," + z + "}";
 }
}

Here’s how you can use this newly defined class:

obj3 = new CoolStuff(11, 22, 33);
obj3.HelloWorld(); // prints “Hello, World!”
print(obj3.AddStuff2(20)); // prints 42
print(obj3); // prints {11,22,33}

As you can see, both variables and methods can be used
from the base classes. A special method is ToString(). When
defined, it overrides the string representation of the ob-
ject (e.g., what’s printed in print(object) statement). The
default ToString() implementation is the following: Class-
Name.InstanceName[variable,variable2,…].

You probably noted that some of the class methods start
with a lowercase letter, others with an uppercase: it doesn’t
matter, CSCS scripting language is case insensitive.

CSCS scripting language
is case-insensitive.

You can also debug a CSCS script. The easiest method is
to install the CSCS Debugger and REPL Extension for Vi-
sual Studio Code (https://marketplace.visualstudio.com/
items?itemName=vassilik.cscs-debugger). This CODE
Magazine article explains how to use Visual Studio Code
Extensions for debugging: https://www.codemag.com/ar-
ticle/1809051.

Figure 1 shows a debugging session with some CSCS script-
ing statements.

The Description method is triggered when the user calls a
Help scripting method.

Note the convenient method script.GetFunctionArgs(). It
returns all comma-separated arguments between the paren-
theses (e.g., it returns 2 and 5 for Math.Pow(2, 5)). You
can also put some variables and arrays as function argu-
ments—their value will be recursively extracted during the
GetFunctionArgs() call.

Object-oriented programming
had boldly promised "to model
the world." Well, the world is a
scary place where bad things
happen for no apparent reason,
and in this narrow sense I concede
that OO does model the world.
� Dave Fancher

In the next sections, I’m going to show how you can use
the new function definition shown in this section to define
classes and objects.

“Hello, World!” in Object-Oriented
Scripting
Let’s first see how classes and objects are defined and used
in scripting and then how they are implemented in C#.

I hope you’ll find this very intuitive and similar to other lan-
guages, with some few exceptions (like multiple inheritance).

With enough practice,
any interface is intuitive.
� Anonymous

Let’s see two simple examples of a class definition in CSCS:

class Stuff1 {
 x = 2;
 Stuff1(a) {
 x = a;
 }
 function helloWorld() {
 print("Hello, World!");
 }
}

class Stuff2 {
 y = 3;
 Stuff2(b) {
 y = b;
 }
 function addStuff2(n) {
 return n + y;

36 codemag.com

ParserFunction.RegisterFunction(Constants.NEW,
 new NewObjectFunction());
 // NEW is defined as “new”

I encourage you to take a look at the CSCS GitHub page
(https://github.com/vassilych/cscs) for more implementa-
tion details.

Next, let’s see an example of using scripting to access Web
Services.

Accessing Web Services
from Scripting
As an example of accessing a Web Service, you’re going to use
Alpha Vantage Web Service (https://www.alphavantage.co).
Alpha Vantage provides a financial market data API.

The main advantages of using Alpha Vantage are that it’s
pretty straightforward to create a request and that it’s also
free to use (well, up to five requests per minute or 500 re-
quests per day, as of this writing). To replicate what you’re
doing here, you need to request a free API key here: https://
www.alphavantage.co/support/#api-key.

Here is how you create a URL to access their Web Service
in CSCS:

Implementing Scripting Classes
and Objects in C#
Let’s see briefly how the classes and objects scripting func-
tionality from the previous section is implemented in C#. As
you previously saw with the Math.Pow() example, all of the
CSCS functionality is implemented as functions. Yes, even
classes are implemented this way, no matter how strange
it sounds.

When the CSCS parser reads a class definition, that starts
with Class ClassName …, the C# implementation is trig-
gered (see Listing 1).

The code in Listing 1 defines a new class, which can now be
instantiated in CSCS. This also needs to be registered with
the parser before being used:

ParserFunction.RegisterFunction(Constants.CLASS,
 new ClassCreator());
 // CLASS is defined as “class”

As soon as the CSCS parser sees this statement, obj1 = new
Stuff1…, another C# implementation is triggered, namely
the Evaluate() method of the NewObjectFunction class (see
Listing 2). The NewObjectFunction must also be registered
with the CSCS parser as follows:

Figure 1: Debugging CSCS Scripting with Visual Studio Code on macOS

Customized Object-Oriented and Client-Server Scripting in C#

37codemag.com

baseURL = "https://www.alphavantage.co/" +
 "query?function=TIME_SERIES_DAILY&symbol=";
apikey = "Y12T0TY5EUS6BXXX";
symbol = "MSFT";
stockUrl = baseURL + symbol + "&apikey=" +
 apikey;

As a result, you’ll get a JSON file (see an example in List-
ing 3).

This is the function to create a Web Request using CSCS
scripting:

WebRequest(Request, Url, Load, Tracking,
 OnSuccess, OnFailure, ContentType, Headers);

Here is what these parameters mean:

•	 Request is one of the standards GET, POST, PUT, etc.
For Alpha Vantage, you need GET.

•	 The Web service URL, as defined above.
•	 The load is some additional data to send.

public class ClassCreator : ParserFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
 string className = Utils.GetToken(script);
 string[] baseClasses = Utils.GetBaseClasses(script);
 var newClass = new CSCSClass(className, baseClasses);

 newClass.ParentOffset = script.Pointer;
 newClass.ParentScript = script;
 string scriptExpr = Utils.GetBodyBetween(script,

 Constants.START_GROUP, Constants.END_GROUP);
 string body = Utils.ConvertToScript(Utils.GetBodyBetween(
 script, Constants.START_GROUP, Constants.END_GROUP, out _);

 ParsingScript tempScript = script.GetTempScript(body);
 tempScript.CurrentClass = newClass;
 tempScript.DisableBreakpoints = true;
 var result = tempScript.ExecuteScript();
 return result;
 }
}

Listing 1: C# Code to create a scripting class

public class NewObjectFunction : ParsingFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
 string className = Utils.GetToken(script);
 className = Constants.ConvertName(className);
 List<Variable> args = script.GetFunctionArgs();

 var csClass = CSCSClass.GetClass(className) as CompiledClass;
 if (csClass != null) {
 ScriptObject obj = csClass.GetImplementation(args);

 return new Variable(obj);
 }
 var instance = new CSCSClass.ClassInstance(
 script.CurrentAssign, className, args, script);

 var newObject = new Variable(instance);
 newObject.ParamName = instance.InstanceName;
 return newObject;
 }
}

Listing 2: C# code for the new object implementation

{
 "Meta Data": {
 "1. Information": "Daily Prices (open, high, low, close)
 and Volumes",
 "2. Symbol": "MSFT",
 "3. Last Refreshed": "2022-05-26 16:00:01",
 "4. Output Size": "Compact",
 "5. Time Zone": "US/Eastern"
 },
 "Time Series (Daily)": {
 "2022-05-26": {
 "1. open": "262.2700",
 "2. high": "267.0000",
 "3. low": "261.4300",
 "4. close": "265.9000",

 "5. volume": "24960766"
 },
 "2022-05-25": {
 "1. open": "258.1400",
 "2. high": "264.5800",
 "3. low": "257.1250",
 "4. close": "262.5200",
 "5. volume": "28547947"
 },
...
 }
};

Listing 3: JSON string returned from the Alpha Vantage Web Service

•	 The Tracking variable is needed for multiple requests.
When you get a response back, the Tracking variable
associates it with the right request.

•	 OnSuccess and OnFailure are CSCS callback methods
triggered when the response is received.

•	 The content type by default is application/x-www-
form-urlencoded.

•	 You can also send some headers with the request. This
is useful for the REST API requests.

All parameters, except Request and URL, are optional. If the
OnSuccess and OnFailure callback methods aren’t supplied,
the request is executed synchronously and the result of the
request is returned from the WebRequest method.

An example of accessing the Alpha Vantage Web Service is
the following:

result = WebRequest("GET", stockUrl, "", symbol);

The result of this call is shown in Listing 3 for the Microsoft
stock. To be able to use the returned JSON string, there’s an

Customized Object-Oriented and Client-Server Scripting in C#

38 codemag.com

MSFT 2022-05-26 16:00:01. Open: 262.27,
Close: 265.9: Low: 261.43, High: 267,
Volume: 24960766

Before getting into the main example of this article, the
Client-Server communication, let’s take a look at marshal-
ling and unmarshalling objects in CSCS scripting.

Marshalling and Unmarshalling
Objects
Using CSCS scripting, you can convert any object or variable
to a string and back using these methods: Marshal(object)
and Unmarshal(string).

The converted string looks like a simplified XML, but it’s not
XML. You can tweak the C# implementation code a bit if you
want it to be a legal XML string.

The only place where you should
really use XML is your resume.
� Anonymous

Here’s an example of marshalling a Stock object from the
previous section:

mystock = processResponse(r);
ms = Marshal(mystock);
// Returns:
// <mystock:class:stock><symbol:STR:"MSFT">
// <date:STR:"2022-05-27"><open:NUM:268.48>
// <low:NUM:267.56><high:NUM:273.34>
// <close:NUM:273.24><volume:STR:"26910806">

ms.type; // Returns STRING

Here’s how you construct an object back from a string:

ums = Unmarshal(ms);
ums.type; // Returns
// SplitAndMerge.CSCSClass+ClassInstance: Stock

You can also marshal and unmarshal any other data struc-
tures:

str = "a string";
mstr = Marshal(str);
 // Returns: <str:STR:"a string">
umstr = Unmarshal(mstr);
int = 13;
mint = Marshal(int); // Returns: <int:NUM:13>
umint = Unmarshal(mint);

The marshalling and unmarshalling is done recursively.
Here’s an example of an array (which is also a map for some
elements) where one of the elements of the original array
is an array itself (note that in general, that the data in an
array doesn’t have to be of the same type):

a[0]=10;
a[1]="blah";

auxiliary CSCS GetVariableFromJSON() function. After ap-
plying this function, the main parts of the JSON string are
split into a list and their subparts can be accessed by a key.
Here is how you can access the resulting string (see Listing
3 for details):

function processResponse(text)
{
 if (text.contains("Error")) {
 return text;
 }
 jsonFromText = GetVariableFromJSON(text);
 metaData = jsonFromText[0];
 result = jsonFromText[1];
 symbol = metaData["2. Symbol"];
 last = metaData["3. Last Refreshed"];
 allDates = result.keys;
 dateData = result[allDates[0]];
 myStock = new Stock(symbol, last, dateData);
 return myStock;
}

The processResponse() function returns a Stock object. Its
class definition is shown below. The main work of process-
ing the results is in the Stock class constructor. Here is the
Stock class definition:

class Stock {
 symbol = "";
 date = "";
 open = 0;
 low = 0;
 high = 0;
 close = 0;
 volume = 0;
 Stock(symb, dt, data) {
 symbol = symb;
 date = dt;
 open = Math.Round(data["1. open"], 2);
 high = Math.Round(data["2. high"], 2);
 low = Math.Round(data["3. low"], 2);
 close = Math.Round(data["4. close"],2);
 volume = data["5. volume"];
 }
}

Additionally, you can define a custom function for convert-
ing the Stock object into a string. An example of such a
function is the following (this method should be added in-
side of the Stock class definition):

function ToString()
{
 return symbol +" "+ date + ". Open: " + open +
 ", Close: " + close + ": Low: " + low +
 ", High: " + high + ", Volume: " + Volume;
}

Now add the following CSCS code:

result = WebRequest("GET", stockUrl, "", symbol);
stock = processResponse(result);
print(stock);

This prints the returned Stock object according to the To-
String() method defined:

Customized Object-Oriented and Client-Server Scripting in C#

39codemag.com

References

Developing Cross-Platform
Native Apps with a Functional
Scripting Language:
https://www.codemag.com/
Article/1711081

Using a Scripting Language to
Develop Native Windows WPF
GUI Apps:
https://www.codemag.com/
Article/2008081

Prototyping with Microsoft
Maquette: A New Virtual
Reality Tool:
https://www.codemag.com/
Article/2009071

Using CSCS Scripting
Language for Cross-Platform
Development:
https://www.
smashingmagazine.
com/2020/01/cscs-scripting-
language-cross-platform-
development

CSCS Scripting GitHub:
https://github.com/vassilych/cscs

CSCS Debugger & REPL:
https://marketplace.
visualstudio.com/
items?itemName=vassilik.
cscs-debugger

CSCS Language eBook:
https://www.syncfusion.com/
ebooks/implementing-
a-custom-language

Writing Native Mobile Apps
in a Functional Language
Succinctly eBook:
https://www.syncfusion.
com/ebooks/writing_native_
mobile_apps_in_a_functional_
language_succinctly

On the scripting client-side, the connecting code looks like
this:

response = connectsrv(request, load, port,
 host = "localhost");

(If the server host isn’t supplied, the local host is used for
connections). Let’s see an example of accessing the server
defined above:

response = connectsrv("stock", "MSFT", 12345);
print(response.Symbol + ": Close: " +
 response.Close + ", Volume: " +
 response.Volume);
// MSFT: Close: 273.24, Volume: 26910806

As you can see, the resulting object is returned directly from
the connectsrv() call because all of the marshalling and un-
marshalling is done by the scripting framework.

Wrapping Up
The main advantages of using a scripting module inside of
your projects are:

•	 You’ll save time when writing code because most of
the code is usually much shorter than it would’ve been
for making the same functionality in C#. This is what
you saw with the Client-Server example.

•	 You can use any features not available directly in C#
(e.g., multiple inheritance).

•	 You can modify scripting code on the fly without the
necessity of recompiling and restarting the service.

I’m looking forward to your feedback, especially how you
use CSCS scripting in your projects, what Web Services you
access, and any performance tricks you’re using.

a[2]=[9, 8, 7];
a["x:lol"]=12;
a["y"]=13;
ma = marshal(a);
maa = unmarshal(ma);
// Returns:
// ["x:lol":10, "y":11, 10, "blah", [9, 8, 7]]
maa.type; // Returns ARRAY

Now you’re ready for the main example of this article: send-
ing and receiving objects between a server and a client, all
implemented in scripting.

A Client-Server Example
The client server example encompasses what you’ve seen
before: a Web Server client, marshalling and unmarshalling
objects, and processing JSON strings.

Sample server code does the following for each connected
client: in case the request is equal to stock, the server in-
terprets the load parameter as the stock name (e.g., MSFT)
and then sends a stock request to the Alpha Vantage Web
Service that I discussed earlier. After receiving the data, the
server sends back the Stock object containing all the stock
data fields.

To start a server, you just need to call a startsrv() scripting
function, supplying as arguments a function to be triggered
on each client connection and a port where the server is go-
ing to listen for the incoming requests. With each request,
the server expects the request name and a load object
(which can be an array of arguments).

Here’s the scripting server-side code:

counter = 0;
function serverFunc(request, obj) {
 counter++;
 if (request == "stock") {
 stockUrl = baseURL + obj + "&apikey=" +
 apikey;
 print(counter + ", request: " + stockUrl);
 data = WebRequest("GET", stockUrl, "",
 symbol);
 result = processResponse(data);
 return result;
 }
}

startsrv("serverFunc", 12345);

Note that you can change the server scripting method to
be executed on each client connection on the fly without
restarting the server. You can just update and redefine the
serverFunc method (e.g., by using the VS Code CSCS REPL
extension, mentioned earlier).

You can update the server
scripting code on the fly
without restarting the server.

� Vassili Kaplan
�

Customized Object-Oriented and Client-Server Scripting in C#

40 codemag.comBenchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

ONLINE QUICK ID 2209061

Benchmarking .NET 6 Applications
Using BenchmarkDotNet: A Deep Dive
The benchmarking technique helps determine the performance measurements of one or more pieces of code in your
application. You can take advantage of benchmarking to determine the areas in your source code that need to be optimized.
In this article, I’ll examine what benchmarking is, why benchmarking is essential, and how to benchmark .NET code using

BenchmarkDotNet. If you’re to work with the code examples
discussed in this article, you need the following installed in
your system:

•	 Visual Studio 2022
•	 .NET 6.0
•	 ASP.NET 6.0 Runtime
•	 BenchmarkDotNet

If you don’t already have Visual Studio 2022 installed on
your computer, you can download it from here: https://vi-
sualstudio.microsoft.com/downloads/.

What’s a Benchmark?
A benchmark is a simple test that provides a set of quan-
tifiable results that can help you determine whether an
update to your code has increased, decreased, or had no
effect on performance. It’s necessary to comprehend the
performance metrics of your application's methods to le-
verage them throughout the code optimization process. A
benchmark may have a broad scope or it can be a micro-
benchmark that evaluates minor changes to the source
code.

Why You Should Benchmark Code
Benchmarking involves comparing the performance of code
snippets, often against a predefined baseline. It’s a process
used to quantify the performance improvement or degrada-
tion of an application's code rewrite or refactor. In other
words, benchmarking code is critical for knowing the perfor-
mance metrics of your application's methods. Benchmarking
also allows you to zero in on the parts of the application's
code that need reworking.

There are several reasons to benchmark applications. First,
benchmarking can help to identify bottlenecks in an appli-
cation's performance. By identifying the bottlenecks, you
can determine the changes required in your source code to
improve the performance and scalability of the application.

Introducing BenchmarkDotNet
BenchmarkDotNet is an open-source library compatible with
both .NET Framework and .NET Core applications that can
convert your .NET methods into benchmarks, monitor those
methods, and get insights into the performance data col-
lected. BenchmarkDotNet can quickly transform your meth-
ods into benchmarks, run those benchmarks and obtain the
results of the benchmarking process. In the BenchmarkDot-
Net terminology, an operation refers to executing a method
decorated with the Benchmark attribute. A collection of
such operations is known as an iteration.

What’s Baselining?
Why Is It Important?
You can also mark a benchmark method as a baseline meth-
od and take advantage of baselining to scale your results.
When you decorate a benchmark method with the Baseline
attribute and set it to "true," the summary report generated
after the benchmark shows an additional column named
"Ratio.” This column has the value 1.00 for a benchmark
method that has been baselined. All other columns will have
a value relative to the Ratio column's value.

Benchmarking Application
Performance in .NET 6
It’s time for some measurements. Let’s now examine how to
benchmark the performance of .NET 6 applications. You’ll
create two applications: a console application for writing
and executing benchmarks and an ASP.NET 6 app for build-
ing an API that will be benchmarked later.

Create a New Console Application Project
in Visual Studio 2022
Let’s create a console application project that you’ll use for
benchmarking performance. You can create a project in Vi-
sual Studio 2022 in several ways. When you launch Visual
Studio 2022, you'll see the Start window. You can choose
Continue without code to launch the main screen of the
Visual Studio 2022 IDE.

To create a new Console Application Project in Visual Studio
2022:

1.	 Start the Visual Studio 2022 IDE.
2.	 In the Create a new project window, select Console

App, and click Next to move on.
3.	 Specify the project name as BenchmarkingConsoleDe-

mo and the path where it should be created in the Con-
figure your new project window.

4.	 If you want the solution file and project to be created in
the same directory, you can optionally check the Place
solution and project in the same directory checkbox.
Click Next to move on.

5.	 In the next screen, specify the target framework you
would like to use for your console application.

6.	 Click Create to complete the process.

You’ll use this application in the subsequent sections of this
article.

Install NuGet Package(s)
So far so good. The next step is to install the necessary
NuGet Package(s). To install the required packages into your

Joydip Kanjilal
joydipkanjilal@yahoo.com

Joydip Kanjilal is an MVP
(2007-2012), software
architect, author, and
speaker with more than
20 years of experience.
He has more than 16 years
of experience in Microsoft
.NET and its related
technologies. Joydip has
authored eight books,
more than 500 articles,
and has reviewed more
than a dozen books.

41codemag.com Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

{
 //Code removed for brevity
}

Setup and Cleanup
You might want to execute some code just once and you
don't want to benchmark the code. As an example, you
might want to initialize your database connection or create
an HttpClient instance to be used by other methods deco-
rated with the [Benchmark] attribute.

BenchmarkDotNet comes with a few attributes that can help
you accomplish this. These attributes are [GlobalSetup],
[GlobalCleanup], [IterationSetup], and [IterationCleanup].

You can take advantage of the GlobalSetup attribute to ini-
tialize an HttpClient instance, as shown in the code snippet
given below:

private static HttpClient _httpClient;

[GlobalSetup]
public void GlobalSetup()
{
 var factory = new
 WebApplicationFactory<Startup>()
 .WithWebHostBuilder(configuration =>
 {
 configuration.ConfigureLogging
 (logging =>
 {
 logging.ClearProviders();
 });
 });

 _httpClient = factory.CreateClient();
}

Similarly, you can take advantage of the GlobalCleanup at-
tribute to write your cleanup logic, as shown in the code
snippet below:

[GlobalCleanup]
public void GlobalCleanup()
{
 //Write your cleanup logic here
}

Benchmarking LINQ Performance
Let’s now examine how to benchmark LINQ methods. Cre-
ate a new class named BenchmarkLINQPerformance in a file
having the same name with the code shown in Listing 1.
This is a simple class that benchmarks the performance of
the Single and First methods of LINQ. Now that the bench-
mark class is ready, examine how to run the benchmark us-
ing BenchmarkRunner in the next section.

Execute the Benchmarks
As of this writing, you can use BenchmarkDotNet in a con-
sole application only. You can run benchmark on a specific
type or configure it to run on a specific assembly. The fol-
lowing code snippet illustrates how you can trigger a bench-
mark on all types in the specified assembly:

var summary = BenchmarkRunner.Run
(typeof(Program).Assembly);

project, right-click on the solution and the select Manage
NuGet Packages for Solution.... Now search for the package
named BenchmarkDotNet in the search box and install it.
Alternatively, you can type the commands shown below at
the NuGet Package Manager Command Prompt:

PM> Install-Package BenchmarkDotNet

Create a Benchmarking Class
To create and execute benchmarks:

1.	 Create a Console application project in Visual Studio 2022.
2.	 Add the BenchmarkDotNet NuGet package to the project.
3.	 Create a class having one or more methods decorated

with the Benchmark attribute.
4.	 Run your benchmark project in Release mode using the

Run method of the BenchmarkRunner class.

A typical benchmark class contains one or more methods
marked or decorated with the Benchmark attribute and,
optionally, a method that’s decorated with the GlobalSetup
attribute, as shown in the code snippet given below:

public class MyBenchmarkDemo
{
 [GlobalSetup]
 public void GlobalSetup()
 {
 //Write your initialization code here
 }

 [Benchmark]
 public void MyFirstBenchmarkMethod()
 {
 //Write your code here
 }

 [Benchmark]
 public void MySecondBenchmarkMethod()
 {
 //Write your code here
 }
}

In BenchmarkDotNet, diagnosers are attached to the bench-
marks to provide more useful information. The MemoryDi-
agnoser is a diagnoser that, when attached to your bench-
marks, provides additional information, such as the allocat-
ed bytes and the frequency of garbage collection.

Note that BenchmarkDotNet
works only with Console
applications. It won’t support
ASP.NET 6 or any other
application types.

Here's how your benchmark class looks once you've added
the MemoryDiagnoser attribute:

[MemoryDiagnoser]
public class MyBenchmarkDemo

42 codemag.com

You can use the following code snippet to run benchmarking
on a specific type:

var summary = BenchmarkRunner.Run
<BenchmarkLINQPerformance>();

Or you can use:

var summary = BenchmarkRunner.Run
(typeof(BenchmarkLINQPerformance));

For the benchmark you created in the preceding section,
you can use any of these statements in the Program class
to execute the benchmark. Figure 1 shows the results of
the benchmark:

Interpreting the Benchmarking Results
As you can see in Figure 6, for each of the benchmarked
methods, a row of the result data is generated. Because
there are two benchmark methods called using three param
values, there are six rows of benchmark result data. The
benchmark results show the mean execution time, garbage
collections (GCs), and the allocated memory.

Figure 1: Benchmarking results of Single() vs First() methods

public class BenchmarkLINQPerformance
 {
 private readonly List<string>
 data = new List<string>();

 [GlobalSetup]
 public void GlobalSetup()
 {
 for(int i = 65; i < 90; i++)
 {
 char c = (char)i;
 data.Add(c.ToString());
 }
 }

 [Benchmark]
 public string Single() =>
 data.SingleOrDefault(x => x.Equals("M"));

 [Benchmark]
 public string First() =>
 data.FirstOrDefault(x => x.Equals("M"));
 }

Listing 1: Benchmarking performance of LINQ

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

43codemag.com

The Mean column shows the average execution time of
both the methods. As is evident from the benchmark re-
sults, the First method is much faster than the Single
method in LINQ. The Allocated column shows the managed
memory allocated on execution of each of these methods.
The Rank column shows the relative execution speeds of
these methods ordered from fastest to slowest. Because
there are two methods here, it shows 1 (fastest) and 2
(slowest) for the First and Single methods respectively.

Here’s what each of the legends represent:

•	 Method: This column specifies the name of the meth-
od that has been benchmarked.

•	 Mean: This column specifies the average time or the
arithmetic mean of the measurements made on execu-
tion of the method being benchmarked.

•	 StdDev: This column specifies the standard deviation,
i.e., the extent to which the execution time deviated
from the mean time.

•	 Gen 0: This column specifies the Gen 0 collections
made for each set of 1000 operations.

•	 Gen 1: This column specifies the Gen 1 collections
made for each set of 1000 operations.

•	 Gen 2: This column specifies the Gen 2 collections
made for each set of 1000 operations. (Note that here,
Gen 2 isn’t shown because there were no Gen 2 collec-
tions in this example.)

•	 Allocated: This column specifies the managed memory
allocated for a single operation.

Benchmarking StringBuilder Performance
Let’s now examine how you can benchmark the perfor-
mance of the StringBuilder class in .NET. Create a new class
named BenchmarkStringBuilderPerformance with the code
in Listing 2.

Now, write the two methods for benchmarking performance
of StringBuilder with and without using StringBuilder-
Cache, as shown in Listing 3. The complete source code of
the BenchmarkStringBuilderPerformance class is given in
Listing 4.

Executing the Benchmarks
Write the following piece of code in the Program.cs file of
the BenchmarkingConsoleDemo console application project
to run the benchmarks:

[MemoryDiagnoser]
[Orderer(BenchmarkDotNet.Order.
SummaryOrderPolicy.FastestToSlowest)]
[RankColumn]
public class
BenchmarkStringBuilderPerformance
{
 const string message =
 "Some text for testing purposes only.";
 const int CTR = 10000;
}

Listing 2: Benchmarking performance of StringBuilder and StringBuildercache

[Benchmark]
public void WithoutStringBuilderCache()
{
 for (int i = 0; i < CTR; i++)
 {
 var stringBuilder =
 new StringBuilder();
 stringBuilder.Append(message);
 _ = stringBuilder.ToString();
 }
}

[Benchmark]
public void WithStringBuilderCache()
{
 for (int i = 0; i < CTR; i++)
 {
 var stringBuilder =
 StringBuilderCache.Acquire();
 stringBuilder.Append(message);
 _= StringBuilderCache.
 GetStringAndRelease(stringBuilder);
 }
}

Listing 3: Continued from Listing 2

[MemoryDiagnoser]
[Orderer(BenchmarkDotNet.Order.
SummaryOrderPolicy.FastestToSlowest)]
[RankColumn]
public class
BenchmarkStringBuilderPerformance
{
 const string message =
 "Some text for testing purposes only.";
 const int CTR = 10000;

 [Benchmark]
 public void WithoutStringBuilderCache()
 {
 for (int i = 0; i < CTR; i++)
 {
 var stringBuilder =
 new StringBuilder();

 stringBuilder.Append(message);
 _ = stringBuilder.ToString();
 }
 }

[Benchmark]
public void WithStringBuilderCache()
{
 for (int i = 0; i < CTR; i++)
 {
 var stringBuilder =
 StringBuilderCache.Acquire();
 stringBuilder.Append(message);
 _= StringBuilderCache.
 GetStringAndRelease(stringBuilder);
 }
 }
}

Listing 4: Benchmarking performance of StringBuilderCache

using BenchmarkingConsoleDemo;
using System.Runtime.InteropServices;
class Program
{
 static void Main(string[] args)
 {
 BenchmarkRunner.Run
 <BenchmarkStringBuilderPerformance>();
 }
}

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

44 codemag.com

StringBuilderCache is an internal class that represents a
per-thread cache with three static methods: Acquire, Re-
lease, and GetStringAndRelease. Here’s the complete source
code of this class: shorturl.at/dintW.

The Acquire method can acquire a StringBuilder instance.
The Release method can store the StringBuilder instance in
the cache if the instance size is within the maximum allowed
size. The GetStringAndRelease method is used to return a
string instance and return the StringBuilder instance to the
cache.

When you run the benchmarks this time, the output will be
similar to Figure 3.

Benchmarking ASP.NET 6 Applications
In this section, you’ll examine how to benchmark ASP.NET 6
applications to retrieve performance data.

Create a New ASP.NET 6 Project in Visual Studio 2022
You can create a project in Visual Studio 2022 in several
ways. When you launch Visual Studio 2022, you'll see the
Start window. You can choose "Continue without code" to
launch the main screen of the Visual Studio 2022 IDE.

To execute the benchmarks, set the compile mode of the
project to Release and run the following command in the
same folder where your project file resides:

dotnet run -p
BenchmarkingConsoleDemo.csproj -c Release

Figure 2 shows the result of the execution of the benchmarks.

The following code snippet illustrates how you can mark the
WithStringBuilderCache benchmark method as a baseline
method.

[Benchmark (Baseline = true)]
public void WithStringBuilderCache()
{
 for (int i = 0; i < CTR; i++)
 {
 var stringBuilder =
 StringBuilderCache.Acquire();
 stringBuilder.Append(message);
 _= StringBuilderCache.
 GetStringAndRelease(stringBuilder);
 }
}

Figure 2: Benchmarking StringBuilder performance

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

45codemag.com

To create a new ASP.NET 6 Project in Visual Studio 2022:

1.	 Start the Visual Studio 2022 IDE.
2.	 In the “Create a new project” window, select “ASP.NET

Core Web API” and click Next to move on.
3.	 Specify the project name as BenchmarkingWebDemo

and the path where it should be created in the “Config-
ure your new project” window.

4.	 If you want the solution file and project to be cre-
ated in the same directory, you can optionally check
the “Place solution and project in the same directory”
checkbox. Click Next to move on.

5.	 In the next screen, specify the target framework and
authentication type as well. Ensure that the "Configure
for HTTPS," "Enable Docker Support," and the “Enable
OpenAPI support” checkboxes are unchecked because
you won’t use any of these in this example.

6.	 Because you'll be using minimal APIs in this example,
remember to uncheck the Use controllers (uncheck to
use minimal APIs) checkbox, as shown in Figure 4.

7.	 Click Create to complete the process.

Minimal API is a new feature added in .NET 6 that en-
ables you to create APIs with minimal dependencies.
You’ll use this application in this article. Let’s now get

Figure 3: The performance of benchmark methods with one of them set as a baseline method

Figure 4: Enable minimal APIs for your Web API

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

46 codemag.com

var factory = new WebApplicationFactory
<Startup>()
 .WithWebHostBuilder(configuration =>
 {
 configuration.ConfigureLogging
 (logging =>
 {
 logging.ClearProviders();
 });

started benchmarking ASP.NET applications with a simple
method.

Get the Response Time in ASP.NET 6
You can easily get the response time of an endpoint using
BenchmarkDotNet. To execute the ASP.NET 6 endpoints, you
can use the HttpClient class. To create an instance of Http-
Client, you can use the WebApplicationFactory, as shown in
the code snippet given below:

Figure 5: Benchmarking results of the response time of an API endpoint

public class BenchmarkAPIPerformance
{
 private static HttpClient _httpClient;

 [GlobalSetup]
 public void GlobalSetup()
 {
 var factory = new WebApplicationFactory
 <Startup>()
 .WithWebHostBuilder(configuration =>
 {
 configuration.
 ConfigureLogging(logging =>
 {
 logging.ClearProviders();
 });

 });

 _httpClient =
 factory.CreateClient();
 }

 [Benchmark]
 public async Task GetResponseTime()
 {
 var response =
 await _httpClient.GetAsync("/");
 }
}

Listing 5: Benchmarking response time of an API

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

47codemag.com

Let’s create another entity class named ProductOptimized,
which is a replica of the Product class but optimized for im-
proving performance. The following code snippet illustrates
the ProductOptimized class:

public struct ProductOptimized
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public int Category { get; set; }
 public decimal Price { get; set; }
 }

In the ProductOptimized class, you’ve changed the data type of the
ID and the Category properties of the Product class with integers.

Create the Product Repository
Create a new class named ProductRepository in a file having
the same name with a .cs extension. Now write the following
code in there:

public class
ProductRepository :
IProductRepository
 {

 }

The ProductRepository class illustrated in the code snippet
below, implements the methods of the IProductRepository
interface. Here is how this interface should look:

public interface IProductRepository
{
 public Task<List<Product>> GetAllProducts();
 public Task<List<ProductOptimized>>
 GetAllProductsOptimized();
}

The ProductRepository class implements the two methods of
the IProductRepository interface:

public Task<List<Product>>
GetAllProducts()

 });
 _httpClient = factory.CreateClient();

To benchmark the response time of an endpoint, you can use
the following code:

[Benchmark]
 public async Task GetResponseTime()
 {
 var response =
 await _httpClient.GetAsync("/");
 }

The complete source code is given in Listing 5 for your ref-
erence. The benchmark results are shown in Figure 5.

Real-World Use Case of
BenchmarkDotNet
In this section, you’ll examine how to take advantage of
BenchmarkDotNet to measure the performance of an appli-
cation, determine the slow running paths, and take neces-
sary steps to improve the performance. You’ll use an entity
class named Product that contains a Guid field named Id.
Note that a call to Guid.NewGuid consumes resources and
is slow.

If you replace the Guid property with an int property, it
consumes significantly fewer resources and improves per-
formance. You’ll create an optimized version of the Product
class and then benchmark the performance of both these
classes.

Create the Entity Classes
In the Solution Explorer Window, right-click on the project
and create a new file named Product with the following code
in there:

public class Product
{
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
}

private List<Product> GetProductsInternal()
{
 List<Product> products =
 new List<Product>();

 for(int i=0; i<1000;i++)
 {
 Product product = new Product
 {
 Id = Guid.NewGuid(),
 Name = "Lenovo Legion",
 Category = "Laptop",
 Price = 3500
 };
 }
 return products;
}

private List<ProductOptimized>

GetProductsOptimizedInternal()
{
 List<ProductOptimized> products = new
 List<ProductOptimized>(1000);

 for (int i = 0; i < 1000; i++)
 {
 ProductOptimized product =
 new ProductOptimized
 {
 Id = i,
 Name = "Lenovo Legion",
 Category = 1,
 Price = 3500
 };
 }
 return products;
}

Listing 6: The GetProducts and GetProductsOptimized methods

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

48 codemag.com

The GetProductsInternal method creates a List of the Prod-
uct class. It uses the Guid.NewGuid method to generate new
Guids for the ID field. Hence, it creates 1000 new Guids,
one for each instance of the Product class. Contrarily, the
GetProductsOptimizedInternal method creates a List of the
ProductOptimized class. In this class, the ID property is an
integer type. So, in this method, 1000 new integer IDs are
created. Create new Guids is resource intensive and much
slower than creating an integer.

Note that this implementation has been made as simple as
possible because my focus is on how you can benchmark the
performance of these methods.

The source code given in Listing 6 illustrates the GetProd-
uctsInternal and GetProductsOptimizedInternal methods.
Note that in the GetProductsOptimizedInternal method, a
list of ProductOptimized entity class is created and the size
of the list has been specified as well.

{
 return Task.FromResult
 (GetProductsInternal());
}

public Task<List<ProductOptimized>>
GetAllProductsOptimized()
{
 return Task.FromResult
 (GetProductsOptimizedInternal());
}

Although the GetAllProducts method returns a list of the
Product class, the GetAllProductsOptimized method returns
a list of the ProductOptimized class you created earlier.
These two methods call the private methods named Get-
ProductsInternal and GetProductsOptimizedInternal respec-
tively. These private methods return a List of Product and
ProductOptimized class respectively.

Figure 6: The benchmarking results of the GetProducts and GetProductsOptimized methods

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

49codemag.com

on a single method, module, or entire application to check
the performance of the code without affecting its func-
tionality. Remember that to improve the performance and
scalability of your application, you must adhere to the best
practices, if not, merely benchmarking your application’s
code won’t help.

Create the Endpoints
You’ll create two endpoints, GetProducts and GetProduct-
sOptimized, and then benchmark them. Because you’re us-
ing minimal API in this example, write the following code
snippet in the Program class of your ASP.NET 6 Web API proj-
ect to create the two endpoints:

app.MapGet("/GetProducts", async
(IProductRepository productRepository) =>
{
 return Results.Ok(await
productRepository.GetAllProducts());
});

app.MapGet("/GetProductsOptimized", async
(IProductRepository productRepository) =>
{
 return Results.Ok(await
productRepository.GetAllProductsOptimized());
});

Create the Benchmarks
Let’s now create the benchmarking class that contains the
methods to be benchmarked using BenchmarkDotNet. To
do this, create a class named BenchmarkManager in a file
with the same name and a .cs extension and write the code
shown in Listing 7 in there.

The two methods that need to be benchmarked are the
GetProducts and GetProductsOptimized methods. Note the
Benchmark attribute on each of these methods. These two
methods use the HttpClient instance to execute the two end-
points GetProducts and GetProductsOptimized respectively.

Figure 6 shows the output of the execution of benchmarks. As you
can see, the GetProductsOptimized consumes less memory and is
much faster than its counterpart, i.e., the GetProducts method.

Conclusion
BenchmarkDotNet is a compelling and easy-to-use frame-
work to benchmark .NET code. You can execute a benchmark

[MemoryDiagnoser]
public class BenchmarkAPIPerformance
{
 private static HttpClient _httpClient;

 [Params(1, 25, 50)]
 public int N;

 [GlobalSetup]
 public void GlobalSetup()
 {
 var factory =
 new WebApplicationFactory<Startup>()
 .WithWebHostBuilder(configuration =>
 {
 configuration.
 ConfigureLogging(logging =>
 {
 logging.ClearProviders();
 });
 });
 _httpClient = factory.CreateClient();
 }

 [Benchmark]
 public async Task GetProducts()
 {
 for(int i = 0;i < N; i++)
 {
 var response =
 await _httpClient.
 GetAsync("/GetProducts");
 }
 }

 [Benchmark]
 public async Task GetProductsOptimized()
 {
 for (int i = 0; i < N; i++)
 {
 var response =
 await _httpClient.
 GetAsync("/GetProductsOptimized");
 }
 }
 }

Listing 7: Benchmarking performance of GetProducts and GetProductsOptimized API methods

SPONSORED SIDEBAR:

Get .NET 6 Help for Free

How does a FREE hour-long
CODE Consulting virtual
meeting with our expert
.NET consultants sound?
Yes, FREE. No strings.
No commitment. No credit
cards. Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

� Joydip Kanjilal
�

Benchmarking .NET 6 Applications Using BenchmarkDotNet: A Deep Dive

codemag.com

ONLINE QUICK ID 2209071

50 Event Sourcing and CQRS with Marten

Event Sourcing and CQRS with Marten
In this article, I’m going to examine the usage of Event Sourcing and the Command Query Responsibility Segregation (CQRS)
architectural style through a sample telehealth medicine application. For tooling, I’m going to use the Marten library (https://
martendb.io), which provides robust support for Event Sourcing on top of the Postgresql database engine. Before I move

Jeremy D. Miller
jeremydmiller@yahoo.com
www.jeremydmiller.com
@jeremydmiller

Jeremy Miller is the Senior
Director of Software Archi-
tecture at MedeAnalytics.
Jeremy began his software
career writing “Shadow IT”
applications to automate
his tedious engineer-
ing documentation, then
wandered into software
development because it
looked like more fun.
Jeremy is heavily involved
in open source .NET
development as the lead
developer of Marten,
Lamar, Alba, and other
projects in the JasperFx
family. Jeremy occasionally
manages to write about
various software topics
at http://jeremydmiller.com.

on to Event Sourcing though, let’s think about the typical
role of a database within your systems that don’t use Event
Sourcing. For most of my early career as a software pro-
fessional, I assumed that system state would be persisted
in a relational database that would act as the source of
truth for the system. Very frequently, I’ve visualized sys-
tems with something like the simple layered view shown
in Figure 1.

With this typical architecture, almost all input and output
of the system will involve reading or writing to this one da-

tabase. Different use cases will have different needs, so at
various times I might need to write explicit code to:

•	 Map the middle tier model to the database tables
•	 Map incoming input from outside the system to the

database tables
•	 Translate the internal database to different structures

for outgoing data in Web services

The point I’m trying to make here is that the single database
model can easily bring with it a fair amount of mechanical

codemag.com Event Sourcing and CQRS with Marten

effort in translating the one database structure to the spe-
cific needs of various system input or output—and I’ll need
to weigh this effort when I compare the one database model
to the Event Sourcing and CQRS approach I’ll examine later.

I’ve also long known that in the industry, no one database
structure can be optimized for both reading and writing, so
I might very well try to support a separate, denormalized
database specifically for reporting. That reporting database
will need to be synchronized somehow from the main trans-
actional database. This is just to say that the idea of hav-
ing essentially the same information in multiple databases
within the software architectures is not exactly new.

Alternative approaches using Event Sourcing or CQRS can
look scary or intimidating upon your first exposure. Myself,
I walked out after a very early software conference presen-
tation in 2008 on what later became known as CQRS shak-
ing my head and thinking that it was completely crazy and
would never catch on, yet here I am, recommending this
pattern for some systems.

Telehealth System Example
Before diving into the nomenclature or concepts around
Event Sourcing or CQRS architectures, I want to consider a
sample problem domain. Hastened by the COVID pandem-
ic, “telehealth” approaches to health care, where you can
speak to a health care provider online without having to
make an in-office visit, rapidly became widespread. Imagine
that I’m tasked with building a new website application that
allows potential patients to request an appointment, con-
nect with a provider (physician, nurse, nurse practitioner,
etc.), and host the online appointments.

The system will need to provide functionality to coordinate
the on-call providers. In this case, I’m going to attempt to
schedule the appointments as soon as a suitable provider
is available, so I’ll need to be able to estimate expected
wait times. I do care about patient happiness and want
the providers working with the system and to have a good
experience with the system, so it’s going to be important
to be able to collect a lot of metrics to help adjust staff-
ing. Moreover, I need to plan for problems during a normal
business day and give the administrative users the ability to
understand what transpired during the day that might have
caused patient wait times to escalate. Figure 1: Traditional layered architecture

Moreover, because this is related to health care, I should
plan on having some pretty stringent requirements for au-
diting all activity within the system through a formal audit
log.

This sample problem domain
is based on a project I was a part
of where I successfully used
Event Sourcing, but on a very
different technical stack.

Event Sourcing
Event Sourcing is an architectural approach to data persis-
tence that captures all incoming data as an append-only
event log. In effect, you’re making the logical change log into
the single source of truth in your system. Rather than model-
ing the current state of the system and trying to map every
incoming input and outgoing query to this centralized state,
event sourcing explicitly models the changes to the system.

So how does it work? First, let’s do some modeling of the
online telehealth system. Just considering events around
the online appointments I might model events for:

•	 Appointment Requested
•	 Appointment Scheduled

51

codemag.com52 Event Sourcing and CQRS with Marten

The events are organized into streams of related events
that model a single workflow within the system. In the tele-
health system, there are event streams for:

•	 Appointments
•	 Provider Shift to model the activity of a single provider

during a single day

Although events in an Event Sourcing approach are the
source of truth, you do still need to understand the cur-
rent system state to support incoming system commands or
supply clients with queries against the system state. This is
where the concept of a projection comes into play. A projec-
tion is a view of the underlying events suitable for providing
the write model to validate or apply incoming commands or
a read model that’s suitable for usage by system queries.
If you’re familiar with the concept of materialized views in
relational database engines, a projection in a system based
on Event Sourcing plays a very similar role.

The advantages, or maybe just the applicability, of Event
Sourcing are:

•	 It creates a rich audit log of business activity.
•	 It supports the concept of “Time Travel” or temporal

querying to be able to analyze the state of the system
in the past by selectively replaying events.

•	 Appointment Started
•	 Appointment Finished
•	 Appointment Cancelled

These events are small types carrying data that models
the change of state whenever they’re recorded. Do note
that the event type names are expressed in the past tense
and are directly related to the business domain. The event
name by itself can be important in understanding the
system behavior. As an example, here’s a C# version of
AppointmentScheduled that models whether the appoint-
ment is assigned to a certain provider (medical profes-
sional):

public record AppointmentScheduled(
 Guid ProviderId,
 DateTimeOffset EstimatedTime
);

Taking Marten as a relatively typical approach, these event
objects are persisted in the underlying database as seri-
alized JSON in a single table that’s ordered sequentially
by the order in which the events are appended. Like oth-
er event stores, Marten also tracks metadata about the
events, like the time the event was captured, and poten-
tially more data related to distributed tracing, like correla-
tion identifiers.

Figure 2: Scary, complicated CQRS architecture

codemag.com 53Event Sourcing and CQRS with Marten

Keep Your Streams Short

Although it’s technically
possible and maybe a little
tempting to just throw all
your events into one logical
stream, you’re more likely
to be successful by dividing
the event store into shorter
streams.

Marten can be vulnerable to
concurrent access problems if
appending simultaneously to
the same stream. Separating
the event store into smaller
streams avoids that issue.

The next step—but don’t think for a minute that this must
be a linear flow and that you shouldn’t iterate between
steps at any time—is to identify the commands or input to
the system that will cause the previously identified events
in the system. These commands are recorded as blue notes
just to the left of the event or events that the command may
cause in the system. The nomenclature, in this case, is in
the present tense, like “Request Appointment.”

In the third step, try to identify the business entities you’ll
need in order to process the incoming command inputs and
decide which events should be raised. In Event Storming
(and Event Sourcing) nomenclature, these are referred to as
“Aggregates.” In the case of the telehealth, I’ve identified
the need to have an Appointment aggregate that reflects
the current state of an ongoing or requested patient ap-
pointment and a “Provider Shift” to track the time and ac-
tivity of a provider during a particular day. These aggregates
are captured in yellow cards and posted to the board.

Beyond that, you can optionally use:

•	 Green cards to denote informational views that users
of the system need to access to carry out their work.
In the case of the telehealth system, I’m calling out
the need for a Board view that represents a related
group of appointments and providers during a single
workday. For example, pediatric appointments in the
state of Texas on July 18, 2022 are a single Board.

•	 Significant business logic processes that potentially
create one or more domain events are recorded in
purple notes. In the telehealth example, there’s go-
ing to be some kind of “matching logic” that tries to
match appropriate providers with the incoming ap-
pointments based on a combination of availability,
specialty, and the licensure of the provider.

•	 External system dependencies can be written down
on pink cards to record their existence. In this case,
I’ll probably use Twilio, or something similar, to host
any kind of embedded chat or teleconferencing, so I’m
noting that in the Event Storming session.

Figure 3 shows a sample for what an Event Storming session
on the telehealth system might look like.

I’m a big fan of Event Storming to discover requirements
and to create a common understanding of the business do-
main. Event Storming stands apart from many traditional
requirements elicitation techniques by directly pointing the
way toward the artifacts in your code. Event Storming ses-
sions are a great way to discover the ubiquitous language
for the system that is a necessary element of doing domain-
driven development (DDD).

Getting Started with Marten
To get started with Marten as your event store, you’ll first
need a Postgresql database. My preference for local devel-
opment is to use Docker to run the development database,
and this is a copy of a docker-compose.yaml file that will
get you started:

version: '3'
services:
 postgresql:
 image: "clkao/postgres-plv8:latest"

•	 Using Event Sourcing makes it possible to retrofit po-
tentially valuable metrics about the system after the
fact by again replaying the events.

•	 Event Sourcing fits well with asynchronous program-
ming models and event-driven architectures.

•	 Having the event log can often clarify system behav-
ior.

Command Query Responsibility
Segregation
CQRS is an architectural pattern that calls for the system
state to be divided into separate models. The write model
is optimized for transactions and is updated by incoming
commands. The read model is optimized for queries to
the system. As you’ll rightly surmise, something has to
synchronize and transform the incoming write model to
the outgoing read model. That leads to the architectural
diagram in Figure 2, which I think of as the “scary view
of CQRS.”

In this common usage of CQRS, there’s some kind of back-
ground process that’s asynchronously and continuously ap-
plying data updates to the write model to update the read
model. This can lead to extra complexity through more nec-
essary infrastructure compared to the classic “one database
model” system model. I don’t believe this is necessarily
more code than using the traditional one database model.
Rather, I would say that the hidden mapping and translation
code in the one database model is much more apparent in
the CQRS approach.

Event Sourcing and CQRS can be used independently of each
other, but you’ll very frequently see these two techniques
used together. Fortunately, as I’ll show in the remainder of
this article, Marten can help you create a simpler architec-
ture for CQRS with Event Sourcing than the diagram above.

Requirements through Event Storming
Event Storming (https://www.eventstorming.com/) is a
very effective requirements workshop format to help a de-
velopment team and their collaborating business partners
understand the requirements for a software system. As the
name suggests, Event Storming is a natural fit with Event
Sourcing (and CQRS architectures).

Although there are software tools to do Event Storming
sessions online, the easiest way to get started with Event
Storming is to grab some colored sticky notes, a couple of
markers, and convene a session with both the development
team and the business domain experts near a big white-
board or a blank wall.

The first step is to start brainstorming on the domain events
within the business processes. As you discover these logical
events, you’ll write the event name down on an orange card and
stick it on the board. As an example from the telehealth prob-
lem domain, some events might be “Appointment Requested”
or “Appointment Scheduled” or “Appointment Cancelled.” Note
that these events are named tersely and are expressed in the
past tense. As much as possible, you want to try to organize the
events in the sequential order in which they occur within the
system. If using a whiteboard, I also like to add some ad hoc
arrows to delineate possible branching or relationships, but
that’s not part of the formal Event Storming approach.

codemag.com54

 "marten": "connection string"
 }
}

To enable some administrative command line tooling that
I’ll use later, replace the last line of code in the generated
Program file with this call:

// This is using the Oakton library
await app.RunOaktonCommands(args);

Appending Events with Marten
Marten (https://martendb.io) started its life as a library to
allow .NET developers to exploit the robust JSON support in
the Postgresql database engine as a full-fledged document
database with a small event sourcing capability bolted onto
the side. As Marten and Marten’s community have grown,
the event sourcing functionality has matured and probably
drives most of the growth of Marten at this point.

In the telehealth system, I’ll write the very simplest pos-
sible code to append events for the start of a new Provid-
erShift stream. First though, let’s add some event types for
the ProviderShift workflow:

public record ProviderAssigned(
 Guid AppointmentId);
public record ProviderJoined(Guid BoardId,
 Guid ProviderId);
public record ProviderReady();
public record ProviderPaused();
public record ProviderSignedOff();
public record ChartingFinished();
public record ChartingStarted();

I’m assuming the usage of .NET 6 or above here, so it’s le-
gal to use C# record types. That isn’t mandatory for Mar-
ten usage, but it’s convenient because events should never
change during the lifetime of the system. Mostly for me

 ports:
 - "5433:5432"

Assuming that you have Docker Desktop installed on your
local development computer, you just need to type this in
your command line at the same location as the file above:

docker compose up -d

The command above starts the Docker container in the
background. Next, let’s start a brand new ASP.NET Core Web
API project with this command:

dotnet new webapi

And let’s add a reference to Marten with some extra com-
mand line utilities you’ll use later with:

dotnet add package Marten.CommandLine

Switching to the application bootstrapping in the Program
file created by the dotnet new template that I used, I’ll add
the following code:

builder.Services.AddMarten(opts =>
 {
 var connString = builder
 .Configuration
 .GetConnectionString("marten");

 opts.Connection(connString);

 // There will be more here later...
});

Last, I’ll add an entry to the appsettings.json file for the
database connection string:

{
 "ConnectionStrings": {

Figure 3: Event Storming sample

Event Sourcing and CQRS with Marten

codemag.com 55

 public string Name { get; init; }
 public Guid? AppointmentId { get; set; }

 // More here in just a minute...
}

Hopefully you’ll be able to trace how all of this information
could be gleaned from the event records like ProviderReady
that I defined earlier. In essence, what you need to do is to
apply the “left fold” concept from functional programming
to combine all the events for a single ProviderShift event
stream into that structure above.

The one exception is the ProviderShift.Version property.
One of Marten’s built-in naming conventions (which can be
overridden) is to treat any public member of an aggregated
type with the name “Version” as the stream version, such
that when Marten applies the events to update the project-
ed document, this member is set by Marten to be the most
recent version number of the stream itself. To make that
concrete, if a ProviderShift stream contains four events,
then the version of the stream itself is 4.

As the simplest possible example, I’m going to use Mar-
ten’s self-aggregate feature to add the updates by event
directly to the ProviderShift type up above. Do note that
it’s possible to use an immutable aggregate type for this
inside of Marten, but I’m choosing to use a mutable object
type just because that leads to simpler code. In real usage,
be aware that opting for immutable aggregate types works
the garbage collection in your system harder by spawning
more object allocations. Also, be careful with immutable

though, using C# records just makes the code very terse
and easily readable.

If you’re interested, the underlying table structure for
streams and events that Marten generates is shown in List-
ing 1 and Listing 2.

You’ll also notice that I’m not adding a lot of members to
most of the events. As you’ll see in the next code sample,
Marten tags all these captured events to the provider shift
ID anyway. Just the name of the event type by itself denotes
a domain event, so that’s informative. In addition, Marten
tags each event captured with metadata like the event type,
the version within the stream, and, potentially, correlation
and causation identifiers.

Now, on to appending events with Marten. In the following
code sample, I spin up a new Marten DocumentStore that’s
the root of any Marten usage, then start a new ProviderShift
stream with a couple initial events:

// This would be an input
var boardId = Guid.NewGuid();

var store = DocumentStore
 .For("connection string");

using var session = store.LightweightSession();

session.Events.StartStream<ProviderShift>(
 new ProviderJoined(boardId),
 new ProviderReady()
);

await session.SaveChangesAsync();

Similar to Entity Framework Core’s DbContext type, the
Marten IDocumentSession represents a unit of work that I
can use to organize transactional boundaries by gathering
up work that should be done inside of a single transaction,
then helping to commit that work in one native Postgresql
transaction. From the Marten side of things, it’s perfectly
possible to capture events for multiple event streams and
even a mix of document updates within one IDocument-
Session.

Projections with Marten
Now that you know how to append events, the next step is
to have the provider events projected into a write model
representing the state of the ProviderShift that you’ll need
later. That’s where Marten’s projection model comes into
play.

As a simple example, let’s say that you want all of the pro-
vider events for a single ProviderShift rolled up into this
data structure:

public class ProviderShift
{
 public Guid Id { get; set; }
 public int Version { get; set; }
 public Guid BoardId { get; private set; }
 public Guid ProviderId { get; init; }
 public ProviderStatus Status {
 get; private set; }

CREATE TABLE mt_streams (
 id uuid NOT NULL,
 type varchar NULL,
 version bigint NULL,
 timestamp timestamptz NOT NULL DEFAULT (now()),
 snapshot jsonb NULL,
 snapshot_version integer NULL,
 created timestamptz NOT NULL DEFAULT (now()),
 tenant_id varchar NULL DEFAULT '*DEFAULT*',
 is_archived bool NULL DEFAULT FALSE,
CONSTRAINT pkey_mt_streams_id PRIMARY KEY (id)
);

Listing 1: Stream Table

CREATE TABLE mt_events (
 seq_id bigint NOT NULL,
 id uuid NOT NULL,
 stream_id uuid NULL,
 version bigint NOT NULL,
 data jsonb NOT NULL,
 type varchar(500) NOT NULL,
 timestamp timestamp with time zone NOT NULL DEFAULT '(now())',
 tenant_id varchar NULL DEFAULT '*DEFAULT*',
 mt_dotnet_type varchar NULL,
 is_archived bool NULL DEFAULT FALSE,
CONSTRAINT pkey_mt_events_seq_id PRIMARY KEY (seq_id)
);

ALTER TABLE mt_events
ADD CONSTRAINT fkey_mt_events_stream_id FOREIGN KEY(stream_id)
REFERENCES cli.mt_streams(id)ON DELETE CASCADE;

Listing 2: Events Table

Event Sourcing and CQRS with Marten

codemag.com56

Events are Immutable

In most of the literature you’ll
see about Event Sourcing, the
strong recommendation is
to assume that event data is
immutable. That’s not to say
that you should plan on event
data being infallible.

Rather than reaching into the
database to correct erroneous
event data, you can use
additional, corrective events
to “fix” any errors.

// for the just concluded appointment
public void Apply(ChartingStarted charting) =>
 Status = ProviderStatus.Charting;

Again, to be clear, these methods are added directly to the
ProviderShift class to teach Marten how to apply events to
the ProviderShift aggregate.

Let’s move on to applying the aggregate with Marten’s “live
aggregation” mode:

public async Task access_live_aggregation(
 IQuerySession session,
 Guid shiftId)
{
 // Fetch all the events for the stream, and
 // apply them to a ProviderShift aggregate
 var shift = await session
 .Events
 .AggregateStreamAsync<ProviderShift>(
 shiftId);
}

In the code above, IQuerySession is a read-only version of
Marten’s IDocumentSession that’s available in your appli-
cation’s Dependency Injection container in a typical .NET
Core application. The code above is fetching all the captured
events for the stream identified by shiftId, then passed one
at a time, in order, to the ProviderShift aggregate to create
the current state from the events.

This usage queries for every single event for the stream,
and deserializes each event object from persisted JSON in
the database, so it could conceivably get slow as the event
stream grows. Offhand, I’m guessing that I’m probably okay
with the ProviderShift aggregation only happening “live,”
but I do have other options.

The second option is to use Marten’s “inline” lifecycle to
apply changes to the projection at the time that events are
captured. To use this, I’m going to need to do just a little bit
of configuration in the Marten set up:

var store = DocumentStore.For(opts =>
{
 opts.Connection(“connection string”);
 opts.Projections
 .SelfAggregate<ProviderShift>(
 ProjectionLifecycle.Inline);
});

Now, when I capture events against a ProviderShift event
stream, Marten applies the new events to the persisted
ProviderShift aggregate for that stream, and updates the
aggregated document and appends the events in the same
transaction for strong consistency:

var shiftId = session.Events.StartStream<ProviderShift>(
 new ProviderJoined(boardId),
 new ProviderReady()
).Id;

// The ProviderShift aggregate will be
// updated at this time
await session.SaveChangesAsync();

aggregates because that can occasionally bump into JSON
serialization issues that are easily avoidable with mutable
aggregate types.

In this case, the event stream within the application should
be started with the ProviderJoined event, so I’ll add a meth-
od to the ProviderShift type up above that creates a new
ProviderShift object to match that initial ProviderJoined
event, like so:

public static async Task<ProviderShift> Create(
 ProviderJoined joined,
 IQuerySession session)
{
 var p = await session
 .LoadAsync<Provider>(joined.ProviderId);

 return new ProviderShift
 {
 Name = $"{p.FirstName} {p.LastName}",
 Status = ProviderStatus.Ready,
 ProviderId = joined.ProviderId,
 BoardId = joined.BoardId
 };
}

A couple notes about the code above:

•	 There’s no interface or mandatory base class of any
kind from Marten in this usage, just naming conven-
tions.

•	 The method name Create() with the first argument
type being ProviderJoined exercises a naming con-
vention in Marten to identify this method as taking
part in the projection.

•	 The Marten team urges some caution with this, but it’s
possible to query Marten for additional information
inside the Create() method by passing in the Marten
IQuerySession object.

•	 As implied by this code, it’s quite possible with Marten
to store reference or relatively static data like basic
information about a provider (name, phone number,
qualifications) in a persisted document type while also
using the Marten event store capabilities.

Now let’s add some additional methods to handle other
event types. The easiest thing to do is to add more methods
named Apply(event type) like this one:

public void Apply(ProviderReady ready)
{
 AppointmentId = null;
 Status = ProviderStatus.Ready;
}

public void Apply(ProviderAssigned assigned)
{
 Status = ProviderStatus.Assigned;
 AppointmentId = assigned.AppointmentId;
}

Or even better, if the resulting method can be a one line,
use the newer C# method expression option:

// This is kind of a catch all for any paperwork
// the provider has to do after an appointment

Event Sourcing and CQRS with Marten

codemag.com 57

public async Task time_travel(
 IQuerySession session,
 Guid shiftId,
 DateTimeOffset atTime)
{
 // Fetch all the events for the stream, and
 // apply them to a ProviderShift aggregate
 var shift = await session
 .Events
 .AggregateStreamAsync<ProviderShift>(
 shiftId,
 timestamp:atTime);
}

In this usage, Marten queries for all the events for the given
ProviderShift stream up to the point in time expressed by
the atTime argument and calculating the projected state
at that time. Inside of this fictional telehealth system, it
might very well be valuable for the business to replay events
throughout the day to understand how the appointments
and provider interaction played out and diagnose schedul-
ing delays.

Projecting Events to a Flat Table
One of the advantages of Marten is that it allows you to
be flexible in your persistence approach within a single
database engine without having to introduce yet more in-
frastructure. Marten was originally built to be a document
database with a nascent event store capability over the top
of the existing Postgresql database engine, but the event
store functionality has matured greatly since then. In addi-
tion, Postgresql is a great relational database engine, so I
can even take advantage of that and write projections that
write some of the events to a plain old SQL table.

Back to the fictional telehealth system, one of the features
I’ll absolutely need is the ability to predict the wait times

// Load the persisted ProviderShift right out
// of the database
var shift = await session
 .LoadAsync<ProviderShift>(shiftId);

Right here, you can hopefully see the benefit of Marten
coming with both a document database feature set and
the event store functionality. Without any additional con-
figuration, Marten can store the projected ProviderShift
documents directly to the underlying Postgresql database.

Lastly, there’s one last choice. I can use eventual consis-
tency and allow the ProviderShift aggregate to be built in
an asynchronous manner in background threads. This is
going to require a little more configuration, though, as
I need to be using the full application bootstrapping, as
shown below:

builder.Services.AddMarten(opts =>
{
 // This would typically come from config
 opts.Connection("connection string");

 opts.Projections
 .SelfAggregate<ProviderShift>(
 ProjectionLifecycle.Async);
})

 // This adds a hosted service to run
 // asynchronous projections in the background
 .AddAsyncDaemon(DaemonMode.HotCold);

As shown in Figure 4, Marten has an optional subsystem
called the “async daemon” that’s used to process asynchro-
nous projections with an eventual consistency model in a
background process.

The async daemon runs as a .NET IHostedService in a back-
ground thread. The daemon constantly scans the underlying
event store tables and applies new events to the registered pro-
jections. In the case of the ProviderShift aggregation, the async
daemon applies new incoming events like the ProviderReady or
ProviderAssigned events that are handled by the ProviderShift
aggregate to update the ProviderShift aggregate documents
and persists them using Marten’s document database function-
ality. The async daemon comes with guarantees to:

•	 Apply events in sequential order
•	 Apply all events at least once

The async daemon is an example of eventual consistency
where the query model (the ProviderShift aggregate in this
case) is updated to match the incoming events rather than
the strong consistency model allowed by Marten’s inline
projection lifecycle.

To summarize the projection lifecycles in Marten and their
applicability, refer to Table 1.

Time Travel
One of the advantages of using Event Sourcing is the ability
to use “time travel” to replay events up to a certain time
to recreate the state of the system at a certain time or at a
certain revision. In the sample below, I’m going to recreate
the state of a given ProviderShift at a time in the past:

Task Description

Live The projected documents are evaluated from the raw events on demand. This
lifecycle is recommended for short event streams or in cases where you want to
optimize much more for fast writes with few reads.

Inline The projected documents are updated and persisted at the time of event capture,
and in the same database transaction for a strong consistency model.

Async Projections are updated from new events in a background process. This lifecycle
should be used any time there’s a concern about concurrent updates to a projected
document and should almost always be used for projections that span multiple
event streams.

Table 1: Marten Projection Lifecycles

Figure 4: CQRS with Marten

Event Sourcing and CQRS with Marten

codemag.com58

 .Add<AppointmentDurationProjection>(
 ProjectionLifecycle.Async);

 // OR ???

 opts.Projections
 .Add<AppointmentDurationProjection>(
 ProjectionLifecycle.Inline);
});

There’s a decision to be made about the new Appointment-
DurationProjection that I’m adding to a system that’s
already in production. If I make the AppointmentDura-
tionProjection asynchronous and deploy that change to
production, the Marten async daemon attempts to run every
historical event from the beginning of the system through
this new projection until it has eventually reached what
Marten calls the “high water mark” of the event store, and
then continues to process new incoming events at a normal
pace.

There’s the concept of stream
archival in Marten that you
can use to avoid the potential
performance problem of having
to replay every event from
the beginning of the system.

If, instead, I decide to make the new AppointmentDura-
tionProjection run inline with event capture transactions,
that new table only reflects events that are captured from
that point on. And maybe that’s perfectly okay for the pur-
poses here.

But what if, instead, I want that new projection to run inline
and also want it applied to every historical event? That’s the
topic of the next section.

Replaying Events or Rebuilding
Projections
It’s an imperfect world, and there will occasionally be rea-
sons to rebuild the stored document or data from a pro-
jection against the persisted events. Maybe I had a reason
to change how the projection was created or structured?
Maybe I’ve added a new projection? Maybe, due to inter-
mittent errors of some sort, the async daemon had to skip
over some missing events or there was some sort of “poison
pill” event that Marten had to skip over due to errors in the
projection code?

The point is that the events are the single source of truth,
the stored projection data is a read only view of that raw
data, and I can rebuild the projections from the raw events
later.

Here’s an example of doing this rebuild programmatically:

public async Task rebuild_projection(
 IDocumentStore store,

that patients should expect when they request an appoint-
ment. To support that calculation, the system needs to track
statistics about how long appointments last during differ-
ent times of the day. To that end, I’m going to add another
projection against the same events I’m already capturing,
but this time, I’m going to use Marten’s EventProjection
recipe that allows me to be more explicit about how the
projection handles events.

First, I’m going to start a new class for this projection and
define through Marten itself what the table structure is:

public AppointmentDurationProjection()
{
 // Defining an extra table so Marten
 // can manage it for us
 var table
 = new Table("appointment_duration");
 table.AddColumn<Guid>("id")
 .AsPrimaryKey();
 table.AddColumn<DateTimeOffset>("start");
 table.AddColumn<DateTimeOffset>("end");

 SchemaObjects.Add(table);
}

// more later...

Next, using Marten’s naming conventions, I’m going to add
a method that handles the AppointmentStarted event in
this projection:

public void Apply(
 IEvent<AppointmentStarted> @event,
 IDocumentOperations ops)
{
 var sql = "insert into appointment_duration"
 + " (id, start) values (?, ?)";
 ops.QueueSqlCommand(sql,
 @event.Id,
 @event.Timestamp);
}

And an additional method for the AppointmentFinished
event:

public void Apply(
 IEvent<AppointmentFinished> @event,
 IDocumentOperations ops)
{
 var sql = "update appointment_duration "
 + "set end = ? where id = ?";
 ops.QueueSqlCommand(sql,
 @event.Timestamp,
 @event.Id);
}

The next step is to add this new projection to the system by
revisiting the AddMarten() section of the Program file and
adding that projection like so:

builder.Services.AddMarten(opts =>
{
 // other configuration...

 opts.Projections

Event Sourcing and CQRS with Marten

codemag.com 59

dotnet run -- projections --rebuild
-p AppointmentDurationProjection

This command line usage was intended for both develop-
ment or testing time, but also for scripting production de-
ployments.

The Marten team and community, of course, looks forward
to the day when Marten is able to support a “zero down-
time” projection rebuild model.

Command Handlers with Marten
I’ve spent a lot of time talking about Event Sourcing so far,
but little about CQRS, so let’s amend that by considering
the code that you’d need to write as a command handler.
As part of the telehealth system, the providers need to per-
form a business activity called “charting” at the end of each
patient appointment where they record whatever notes or
documentation is required to close out the appointment.
The telehealth system absolutely needs to track the time
that providers spend charting.

To mark the end of the charting activity, the system needs
to accept a command message from the provider’s user in-
terface client that might look something like this:

public record CompleteCharting(
 Guid ShiftId,
 int Version
);

To write the simplest possible ASP.NET Core controller end-
point method that handles this incoming command, verifies
the request against the current state of the ProviderShift,
and raises a new ChartingFinished event, I’ll write this
code:

public async Task CompleteCharting(
 [FromBody] CompleteCharting charting,
 [FromServices] IDocumentSession session)
{
 var shift = await session
 .LoadAsync<ProviderShift>(
 charting.ShiftId);

 // Validate the incoming data before making
 // the status transition
 if (shift.Status != ProviderStatus.Charting)
 {
 throw new Exception("invalid request");
 }

 var finished = new ChartingFinished();
 session.Events.Append(
 charting.ShiftId,
 finished);

 await session.SaveChangesAsync();
}

The big thing I missed up there is any kind of concurrency
protection to verify that either I’m not erroneously receiv-
ing duplicate commands for the same ProviderShift or that
I want to force the commands against a single ProviderShift
to be processed sequentially.

 CancellationToken cancellation)
{
 // create a new instance of the async daemon
 // as configured in the document store
 using var daemon = await store
 .BuildProjectionDaemonAsync();

 await daemon
 .RebuildProjection
 <AppointmentDurationProjection>(
 cancellation);
}

That code deletes any existing data in the appointment_
duration table, reset Marten’s record of the progress of the
existing projection, and start to replay all non-archived
events in the system from event #1 all the way to the known
“high water mark” of the event store at the beginning of
this operation.

This can function, simultaneously with the running applica-
tion, as long as the projection being rebuilt isn’t also run-
ning in the application.

To make this functionality easier to access and apply at
deployment time, Marten comes with some command line
extensions to your .NET application with the Marten.Com-
mandLine library. Marten.CommandLine works with the
related Oakton (https://jasperfx.github.io/oakton) library
that allows .NET developers to expose additional command
line tools directly to their .NET applications.

Assuming that your application has a reference to Marten.
CommandLine, you can opt into the extended command line
options with this line of code in your Program file:

// This is using the Oakton library
await app.RunOaktonCommands(args);

From the command line at the root of your project using the
Marten.CommandLine library, type:

dotnet run –- help projections

to access the built-in usage help for the Oakton commands
active in your system. With Marten.CommandLine, you
should see some text output like this:

projections - Marten's asynchronous projection...
└── Marten's asynchronous projection…
 └── dotnet run -- projections
 ├── [-i, --interactive]
 ├── [-r, --rebuild]
 ├── [-p, --projection <projection>]
 ├── [-s, --store <store>]
 ├── [-l, --list]
 ├── [-d, --database <database>]
 ├── [-l, --log <log>]
 ├── [-e, --environment <environment>]
 ├── [-v, --verbose]
 ├── [-l, --log-level <loglevel>]
 └── [----config:<prop> <value>]

To rebuild only the new AppointmentDurationProjection
from the command line, type this at the command line at
the root of the telehealth system:

Event Sourcing and CQRS with Marten

codemag.com60

Strong vs. Eventual
Consistency

Marten is unusual for an event
store tool because it offers
the strongly consistent “inline”
mode.

You need to be cognizant
of the differences and
potential problems with
using the strong versus
eventual consistency models.
Eventual consistency may
help your system scale by
removing work to background
processes, but can lead to
subtle bugs if your developers
aren’t careful.

First, let’s try to solve the potential concurrency issues with
optimistic concurrency, meaning that I’m going to start
by telling Marten what initial version of the ProviderShift
stream the command thinks the stream should be at. If, at
the time of saving the changes on the IDocumentSession,
Marten determines that the event stream in the database
has moved on from that version, Marten throws a concur-
rency exception and rollback the transaction.

Recent enhancements to Marten make this workflow much
simpler. The following code rewrites the Web service method
above to incorporate optimistic concurrency control based
on the CompleteCharting.Version value that’s assumed to be
the initial stream version:

public async Task CompleteCharting(
 [FromBody] CompleteCharting charting,
 [FromServices] IDocumentSession session)
{
 var stream = await session
 .Events
 .FetchForWriting<ProviderShift>(
 charting.ShiftId,
 charting.Version);

 // Validation code...

 var finished = new ChartingFinished();
 stream.AppendOne(finished);

 await session.SaveChangesAsync();
}

And, for another alternative, if you’re comfortable with a
functional programming inspired “continuation passing
style” usage of Lambdas:

 return session
 .Events
 .WriteToAggregate<ProviderShift>(
 charting.ShiftId,
 charting.Version,
 stream =>
 {
 // validation code...

 var finished = new ChartingFinished();
 stream.AppendOne(finished);
 });

Optimistic concurrency checks are very efficient, assuming
that actual concurrent access is rare, because it avoids any
kind of potential expensive database locking. However, this
requires some kind of exception-handling process that may
include selective retries. That’s outside the scope of this ar-
ticle.

Because Marten is built on top of the full-fledged Postgresql
database, Marten can take advantage of Postgresql row
locking to wait for exclusive access to write to a specific
event stream. I’ll rewrite the code in the previous sample to
instead use exclusive locking:

 return session
 .Events
 .WriteExclusivelyToAggregate

 <ProviderShift>(
 charting.ShiftId,
 stream =>
 {
 // validation code...

 var finished = new ChartingFinished();
 stream.AppendOne(finished);
 });

This usage uses the database itself to order concurrent op-
erations against a single event stream, but be aware that
this usage can also throw exceptions if Marten is unable to
attain a write lock on the event stream before timing out.

Summary
Marten is one of the most robust and feature-complete tools
for Event Sourcing on the .NET stack. Arguably, Marten is
an easy solution for Event Sourcing within CQRS solutions
because of its “event store in a box” inclusion of both the
event store and asynchronous projection model within one
single library and database engine.

Event Sourcing is quite different from the traditional ap-
proach of persisting system state in a single database struc-
ture, but has strengths that may well fit business domains
better than the traditional approach. CQRS can be done
without necessarily having a complicated infrastructure.

� Jeremy D. Miller
�

Event Sourcing and CQRS with Marten

61Title articlecodemag.com

IF YOU CAN WORK FROM HOME,
WHY NOT MAKE PARADISE YOUR HOME?

WANT TO LIVE
ON MAUI?

www.Live-On-Maui.com

The world has changed. Millions of people are working from home, and for many, that will continue
way past the current crisis. Which begs the question: If you can work from home, then why not
make your home in one of the world’s premiere destinations and most desirable living areas?

The island of Maui in Hawai’i is not just a fun place to visit for a short vacation, but it is uniquely
situated as a place to live. It offers great infrastructure and a wide range of things to do, not to
mention a very high quality of life.

We have teamed up with CODE Magazine and Markus Egger to provide you information about
living in Maui. Markus has been calling Maui his home for quite some time, so he can share his own
experience of living in Maui and working from Maui in an industry that requires great infrastructure.

For more information, and a list of available homes, visit www.Live-On-Maui.com

Steve and Carol Olsen
Maui, Hawai’i

Advertisement

62 codemag.comPutting Data Science into Power BI

ONLINE QUICK ID 2209081

Putting Data Science into Power BI
Microsoft’s Power BI works as the ultimate power tool for data analytics. It lets you connect to many different data source
types (even within the same model) and then transform the connections into useful data tables. You can then use this
data to create DAX calculations, and build visuals to communicate model trends, outcomes, and key numbers. The main

languages of Power BI are M (in Power Query) and DAX. Data
science is an area in the data analytics space focusing on mod-
els like those that make predictions. Artificial intelligence is
an area of data science that lets you use cognitive science to
recognize and act on patterns within the data points that you
have. Machine learning models are a subgroup of AI that in-
volve using feedback loops to further improve the model. You
can combine and use these data science models to create visu-
als and make forecasts and better decisions in the future. The
three main languages of data science are SQL, R, and Python.

Given the power of Power BI and data science, how can you
combine these two facets of data modeling together? The
data for this article focuses on economic and weather trends
in the greater Houston, Texas area. One data table contains
employment numbers from the U.S. Bureau of Labor Statis-
tics (BLS Data Viewer at https://beta.bls.gov/dataViewer/
view/timeseries/LAUCN482010000000004 and BLS Data
Viewer at https://beta.bls.gov/dataViewer/view/timeseries/
LAUCN482010000000005). The other data table contains the
daily high temperatures at the city’s Hobby Airport over the
last two years from the NOAA Climate Data Online (CDO) data
portal (https://www.ncdc.noaa.gov/cdo-web/).

Ways to Leverage Algorithms
in Power BI
One way you can explore a combined framework with BI and data
science is through the capabilities of Power BI. To see the op-
portunities for these algorithms, let’s divide the AI and machine
learning functionalities within Power BI into three categories.

•	 Those that Power BI automatically runs
•	 Pre-built models you can connect to within Power BI
•	 Models you can build yourself using R, Python, or even DAX

Power BI makes these algorithms available to you in the
Power Query Editor once you load the data into Power BI
Desktop through the modeling and visualization options.
Figure 1 shows the combined capabilities available within a
single query for all three categories listed above.

Power BI Guesses
In Figure 1, you can see that Power Query automatically
chooses the data type for each column in the existing query
so far. You can change the data types yourself if it doesn’t al-
ready do this, or if the automatically selected data types don’t
match with the data types you want to use. Power Query uses
the first 1000 rows of data that appear in the table preview to
make an educated guess for the actual data types. Similarly,

it can also guess whether you want to promote the first row
of the data table into the header position or, given enough
information, it can also guess an entire series of query steps
that you can see in the Applied Steps on the right.

Once you load the data into Power BI, you can explore sev-
eral visuals where you pick the visual, but it nudges you
toward the next step. For example, in the Model view, you
might see the tables automatically joined together based on
how Power BI thinks the dimension and fact tables connect.
You should also check to make sure that it joins the tables
on the fields you want them to join on.

When you configure visuals, the decomposition tree and key
influencers visuals use AI to predict the next step that you
or the end user should take in analyzing the data in the
visual. You can also leverage the smart narrative visual for
the insights that Power BI automatically provides as to why
trends or metrics might occur.

Connect to a Model
Power BI also lets you connect to built-in algorithms directly
in the Power Query Editor as part of the transformation pro-
cess with the AI Insights options like Text Analytics, Vision, and
Azure Machine Learning, like the options you see in the options
for the Add Column ribbon in Figure 1. In the Power Query Edi-
tor, for example, you can connect to models from Azure Cogni-
tive Services and Azure Machine Learning models built outside
Power BI and Power Query. Examples of available Azure Cogni-
tive Services models include Image Recognition and Text Analyt-
ics. Within Text Analytics, you can choose from algorithms like
language detection, key phrase extraction, and score sentiment
(which tells you the positive or negative tone of a text input).

The fuzzy matching algorithm uses natural language process-
ing (NLP) to match together similar strings of text. If you’re
using Power BI dataflows in the Power BI service (either Pro
or Premium accounts), you can connect to the cluster values
algorithm to transform the existing data table by either add-
ing a column or grouping the existing values in the grouped
column together. Both functionalities use a very similar fuzzy
matching algorithm to what you see in the merging func-
tionality, except it only returns results on a single data table
instead of combining two tables together. Fuzzy matching
uses NLP to match together similar strings of text. You can
configure the parameters for the matching within the fuzzy
matching options for all three iterations of this algorithm.

Another example of an NLP model within a Power BI visual
is the Q&A visual, which lets you ask questions and get re-

Helen Wall
http://www.linkedin.com/
in/helenrmwall/
www.helendatadesign.com

Helen Wall is a data science
consultant who founded
Helen Data Design. She is
a power user of Microsoft
Power BI, Excel, Tableau,
and AWS QuickSight. Her
primary driver behind work-
ing in these tools is finding
the point where data sci-
ence and design intersect.

She is a LinkedIn Learn-
ing instructor for data
science courses focusing on
Power BI, AWS QuickSight,
Excel, R, and Python. She
is also a lecturer at the
Rice University business
school focusing on Python,
as well as an instructor at
Cornell University’s online
certificate programs for data
science and analytics using
R and Excel.

She has a double bachelor’s
degree from the University
of Washington where she
studied math and economics
and was a Division I varsity
rower. (The real-life charac-
ters from the book The Boys
in the Boat were Husky row-
ers that came before her).
She has a master’s degree
in financial management
from Durham University in
England.

Figure 1: Levels of coding in Power Query

63codemag.com Putting Data Science into Power BI

supports almost one thousand R packages, it only supports
a few Python libraries. To use these languages directly in
Power BI, you need to do the following:

•	 Install R or Python on your own computer.
•	 Enable R and/or Python scripts to run in Power BI (and

while you’re at it, enable Python scripts because I’ll
discuss this later).

1.	 Once you upload reports as analysis to the Power BI ser-
vice, it will run through the cloud instead of your computer.

What Are You Looking For?
Build machine learning models through building scatter plot
and line chart visuals as starting points for understanding
the high-level behavior of the data. Understanding algo-
rithms can seem intimidating but you can divide what you’re
looking for into three different goal categories.

•	 Trends
•	 Groups
•	 Outliers or anomalies

Trends
When you’re looking at data points, you want to see if there’s
a direction that they orientate in. For example, if you look
at the time series trends for employment and unemployment
data by month on the left side of Figure 2, you can see that

sponses about the data. With the visualization options, you
can also connect to the built-in machine learning algorithms
directly to find clusters or anomalies in existing data points.
You can also use linear regression to find trend lines and fore-
casting to project the data trends into the immediate future.
With any of these pre-built models, you’ll want to either know
or have an idea of the fields you want to use in the model.
Even though you don’t have to build them yourself, it’s still
important to know what fields you can pass into the model as
parameters to get the outcome you’re looking for (and the
requirements to make the models work properly).

Constructing Your Own Visuals
Finally, you can build your own visuals to represent the out-
comes of these algorithms. One way you can do this is using cus-
tom visuals from the Power BI AppSource store. Many of these
visuals use R behind the scenes to construct the visual, but you
don’t need to write any R code yourself. Examples of models
supported by custom visuals using R include ARIMA, TBATS,
clustering, and outliers. Power BI installs packages. Make sure
you’re using the right versions of the library packages.

In addition to importing custom visuals that run R behind
the scenes in Power BI, you can also write R scripts directly
in the R and the Python visuals, as well as running scripts
for both languages in the Power Query Editor. For the sake
of simplicity in this article, I’m going to use R as the sample
code, but you can absolutely use Python too. One of the
challenges I encounter is that although the Power BI service

Figure 2: Trend lines

64 codemag.com

Figure 3: Forecasting

Figure 4: Clustering with built-in options and clustering custom visual

Putting Data Science into Power BI

65codemag.com

Let Power BI Do as Much
of the Work as Possible

Although it seems tempting
to try to gain full control over
the models by writing scripts
in R or Python for example,
you should aim to let Power
BI do a lot of the heavy lifting
for you. An example of this
includes using built-in Power
Query functions to connect
to and transform the data.
This means that Power BI
might automatically perform
a step for you (that you should
then check) or you can even
connect to an algorithm
like one for text analytics,
image recognition, or even
clustering. Once you load
the data into Power BI,
you can also follow a very
similar approach.

though, that the forecasting option only works on visuals
like line charts with a time-series field on the x-axis, like
dates. Within the formatting options, you can also change
the length of the forecast, and whether to ignore some
historical data points, and, most importantly, you can also
choose to include seasonality. Notice that the forecast op-
tion adds both a line and a gray shaded area around it rep-
resenting the confidence interval.

Groups
Another way you can apply machine learning algorithms
to data points is by grouping them together. Examples of
clustering algorithms include names you might already
know like KMeans and hierarchical clustering. If you have
an existing scatter plot, let Power BI find the clusters for
you using the built-in clustering algorithm. This adds a new
clusters field to existing fields that contain the outcomes
of the clustering model in the table that you choose to add
them to. Within the clustering options, you can let Power
BI automatically determine the number of clusters. You can
also change them manually. In the scatter plot on the left in
Figure 4, you can see that the built-in clustering algorithm
you add to the visual creates four clusters for the data. You
can also find clusters for more than two fields if you use a
table visual instead of a scatter plot.

On the right of Figure 4, you can see what the clustering al-
gorithm gives you if you import the clustering custom visual

since the beginning of 2020, the overall employment num-
bers increased in the Houston area, while the overall unem-
ployment numbers decrease over the same period. You can
add these dashed lines directly to several types of visuals,
including the line charts you see representing the time-series
trends for both these metrics. To add these lines, turn them
on directly through the analytics options in the Visualizations
pane. The lines you see represent the outcomes of linear re-
gression modeling using ordinary least squares (OLS). If you
calculated this yourself, whether that’s through downloading
the data to Excel, running an R or Python script on it, or even
calculating it directly using DAX, you’ll get the same slope and
intercept that you see on these charts (see Figure 2).

You can also see how linear regression looks on a scatter
plot instead of a time series chart in the visual on the right
of Figure 2. This models two variables against each other.
You can see that as employment increases in Harris County,
Texas, the numbers for unemployment also go down. Power
BI lets you add the trend line in the same way you could for
the line chart visual on the scatter plot. Again, it uses OLS
for linear regression to calculate the intercept and slope of
this trend line.

Let’s say you want to forecast the outcomes of time-series
data into the future. You can do this through the forecasting
option available at the bottom of the same analytics pane
as the trend line options that you see in Figure 3. Note

Figure 5: Hierarchical clustering with R script

Putting Data Science into Power BI

66 codemag.com

dataset <- data.frame(Label, Employment, Unemployment)
dataset <- unique(dataset)
Paste or type your script code here:

rownames(dataset) <- dataset$Label
#determine row labels in final visual
distance <- dist(dataset[, c('Employment', 'Unemployment')]
, diag = TRUE)
#2D distance between data points
hc <- hclust(distance)
#model hierarchical clustering
plot(hc)
#create cluster dendrogram plot

You might also find it helpful to test out your code first on
an IDE like RStudio, which makes it easier to troubleshoot
issues. Although Power BI is an amazing tool, it’s also a bit
limited in terms of ways to test out code before implement-
ing it.

Outliers or Anomalies
Finally, in data points, you want to determine whether
points are part of the rest of the data points or not, which
you can do through algorithms like outlier and anomaly de-
tection. In Figure 6, you can see the clustering with the

from the Power BI AppSource store. This means that you
can add the ellipsis around the data points in the clusters
that the visual determines. This gives an example of an al-
gorithm where the R script runs behind the scenes, but you
don’t have to write the R code yourself for it to appear. You
can see that they also display in the green tooltip in the
highlighted visual.

Another way you can find clusters to group data points to-
gether is using the hierarchical clustering algorithm. At this
point, you don’t have a visual or algorithm you can plug the
data into to create the visual you see on the right in Figure
5, but instead, you can construct it using R code.

First calculate the distances between data points on the left
of Figure 5 using the dist function on the data.frame data-
set variable with the text labels removed. You then group
each set together in pairs using the hclust R function. In
order for these visuals to properly display, use the standard
R visual in Power BI. Before you create these visuals directly
in Power BI Desktop, make sure you install R (or Python)
and then enable it directly in Power BI.

The following code to create a dataframe and
#remove duplicated rows is always executed and
#acts as a preamble for your script:

Figure 6: Clustering with outlier custom visual

Putting Data Science into Power BI

67codemag.com

What to Look for?

Although this might seem to
project the overall objectives
of algorithms like those found
in machine learning, on a high
level, you’re looking to find
trends, grouping, and outliers
and anomalies in data points.
These don’t necessarily exist as
standalone things that you’re
looking for in data either. For
example, you can find trends
and groups in data, and then
the points that allow you to
easily find the points that are
outliers or anomalies.

lies for you, put a time-series field on the x-axis or it will
gray out the algorithm in the analytics pane so you can’t
access them.

Notice that you can change the input parameters for finding
the anomalies by changing the sensitivity of the algorithm.
A higher sensitivity number makes the identified anomalies
more sensitive to swings, which means that you’ll see the
algorithm identify more data points as anomalies. If you’d
like to format the anomalies themselves, you can change
their shape and color (from gray to orange like you see in
this example).

In the lower visual in Figure 8, you can see the outcomes
of running an anomaly detection algorithm directly with
an R script. You can see it reflected in the outcome of a
standard stacked column chart visual where you use con-
ditional formatting so that orange can mark the anomalies
while the rest of the dates display as a blue color. The al-
gorithm itself can run as a standard R visual, but you can
also use the R script integration options in the Power Query
Editor to add a column for the anomaly detection model in
Figure 1.

With the applied step for running an R script in the list of
these steps on the right, the code below shows what this R

outlier detection custom visual compared to the built-in
clustering algorithm. You can see the outliers denoted by
small gray Xs in the visual on the right that fall outside the
two clusters marked in teal and red.

Grouping data together in clustering and determining the
points outside these clusters as outliers represents one way
to find outliers, but there are other ways to do it. You can
also determine outliers using the outlier detection custom
visual you see in Figure 7. This visual lets you separate the
outliers from the rest of the points (the main group) using
a z-score calculation to determine their sigma thresholds.
The farther out points represent the outliers in red and the
rest of the points aren’t part of the outlier group. Like the
clustering with outliers visual, the outlier detection visual
also runs R code behind the scenes without you having to
write any of it.

Besides outliers, anomalies are data points that also don’t
fit into the expected pattern of behavior for data points.
On a high level, outliers represent deviations from where
you are, and anomalies represent deviations from where you
should be. You can see the outcome of running the built-in
algorithm to find anomalies in the top line chart of Figure
8, which you access through the analytics pane of the se-
lected visual. For Power BI to automatically find the anoma-

Figure 7: Outlier detection custom visual

Putting Data Science into Power BI

68 codemag.com

Additional algorithms to explore include logistic regression,
principal components analysis (PCA), classification, and
much more. I go into these topics in much greater depth
in several of my LinkedIn Learning courses: https://www.
linkedin.com/learning/instructors/helen-wall.

code looks like. Once you import the fpc library, you then
set the seed so you can run the anomaly detection algorithm
with the dbscan function. Then assign the outcome results
cluster column as a new column in the existing dataset vari-
able and assign the entire dataset to a new results variable
in Power Query.

'dataset' holds the input data for this
script

library(fpc) #loading package
set.seed(220) #setting seed
results <- dbscan(dataset$High,eps=2,MinPts=1)
dataset$Anomaly <- results$cluster
#add cluster to dataset data.frame
outcome <- dataset

Why would you choose one approach for clustering or anom-
aly detection over another (for example, built-in algorithms
versus writing your own R code). There isn’t a single right
answer for this. You might want different levels of control
over the outcomes, or you might want to see a certain level
of efficiency or speed that one approach provides. Like with
everything else in data science, there isn’t one right ap-
proach for the way to do something, but rather a selection
of options to choose from.

Figure 8: Anomaly detection

� Helen Wall
�

SPONSORED SIDEBAR:

Need FREE Project
Advice? CODE Can
Help!

No strings, free advice on
a new or existing software
development projects.
CODE Consulting experts
have experience in cloud,
Web, desktop, mobile,
microservices, containers, and
DevOps projects. Schedule
your free hour of CODE call
with our expert consultants
today. For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

Putting Data Science into Power BI

69Title articlecodemag.com

Is your business being held back by outdated software? We can help.

We specialize in updating legacy business applications to modern technologies.

CODE Consulting has top-tier developers available with in-depth experience in .NET,

web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/modernize
832-717-4445 ext. 9 • info@codemag.com

TIME TO
MODERNIZE YOUR
OLD SOFTWARE?

shutterstock/Arunas Gabalis

70 codemag.comGetting Started with Cloud Native Buildpacks

ONLINE QUICK ID 2209091

Getting Started with
Cloud Native Buildpacks
Cloud Native Buildpacks transform your source code into images that can run on any cloud. They take advantage of modern
container standards such as cross-repository blob mounting and image layer "rebasing," and, in turn, produce OCI-compliant
images. You use an image because it’s a lightweight, standalone, executable package of software that includes everything

you need to run an application: code, runtime, system li-
braries, and settings.

When you tell Docker (or any similar tool) to build an im-
age by executing the Docker build command, it reads the
instructions in the Dockerfile, executes them, and creates
an image as a result. Writing Dockerfiles that produce secure
and optimized images isn’t an easy feat. You need to know
and stay updated about best practices or, if you're not care-
ful, you may create images that take a long time to build.
They may also not be secure.

Rather than investing time in optimizing images, you may
want to focus on the business logic of your software. For-
tunately, there’s a tool that can read your source code and
output an optimized OCI compliant image. This is what Cloud
Native Buildpacks can do for you. You can use this tool in
your software delivery process to automatically produce im-
ages without needing a Dockerfile.

This article introduces you to Cloud Native Buildpacks and
shows you an example of how to use them in GitHub Ac-
tions. By the end of the article, you’ll have a CI pipeline that
builds and publishes an image to Docker Hub.

What Are Cloud Native Buildpacks?
Cloud Native (technologies that take full advantage of the
cloud and cloud technologies) Buildpacks are pluggable,
modular tools that transform application source code into
container images. Their job is to collect everything your app
needs to build and run. Among other benefits, they replace
Dockerfile in the app development lifecycle, enable swift
rebasing of images, and provide modular control over im-
ages (through the use of builders).

How Do They Work?
Buildpacks examine your app to determine the dependen-
cies it needs and how to run it, then packages it all as a
runnable container image. Typically, you run your source
code through one or more buildpacks. Each buildpack goes
through two phases: the detect phase and the build phase.

The detect phase runs against your source code to deter-
mine whether a buildpack is applicable or not. If it detects
an applicable buildpack, it proceeds to the build stage. If
the project fails detection, it skips the build stage for that
specific buildpack.

The build phase runs against your source code to download
dependencies and compile your source code (if needed),
and set the appropriate entry point and startup scripts.

Containerize a Node.js Web App
Let’s create an image for a Node.js WSb application. You’re
going to build a minimal REST API using Node.js. I prepared
a starter repo at https://github.com/pmbanugo/fastify-
todo-example, which you will fork and modify. Follow the
steps below to clone and prepare the application:

1.	 Clone your fork of the repository.
2.	 Check out the code-magazine branch.
3.	 Open the terminal and run npm install to install the

dependencies.
4.	 Open the project in your preferred code editor/IDE.

The project is a Web API built using a Fastify framework with
just one route. Try out the application by opening the ter-
minal and running the command npm start. The applica-
tion should start and be ready to serve requests from loc-
alhost:3000. Open your browser to localhost:3000 and you
should get a JSON response, as depicted in Figure 1.

You want to modify the response so that the JSON data in
todo.json is returned. Open server.js and replace reply.
send({ hello: "world" }) on line 7 with the code below:

const data = Object.entries(todos)
 .map((x) => x[1]);
reply.send(data);

Restart the server and open localhost:3000 in the browser.
You should now get a list of todo items returned as a JSON
array, as shown in Figure 2.

Building and Running a Container Image
Let’s build a container image of the Node.js Web app and
run it locally. You don’t need a Dockerfile; instead you’ll use
the pack CLI to build the image and Docker to run the con-
tainer. If you don’t have Docker installed, go to docker.com
to download and install Docker Desktop. You can install the
pack CLI using Homebrew by executing the command brew
install buildpacks/tap/pack. If you don’t use Homebrew,
you can find more installation options at https://build-
packs.io/docs/tools/pack/#install.

Peter Mbanugo
p.mbanugo@yahoo.com
www.pmbanugo.me
@p_mbanugo

Peter Mbanugo is a techni-
cal writer and software
engineer who codes in
JavaScript and C#.
He is the author of
“How to build a serverless
app platform on Kubernetes”.
He has experience working
on the Microsoft stack
of technologies and also
building full-stack applica-
tions in JavaScript.
He’s a co-chair on NodeJS
Nigeria, a Twilio Champion,
and a contributor to the
Knative open-source proj-
ect. You can find his OSS
contributions at github.
com/pmabnugo.

When he isn’t coding,
he enjoys writing the
technical articles that you
can find on his website
or other publications,
such as on Pluralsight
and Telerik.

Figure 1: The JSON response

71codemag.com Getting Started with Cloud Native Buildpacks

Now that you’ve modified the code, you need to rebuild the im-
age and run the container to test that the application still works.
Open your terminal and run the command pack build todo-fasti-
fy --builder paketobuildpacks/builder:base to build the image.
You should notice that the second build (and subsequent builds)
are much faster because the images needed for the build pro-
cesses were downloaded and cached in the initial run.

Now run the command docker run -d --rm -p 8080:3000
todo-fastify to start the container. Open http://local-
host:8080/1 in your browser. You should get a JSON re-
sponse similar to what you see in Figure 4.

Building an Image from a CI Pipeline
You can build images in your continuous integration pipeline
using Cloud Native Buildpacks. With GitHub Actions, there's
a Pack Docker Action (https://github.com/marketplace/ac-
tions/pack-docker-action) that you can use. When you com-

Open your terminal and run the command pack build todo-
fastify --builder paketobuildpacks/builder:base to build a
container image using paketobuildpacks/builder:base as
the builder image. The builder is an image that contains
all the components necessary to execute a build, which in-
cludes the buildpacks and files that configure various as-
pects of the build. If you look through the output of the
command, you should notice that during the detect phase,
six buildpacks were detected to take part in the build phase
(see Figure 3). These six buildpacks are then used to build
and export an image.

After the image is built, you’ll run it using Docker. Run the
command docker run -d --rm -p 8080:3000 todo-fastify
to start the container and open localhost:8080. It should
return the same JSON array as you get when running it with-
out Docker. Stop the container using the command docker
stop CONTAINER_ID. Replace CONTAINER_ID with the value
that was returned when you started the container.

Rebuilding The Image
You’re going to add another route that returns an item
based on its key. Open server.js and add the code snippet
below after line 10.

fastify.get("/:id", function (request, reply) {
 const data = todos[request.params.id];
 reply.send(data);
});

The new route gets the id from the request params, uses
it to get a specific item from the todos object, and then
returns the item as JSON.

Figure 2: The todo items returned as a JSON aray

Figure 3: The six buildpacks have been detected.

72 codemag.com

bine it with the Docker Login Action, you can build and pub-
lish to a registry in your workflow. There's a similar process
on GitLab using GitLab's Auto DevOps, and you can read about
it on https://docs.gitlab.com/ee/topics/autodevops/stages.
html#auto-build-using-cloud-native-buildpacks.

I included a GitHub Actions workflow as part of the start-
er files in the repository you forked. You’ll find it in the
.github/workflows/publish.yaml file. The workflow builds
an image and publishes it to Docker Hub whenever you push
new commits to your GitHub repository.

Let’s take a look at the publish.yaml file to understand what
it does.

The build-publish job defines two environment variables.

env:
 USERNAME: '<USER_NAME>'
 IMG_NAME: 'todo-fastify'

IMG_NAME holds the name of the image, in this case, called
todo-fastify. The USER_NAME variable is the Docker reg-
istry’s namespace where the image is stored. Replace the
value with your Docker Hub username.

There are four steps in this job, namely Checkout, Set App
Name, Docker login, and Pack Build:

- name: Checkout
 uses: actions/checkout@v2
- name: Set App Name
 run: 'echo "IMG=$(echo ${USERNAME})/
 $(echo ${IMG_NAME})" >> $GITHUB_ENV'
- name: Docker login
 uses: docker/login-action@v1
 with:
 username: ${{ env.USERNAME }}
 password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Pack Build
 uses: dfreilich/pack-action@v2
 with:
 args: 'build ${{ env.IMG }} --builder
 paketobuildpacks/builder:base --publish'

The Checkout step clones and checks out the branch. Af-
ter that, the Set App Name step adds a new environment
variable named IMG. The value is formed by concatenating
USERNAME and IMG_NAME variables.

The Docker login step authenticates the workflow run
against the Docker registry because the final step builds

and publishes the image. The Pack Build step uses the
dfreilich/pack-action action to build the application and
publish the image to the Docker registry. This action uses
the Pack CLI behind the scenes, which, in turn, depends on
Docker to build and publish to a registry.

The args supplied to dfreilich/pack-action tells it to run the
build command using the paketobuildpacks/builder:base
builder image. The --publish flag instructs the pack CLI to
publish to the registry after the build process is complete.

The Docker login step needs a DOCKERHUB_TOKEN secret.
Go to Docker Hub and create an access token. Then add a
GitHub secret named DOCKERHUB_TOKEN with its value set
to your Docker Hub’s access token.

Now commit your changes and push your commits back to
your GitHub remote. You should see the workflow run and
when it’s done, the image should be in your Docker registry
repository.

Builder and Buildpacks
A builder is an image that contains buildpacks and the de-
tection order in which builds are executed. There are dif-
ferent buildpacks from different vendors that you can use,
such as those from Heroku and Google. Use the links below
to check out some available builders and buildpacks:

•	 Heroku: hub.docker.com/r/heroku/buildpacks
•	 Google: github.com/GoogleCloudPlatform/buildpacks
•	 Paketo: paketo.io/docs/concepts/builders/

Visit www.buildpacks.io if you want to read more about
Cloud Native Buildpacks.

Conclusion
I’ve shown you how to build images locally using the pack
CLI, and also how to use it within GitHub Actions. You need a
builder to build an image, and you used paketobuildpacks/
builder:base as the builder image.

Figure 4: The JSON response

� Peter Mbanugo
�

Getting Started with Cloud Native Buildpacks

73codemag.com

 v

Sep/Oct 2022
Volume 23 Issue 5

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Contributing Editor
John V. Petersen

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Joydip Kanjilal	 Vassili Kaplan
Sahil Malik	 Peter Mbanugo
Jeremy Miller	 John Petersen
Paul D. Sheriff	 Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	American News Company (ANC)

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $50.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445

CODE COMPILERS

CODA: On Consulting and Organizations

(Continued from 74)

patterns (and conform where necessary) to spe-
cific facts and circumstances. Organizations, in
my opinion, aren’t—or at least shouldn’t be—any
different.

In any successful consulting engagement, strat-
egy and tactics must meet somewhere in the
middle. Leadership creates the policy that the
rank-and-file staff must execute. And good and
actionable policy requires leadership. The ben-
efits we strive to achieve for our client’s benefit
can only be as good as the client’s ability to take
our recommendations.

As Figure 1 illustrates, the central unifying role
that touches all other roles is the chief execu-
tive (in black). Organizations are run by people.
As much as we would like to have clear consen-
sus from the group, there often needs to be one
person who makes the call. Ideally, that call is
informed by the input of the other “chiefs.” The
ones in yellow on my model are primarily split be-
tween Administration and Operations: the chief
administrative officer (CAO) and chief operations
officer (COO).

An organization’s administrative function is con-
cerned with what gets done. Operations is con-
cerned with how things get done. The technical
counterpart that supports the what and the how
are the chief information officer (CIO) and the
chief technical officer (CTO). The CIO sets forth
the technical strategy of what’s to be done. The
CTO sets forth how that strategy is to be execut-
ed.

The third category of roles, in green, sets forth
the four major functions I’ve identified as being
common to any successful organization. The chief
human resources officer (CHO) is all about the
health, well-being, and development of an orga-
nization’s personnel. An organization can only be
as good as its people, and more specifically, how
it treats its people. The chief compliance and le-
gal officer (CCO) is the one who makes sure the
rules, whether they be internal, external, legal,
or regulatory are followed. The chief financial
officer (CFO) is concerned with capital. How are
projects financed? Will it be through organic
growth and internally generated cash? Or will it
come by way of external sources like debt or eq-
uity investment? Finally, there’s the chief market-
ing officer (CMO). It isn’t enough to have great
ideas, products, and services. The world needs to
know about them to purchase them!

The foregoing list of roles is by no means exclu-
sive. The model is simply my conception of how a
canonical organization should be organized. It’s
far more important that each role be given its
proper due. Organizations best situated to grow
and improve through consulting have these roles
and they don’t operate in a vacuum, they oper-
ate cooperatively, and they act as a check and

� John V. Petersen
�

balance for the other roles. For example, the CCO
would be a check and balance on the CIO/CTO
to ensure that the Devops scheme supports the
representations made by the CFO in the organiza-
tion’s public reporting.

Invariably, any technical consulting engagement
will touch on one or more of these areas. How an
organization makes decisions and evaluates op-
tions, irrespective of specific technology is, in my
opinion, the primary determinant of whether the
recommendations we make will be successful. A
secondary determinant is the organization’s rec-
ognition of the work it must undertake to make
our recommendations feasible.

The successful consultant makes the determi-
nation early on where the organization’s matu-
rity level is. It’s through this recognition that
consulting delivers value, truly a partnership
wherein both parties exert equal effort. And
quite often, before the recommendations may
be implemented, there may be other preparatory
work required that may require the work of other
consulting organizations. Successful consultants
gladly pass on clients that don’t understand or
appreciate that partnership equation.

codemag.com

confronted with the tension when the person you
need to work with is worried that your consult-
ing engagement is a threat to their job? The two
things you must accept in such cases are that
people are going to believe what they believe and
it isn’t the consultant’s job to fight that battle.
All you can do is carry out the engagement with
fidelity and professionalism.

To that end, we must know and understand the
client. A good first step toward that knowledge
is in knowing and understanding how the orga-
nization is led. There’s an old saying that a fish
rots from the head down. The same can be said
of an organization, which can only be as good as
its leadership. Taking a standards-based patterns
and practices approach, I employ the following
model and then apply the client’s specifics to the
model:

Figure 1: A standard “C-suite” model

The model is my conception of the prototypical C-
suite, in terms both of roles and in relationships
to one another. If we’re to rely on the empirical
evidence of past engagements and then apply
that experience to the current engagement, there
must be a constant. In our technology solutions,
constants are patterns and practices around cod-
ing, design, and architecture. We apply those

must continually examine and refine our techni-
cal platforms, so too must we do the same for
how we approach problem solving. If the ends are
the technical solutions we build, then the means
to that end is found in consulting services.

Consulting, in recent years, has become a loaded
term, meaning different things to different peo-
ple. At one end of the spectrum is the journey-
man contract programmer. At the other end of
the spectrum are global firms like KPMG and PWC
that offer a wide range of services. Both ends of
the spectrum are referred to as consultants. Is
such broad application of the term “consultant”
correct? The answer entirely depends on the ser-
vices provided.

If we’re providing advisory services such that re-
quested recommended courses of action are the
product, then yes. But if all we’re doing is provid-
ing labor, then no. In other words, if all we’re
doing is slinging code at the client’s direction,
that’s staff augmentation, not consulting. The
client has defined the problem and the solution.
The need we’re filling in such cases is the labor
to implement the solution. If at any point, advice
is sought in how to solve a given problem, that’s
consulting. The latter presents a case where we
bring our experience and skill to render affirma-
tive recommendations for the given context.

The water’s edge to good consulting cannot just
be “it depends.” With consulting, the primary
work product includes the recommendations and
the basis for making them. Such recommenda-
tions must be grounded, actionable, and feasible.
By grounded, I mean based on the reality of con-
straints.

Anything that isn’t grounded is the stuff of as-
pirations. Aspirations are good things because
they present the better place we wish to be in the
future. Once upon a time, I aspired to be a law-
yer. To be a lawyer, it meant I needed to pass the
bar examination. To pass the bar examination, it
meant I had to take the bar examination, which
meant I had to be eligible to take the exam. To be
eligible to take the bar examination in most juris-
dictions, I must have graduated from an accred-
ited law school. In other words, to achieve that
aspirational goal, three things were required: a
plan, time, and work.

Think of the last time your customer or employer
decided we want to be Agile, without any real
idea of how to get there. Strategy without tac-
tics or a plan may very well be aspirational. But
without any appreciation for the work required to
create the plan and work the plan, the aspiration
is nothing more than a pipe dream.

A consultant’s job, in part, is to steer clear of
pipe dreams. I’m often reminded of the following
passage in The Pragmatic Programmer by Andrew
Hunt and David Thomas:

A tourist visiting England's Eton College asked the
gardener how he got the lawns so perfect. "That's
easy," he replied. "You just brush off the dew ev-
ery morning, mow them every other day, and roll
them once a week." "Is that all?" asked the tourist.
"Absolutely," replied the gardener. "Do that for 500
years and you'll have a nice lawn, too."

A responsible consultant honestly conveys to
their client their obligations as freely as the ben-
efits the client hopes to realize. Advice, as great
and as well thought out as it may be, will only
be as good as the client’s ability to implement
that advice.

Good Consulting Starts
with KYC
KYC stands for “know your client.” How are they
organized? What are their values? What are their
strengths and weaknesses? How committed are
they to achieving their aspirational goals? How
open are they to change? To know your client
means to get into the weeds and embed with
them. If there’s a shop floor, don a hardhat and
walk the floor. For every line of code proposed
to be written, will you and your team know how
that code furthers the organization’s goals and
objectives?

Of course, every client organization isn’t a mono-
lith. Understanding what the organization does
by the “Collective whole” is only one part of the
equation. How organizations run, that’s a func-
tion of their people.

Organizations, after all, are run by people, each
with their own agendas, strengths, weaknesses,
biases, and opinions. How often have you been (Continued on page 73)

CODA: On Consulting and Organizations74

On Consulting and
Organizations
Many articles have been written about modern design, architectures, and languages. What about
modern consulting and organizations? By “modern,” I mean to convey a notion of what’s needed today,
perhaps at the expense of what would have been regarded as sound practice yesterday. Just as we

CODA

Does your team lack the technical knowledge or the resources to start new software development projects,

or keep existing projects moving forward? CODE Consulting has top-tier developers available to fill in

the technical skills and manpower gaps to make your projects successful. With in-depth experience in .NET,

.NET Core, web development, Azure, custom apps for iOS and Android and more, CODE Consulting can

get your software project back on track.

Contact us today for a free 1-hour consultation to see how we can help you succeed.

codemag.com/OneHourConsulting
832-717-4445 ext. 9 • info@codemag.com

TAKE
AN HOUR
ON US!

GET YOUR

FREE HOUR

Is slow outdated software stealing way too much of your free time? We can help.

We specialize in updating legacy business applications to modern technologies.

CODE Consulting has top-tier developers available with in-depth experience in .NET,

web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/modernize
832-717-4445 ext. 9 • info@codemag.com

NEED
MORE OF THIS?

shuttersto
ck/Lucky-p

ho
to

g
rap

her

