
co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 8
.9

5
 C

an
 $

 1
1.

95
C# 9, ML.NET, Xamarin, Project Tye, EF Core

NOV
2020

.NET 5.0
 TAKES OFF!

Exploring Language
Updates with
C# 9 and F# 5

Building
Microservices
with Project Tye

Examining .NET
Framework and
Runtime Changes

©
 I

llu
st

ra
ti

on
: G

it
H

ub
/k

aw
ilk

in

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $49.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill Me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �From .NET Standard to .NET 5

One of the most exciting aspects of .NET 5 is the unification
of implementation tools. Immo reveals how .NET 5 determines
which implementation supports which APIs, cites warnings when
you’ve written something unsupported, and reuses libraries
for app components written for various versions of .NET.
Immo Landwerth

13 	 �Introducing C# 9.0
If you liked C# before, you’re really going to like C#9.0.
Bill explains how the C# compiler that ships with the .NET 5 SDK
has been updated and streamlined.
Bill Wagner

18 	 �EF Core 5:
Building on the Foundation
Julie’s pretty excited about the new features in EF Core 5.
You will be too when you read about the bugs fixed and over
200 new features and minor enhancements.
Julie Lerman

26 	 �Project Tye:
Creating Microservices in a .NET Way
Using the experimental developer’s tool called Tye turns
testing and deploying microservices into a sweet operation.
.NET just works and Shayne shows you how.
Shayne Boyer

33 	 �Big Data and Machine Learning
in .NET 5
The theme of .NET 5 is unification. Jeremy and Bri show you how
a uniform runtime and framework are just the beginning.
Jeremy Likness and Bri Achtman

41 	 �F# 5: A New Era of Functional
Programming with .NET
F# has been updated right along with .NET. But it’s not just conveniently
included. It marks the beginning of a new era and Phillip tells you
why you’ll be glad you’ve got it.
Phillip Carter

48 	 �Xamarin.Forms 5: Dual Screens,
Dark Modes, Designing
with Shapes, and More
David takes an exciting look at the Surface Duo to show
us the power of Xamarin.Forms 5.
David Ortinau

53 	 �.NET 5.0 Runtime Highlights
Runtime got a lot of attention as the .NET platform became more
unified. Richard tells you what’s new and what to look forward to.
Richard Lander

59 	 �Blazor Updates in .NET 5
You already know about the power of Blazor. Daniel shows you how
the .NET 5 version uses .NET instead of JavaScript to build full-stack Web apps.
Daniel Roth

65 	 �Azure Tools for .NET in
Visual Studio 2019
Visual Studio 2019 automatically discovers your app’s Azure
requirements and helps you configure them. Angelos shows you how
to choose between live Azure services and local emulators.
Angelos Petropoulos

70 	 �Windows Desktop Apps and .NET 5
The .NET collection of tools is finally all in the same place as the
Windows development tools. Olia explores the changes and tells you
how to get started migrating your existing applications to .NET 5.
Olia Gavrysh

Departments
6 	 �The Journey to One .NET

Beth talks about her coding journey and why she’s so excited about .NET 5.
Beth Massi

14 	 �Advertisers Index

74 	 Code Compilers

Are you being held back by a legacy application that needs to be modernized? We can help.

We specialize in converting legacy applications to modern technologies. Whether your application

is currently written in Visual Basic, FoxPro, Access, ASP Classic, .NET 1.0, PHP, Delphi…

or something else, we can help.

codemag.com/legacy
832-717-4445 ext. 9 • info@codemag.com

OLD
TECH HOLDING
YOU BACK?

codemag.comEditorial

The Journey to One .NET
When Rod Paddock, Editor in Chief of this magazine, asked me to write the editorial, I couldn’t pass up
the opportunity. The first time I was published in CODE Magazine was back in the fall of 2000, just after
the unveiling of the .NET platform at Microsoft’s Professional Developer’s Conference. I have to say that
I’ve come a long way in 20 years and so has .NET.

EDITORIAL

6

Back then, I was a FoxPro kid writing about “dis-
tributed Internet applications” and arguing with
Visual Basic developers about what development
environment was better. I then started develop-
ing with the very early versions of .NET and never
looked back to FoxPro. It was the early days of
the “programmable Web” and .NET was built for
it. .NET allowed me to do things I never could
before. Now I work at Microsoft as the Product
Marketing Manager for .NET and am on the Board
of Directors of the .NET Foundation. Yes, we’ve
both come a long way.

The release of .NET 5 marks a pivot point in .NET’s
long history of enabling developers to be pro-
ductive writing any type of application. Over the
years, there have been multiple implementations
and versions to cover all the app types starting
with .NET Framework for Windows, Mono, and
Xamarin for mobile, and of course the cross-
platform .NET Core. All of these implementa-
tions have their own libraries and APIs, project
systems, runtimes, and components. Luckily, the
languages remain relatively consistent and the
.NET standard API specification helps the ecosys-
tem share libraries across the implementations.
.NET 5 begins the journey to unify these. The goal
is to simplify the choices and learning curve for
new developers, at the same time making it eas-
ier for experienced developers to build anything.

.NET Core has taken the best of .NET Framework,
adding support for Windows Forms and WPF, ex-
panding support for more devices, chipsets, op-
erating systems, and distros. It’s got dramatically
improved performance and memory usage. When
.NET Core 3 released last year, it was the fast-
est adopted version of .NET ever. .NET Framework
4.8 for Windows was the final minor release last
year. It will only get critical bug fixes from now
on and will remain a component of Windows. As
long as Windows is supported, .NET Framework is
supported.

.NET 5 is the next version and future of .NET that
releases November 10, 2020. .NET 6 will release
in November 2021 and there will be subsequent
major releases every year. We’re continuing the
journey of unifying the .NET platform, with a sin-
gle framework that extends from cloud to desk-
top to mobile and beyond. The next step in the
journey is to take .NET Core and Mono/Xamarin

implementations and unify them into one base
class library (BCL) and toolchain (SDK). You’ll see
this happen in the .NET 5 to 6 wave of releases.
The unification will be completed with .NET 6, our
Long-Term Support (LTS) release.

.NET 5 releases
November 10, 2020.

This special CODE FOCUS issue is all about .NET 5
and many of the improvements we’ve made with
the open source community across the platform.
The magazine is your chance to dig deep into the
features of the release. .NET 5 has several en-
hancements, such as smaller, faster, single file
applications that use less memory, which are
appropriate for microservices and containerized
applications across operating systems. It also
includes significant performance improvements,
adds support for Windows ARM64, and incorpo-
rates new releases of the C# 9.0 and F# 5.0 lan-
guages. It includes updates to Xamarin, Windows
Forms, WPF, ASP.NET, and Blazor as well as sig-
nificant new runtime features, tools, and librar-
ies. Visual Studio, Visual Studio Code, and Visual
Studio for Mac all support .NET 5.

Here are a few highlights in this issue.

For the C# language aficionado, we have details
on how to take advantage of the new record dec-
laration syntax, as well as an introduction of top-
level statements.

Fans of F# will love the new built-in package
management as well as the ability to integrate F#
with Jupyter Notebooks.

.NET 5 has tooling that will be appreciated by user
interface developers. The inclusion of and im-
provements to WPF and WinForms is a huge step
for the .NET developer. There’s also a great write-
up discussing many improvements to Blazor tech-
nology. Mobile UI technologies are also discussed
with details on updates to the Xamarin ecosystem.

There’s also great content on many of the un-
derlying tools used by .NET developers. This in-

cludes advances to EF Core, like better many-to-
many support, logging, and better filter support.
There’s also a discussion of runtime changes in-
cluding improvements to single file deployments,
ARM support, and performance improvements in
general.

You’ll also find articles on Project Tye that helps
build microservice-based applications, Improve-
ments to Azure tooling in Visual Studio, as well as
an update on what’s been updated in the machine
learning framework ML.NET

This issue is chock full of great details that will
help you take advantage of these features right
out of the gate. I’m truly excited for the future of
.NET and hope you love .NET 5 as much as I do.

� Beth Massi
�

Does your team lack the technical knowledge or the resources to start new software development projects,

or keep existing projects moving forward? CODE Consulting has top-tier developers available to fill in

the technical skills and manpower gaps to make your projects successful. With in-depth experience in .NET,

.NET Core, web development, Azure, custom apps for iOS and Android and more, CODE Consulting can

get your software project back on track.

Contact us today for a free 1-hour consultation to see how we can help you succeed.

codemag.com/OneHourConsulting
832-717-4445 ext. 9 • info@codemag.com

TAKE
AN HOUR
ON US!

GET YOUR

FREE HOUR

8 codemag.comFrom .NET Standard to .NET 5

ONLINE QUICK ID 2010021

Immo Landwerth
immol@microsoft.com
devblogs.microsoft.com/dotnet/
twitter.com/terrajobst

Immo Landwerth is a
program manager on
the .NET platform team
at Microsoft. He works on
the class libraries where
he focuses on open source,
cross-platform, and API
design.

From .NET Standard to .NET 5
The base class library (BCL) provides the fundamental APIs that you use to build all kinds of applications, no matter whether
they are console apps, class libraries, desktop apps, mobile apps, websites or cloud services. One of the challenges we had
at Microsoft was making the BCL easier to reason about. This includes questions like “which APIs are available on which

.NET implementation,” “do I use any APIs that aren’t sup-
ported on all the operating systems that I want to run on,”
“do I use problematic APIs,” and of course, “do I use the
APIs correctly?”

In this article, I’m going to tell you about how we’re making
it easier for you to answer these questions moving forward.

The Future of .NET Standard
.NET 5 will be a shared code base for .NET Core, Mono, Xama-
rin, and future .NET implementations.

To better reflect this, we’ve updated the target framework
names (TFMs). TFMs are the strings you use to express which
version of .NET you’re targeting. You see them most often in
project files and NuGet packages. Starting with .NET 5, we’re
using these values:

•	 net5.0. This is for code that runs everywhere. It com-
bines and replaces the netcoreapp and netstandard
names. This TFM will generally only include technolo-
gies that work cross-platform (except for pragmatic
concessions, like we already did in .NET Standard).

•	 net5.0-windows. These kinds of TFMs represent OS
specific flavors of .NET 5 that include net5.0 plus OS-
specific bindings. In the case of net5.0-windows, these
bindings include Windows Forms and WPF. In .NET 6,
we’ll also add TFMs to represent the mobile platforms,
such as net6.0-android and net6.0-ios, which include
.NET bindings for the Android and iOS SDKs.

There isn’t going to be a new version of .NET Standard, but .NET
5 and all future versions will continue to support .NET Stan-
dard 2.1 and earlier. You should think of net5.0 (and future
versions) as the foundation for sharing code moving forward.

Advantages of Merging .NET Core and .NET Standard
Before .NET 5, there were completely disjointed implemen-
tations of .NET (.NET Framework, .NET Core, Xamarin, etc.).
In order to write a class library that can run on all of them,
we had to give you a target that defines the set of shared
APIs, which is exactly what .NET Standard is.

This means that every time we want to add a new API, we
have to create a new version of .NET Standard and then work
with all .NET platforms to ensure that they add support for
this version of the standard. The first problem is that this
process isn’t very fast. The other problem is that this re-
quires a decoder ring that tells you which version of which
.NET platform support needs which version of the standard.

But with .NET 5, the situation is very different. We now have
a shared code base for all .NET workloads, whether it’s desk-
top apps, cloud services, or mobile apps. And in a world
where all .NET workloads run on the same .NET stack, we
don’t need to artificially separate the work into API defini-

tion and implementation work. We just add the API to .NET
and the next time the stack ships, the implementation is
instantaneously available for all workloads.

This doesn’t mean that all workloads will have the exact
same API surface because that simply wouldn’t work. For
example, Android and iOS have a huge amount of OS APIs.
You’ll only be able to call those when you’re running on
those appropriate devices.

The new TFMs I mentioned earlier solve this problem: net5.0
(and future version) represent the API set that’s available to all
platforms. On top of that, we added OS-specific TFMs (such as
net5.0-windows) that have everything in net5.0 plus all the
APIs that are specific to Windows (such as Windows Forms and
WPF). And in .NET 6, we’re extending this to Android and iOS by
adding net6.0-android and net6.0-ios. The naming conven-
tion solves the decoder ring problem: Just by looking at the
names, it’s easy to understand that an app targeting net6.0-
ios can reference a library built for net5.0 and net6.0 but not
a library that was built for net6.0-android or net5.0-windows.

What You Should Target
.NET 5 and all future versions will always support .NET Stan-
dard 2.1 and earlier. The only reason to retarget from .NET
Standard to .NET 5 is to gain access to more APIs. So you can
think of .NET 5 as .NET Standard vNext.

What about new code? Should you still start with .NET Stan-
dard 2.0 or should you go straight to .NET 5? It depends on
what you’re building:

•	 App components. If you’re using libraries to break
down your application into several components, my
recommendation is to use netX.Y where X.Y is the low-
est number of .NET that your application (or applica-
tions) are targeting. For simplicity, you probably want
all projects that make up your application to be on the
same version of .NET because it means you can assume
the same BCL features everywhere.

•	 Reusable libraries. If you’re building reusable libraries
that you plan to ship on NuGet, you’ll want to consider
the trade-off between reach and API set. .NET Standard
2.0 is the highest version of .NET Standard that’s sup-
ported by .NET Framework, so it will give you the most
reach, while also giving you a fairly large API set to work
with. We’d generally recommend against targeting .NET
Standard 1.x as it’s not worth the hassle anymore. If you
don’t need to support .NET Framework, you can go with
either .NET Standard 2.1 or .NET 5. Most code can prob-
ably skip .NET Standard 2.1 and go straight to .NET 5.

So what should you do? My expectation is that widely used li-
braries will end up multi-targeting for both .NET Standard 2.0
and .NET 5: supporting .NET Standard 2.0 gives you the most
reach while supporting .NET 5 ensures that you can leverage the
latest platform features for customers that are already on .NET 5.

9codemag.com From .NET Standard to .NET 5

 return configuredPath;
 }
 }

 var exePath = Process.GetCurrentProcess()
 .MainModule.FileName;
 var folder = Path.GetDirectoryName(exePath);
 return Path.Combine(folder, "Logging");
 return "Logging";
}

To make this code ready for cross-platform use, you have
several options:

•	 Remove the Windows-only portions. This isn’t usu-
ally desirable because when you port existing code,
you generally want to support your existing customers
without losing features.

•	 Multi-target the project to build for both .NET Frame-
work and .NET 5, and use conditional compilation with
#if to only include the Windows-specific parts when
building for .NET Framework. This makes sense when
the Windows-only portion depends on large compo-
nents (such as Windows Forms or WPF) but it means
you’re producing multiple binaries. This works best for
cases where you’re building NuGet packages because
NuGet will ensure that consumers get the correct binary
without them having to manually pick the correct one.

•	 Guard the calls to Windows-only APIs with an oper-
ating system check. This option is the least intrusive
for all consumers and works best when the OS-specific
component is small.

In the case above, the best option is to guard the call with
an OS check. To make these super easy, we’ve added new
methods on the existing System.OperatingSystem class.
You only need to surround the code that uses the registry
with OperatingSystem.IsWindows():

private static string GetLoggingDirectory()
{
 // Only check registry on Windows
 if (OperatingSystem.IsWindows())
 {
 using (var key = Registry
 .CurrentUser
 .OpenSubKey(@"Software\Fabrikam"))
 {
 var path = "LoggingDirectoryPath";
 if (key?.GetValue(path)
 is string configuredPath)
 {
 return configuredPath;
 }
 }
 }

 var exePath = Process.GetCurrentProcess()

In a couple of years, the choice for reusable libraries will
only involve the version number of netX.Y, which is basically
how building libraries for .NET has always worked—you gen-
erally want to support some older version in order to ensure
that you get the most reach.

To summarize:

•	 Use netstandard2.0 to share code between .NET
Framework and all other platforms.

•	 Use netstandard2.1 to share code between Mono, Xa-
marin, and .NET Core 3.x.

•	 Use net5.0 for code sharing moving forward.

Platform-Specific APIs
The goal of .NET Standard has always been to model the set
of APIs that work everywhere. And we started with a very
small set. Too small, as it turns out, which is why we ended
up bringing back many .NET Framework APIs in .NET Stan-
dard 2.0. We did this to increase compatibility with existing
code, especially NuGet packages. Although most of these
APIs are general purpose, cross-platform APIs, we also in-
cluded APIs that only work on Windows.

In some cases, we were able to make these APIs available as
separate NuGet packages (such as Microsoft.Win32.Regis-
try), but in some cases we couldn’t because they were mem-
bers on types that were already part of .NET Standard, for
example APIs to set Windows file system permissions on the
File and Directory classes. Moving forward, we’ll try to avoid
designing types where only parts of them work everywhere.
But as always, there will be cases where we couldn’t predict
the future and are forced to throw a PlatformNotSupported-
Exception for some operating system down the road.

Dealing with Windows-Specific APIs
Wouldn’t it be nice if Visual Studio could make you aware when
you accidentally call a platform-specific API? Enter the platform
compatibility analyzer. It’s a new feature in .NET 5 that checks
your code for usages of APIs that aren’t supported on all the
platforms you care about. It’s a Roslyn analyzer, which means
that it’s running live in the IDE as you’re editing code but will
also raise warnings when you’re building on the command line
or the CI computer, thus making sure that you don’t miss it.

Let’s look at an example. I have a logging library that I
originally wrote for .NET Framework but now want to port
to .NET 5. When I recompile, I get these warnings because
GetLoggingDirectory() uses the Windows registry, as you
can see in Figure 1.

Let’s take a closer look at this method. It first checks the
registry to see whether a logging directory is configured. If
there isn’t, it falls back to the application’s directory:

private static string GetLoggingDirectory()
{
 using (var key = Registry
 .CurrentUser
 .OpenSubKey(@"Software\Fabrikam"))
 {
 var path = "LoggingDirectoryPath";
 if (key?.GetValue(path)
 is string configuredPath)
 { Figure 1: Warnings for using the Windows Registry

10 codemag.com

for features that are generally cross-platform but can’t be
supported on some operating system due to some constraint.
An example of this is Blazor WebAssembly. Because WebAs-
sembly runs inside the browser’s sandbox, you generally can’t
interact with the operating system or other processes. This
means that some of the otherwise cross-platform APIs will
throw a PlatformNotSupportedException when you try to
call them from Blazor WebAssembly.

For instance, let’s say I paste the GetLoggingDirectory()
method into my Blazor app. Of course, the registry won’t
work, so let’s delete that. This leaves us with just this:

private static string GetLoggingDirectory()
{
 var exePath = Process.GetCurrentProcess()
 .MainModule.FileName;
 var folder = Path.GetDirectoryName(exePath);
 return Path.Combine(folder, "Logging");
}

Inside of a Blazor app this code generates two new warn-
ings, seen in Figure 2.

This makes sense, given that you can’t enumerate processes
when running in the browser sandbox.

You may wonder why these methods weren’t flagged earlier.
The logging library targets net5.0, which can be consumed
from a Blazor WebAssembly app as well. Shouldn’t this warn
you when you use APIs that won’t work there?

Yes and no. On the one hand, net5.0 is indeed for code that’s
meant to run everywhere. But on the other hand, very few
libraries need to run inside a browser sandbox and there are
quite a few very widely used APIs, that can’t be used there. If
we flagged APIs that are unsupported by Blazor WebAssembly
by default, a lot of developers would get warnings that never
apply to their scenarios, and for them these warnings are just
noise. However, when you build class libraries that are meant to
be used by Blazor WebAssembly, you can enable this validation
by adding a <SupportedPlatform> item to your project file:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <SupportedPlatform Include="browser" />
 </ItemGroup>

</Project>

Blazor WebAssembly applications include this item by default.
The hosted Blazor WebAssembly project template adds this line
to the project that’s shared between client and server as well.

Like the platform-specific APIs, you can also mark your own
code as being unsupported by the browser sandbox by ap-
plying an attribute:

[UnsupportedOSPlatform("browser")]
private static string GetLoggingDirectory()
{

 .MainModule.FileName;
 var folder = Path.GetDirectoryName(exePath);
 return Path.Combine(folder, "Logging");
 return "Logging";
}

As soon as you do that, the warnings automatically disap-
pear because the analyzer is smart enough to understand
that these calls are only reachable when running on Windows.

Alternatively, you could have marked GetLoggingDirec-
tory() as being Windows-specific:

[SupportedOSPlatform("windows")]
private static string GetLoggingDirectory()
{
 // ...
}

The analyzer will also no longer flag the use of the registry
inside of GetLoggingDirectory() because it understands
that it only gets called when running on Windows. However,
it will now flag all callers of this method instead. This allows
you to build your own platform-specific APIs and simply for-
ward the requirement to your callers, as shown in Listing 1.

Dealing with Unsupported APIs
The previous case was an example of an API that only works
on a specific set of operating systems. You can also mark APIs
as unsupported for specific operating systems. This is useful

Figure 2: Warnings for using the Process APIs

namespace System
{
 public sealed class OperatingSystem
 {
 public static bool IsOSPlatform(
 string platform);
 public static bool IsOSPlatformVersionAtLeast(
 string platform,
 int major, int minor = 0, int build = 0,
 int revision = 0);

 public static bool IsWindows();
 public static bool IsWindowsVersionAtLeast(
 int major, int minor = 0, int build = 0,
 int revision = 0);

 // Analogous APIs exist for Android, Browser,
 // FreeBSD, iOS, Linux, macOS, tvOS, and watchOS
 }
}

Listing 1: Platform Guards

From .NET Standard to .NET 5

Figure 3: Using the URL of an obsoletion to find out more

11codemag.com From .NET Standard to .NET 5

 // ...
}

Better Obsoletions
A problem that’s existed in the BCL for a long time is that it’s
not easy to obsolete APIs. One reason was that people com-
piled in production (for example, the ASP.NET websites compile
on the Web server). When such a site compiles with warnings
as errors, a Windows update can bring a new .NET Framework
version with new obsoletions that might break the app.

The larger issue was that obsoletions can’t be grouped; all
obsoletions share the same diagnostic ID. This means you
can either turn them all off or suppress every occurrence in-
dividually using #pragma warning disable. That means that
obsoletions were usually only viable for methods; as soon
as you obsolete a type (or worse, a set of types), you might
quickly cause hundreds of warnings in your code base. At
this point, most developers simply disable the warning for
obsoleted APIs, which means that next time you obsolete an
API, they won’t notice anymore.

In .NET 5, we’ve addressed this via a simple trick: we added
DiagnosticId property to ObsoleteAttribute, which the
compilers use when reporting warnings. This allows you to
give each obsoleted feature a separate ID. Table 1 shows
the list of features we’ve obsoleted in .NET 5. One of those
features is Code Access Security (CAS). Although the attri-
butes exist in .NET 5 to make porting easier, they aren’t
doing anything at runtime. This obsoletion applies to 144
APIs. If you happen to use CAS and port to .NET 5, you might
get hundreds of warnings. To see the forest for the trees
again, you might decide to suppress and ignore CAS-related
obsoletion and file a bug to get rid of them later. You’d do
this via the normal suppression mechanism, for example, by
adding a <NoWarn> entry to your project:

ID Message #APIs
SYSLIB0001 The UTF-7 encoding is insecure and should not be used. Consider using UTF-8 instead. 3

SYSLIB0002 PrincipalPermissionAttribute is not honored by the runtime and must not be used. 1

SYSLIB0003 Code Access Security is not supported or honored by the runtime. 144

SYSLIB0004 The Constrained Execution Region (CER) feature is not supported. 9

SYSLIB0005 The Global Assembly Cache is not supported. 2

SYSLIB0006 Thread.Abort is not supported and throws PlatformNotSupportedException. 2

SYSLIB0007 The default implementation of this cryptography algorithm is not supported 5

SYSLIB0008 The CreatePdbGenerator API is not supported and throws PlatformNotSupportedException. 1

SYSLIB0009 The AuthenticationManager Authenticate and PreAuthenticate methods are not supported and throw PlatformNotSupportedException. 2

SYSLIB0010 This Remoting API is not supported and throws PlatformNotSupportedException. 2

SYSLIB0011 BinaryFormatter serialization is obsolete and should not be used. See https://aka.ms/binaryformatter for more information. 6

SYSLIB0012 Assembly.CodeBase and Assembly.EscapedCodeBase are only included for .NET Framework compatibility. Use Assembly.Location instead. 3

SYSLIB0013 Uri.EscapeUriString can corrupt the URI string in some cases. Consider using Uri.EscapeDataString for query string components instead. 1

SYSLIB0014 Use HttpClient instead. 12

Table 1: List of obsoletions in .NET 5

Figure 4: Warning when calling ReferenceEquals on value types

Figure 5: Customize rule severity via Solution Explorer

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 <!-- Ignore CAS obsoletions -->
 <NoWarn>SYSLIB0003</NoWarn>
 </PropertyGroup>

</Project>

The benefit of this is that other obsoletions for other fea-
tures will still be raised. This allows you to declare bank-
ruptcy in one area without accruing more debt in other
areas.

12 codemag.com

Not all analyzers are on by default because not every project
has the same requirements. For example, not every project
needs to be localized and not every project needs to operate
in a Web service with high throughput demands.

For example, let’s consider this code:

char[] chars = "Hello".ToArray();
Span<char> span = chars[0..2];

The second line uses the range-based indexer to create a
new array that only has the two elements. Although there’s
no correctness issue with the code, it’s not as efficient as
it could be.

Let’s turn on the analyzer by using the Solution Explorer
(Figure 5). Open the Dependencies node, drill into Analyz-
ers and under Microsoft.CodeAnalysis.NetAnalyzers, right-
click on CA1833 and select Warning.

This creates an .editorconfig with an entry for CA1833. Al-
ternatively, you could also add a line to enable all rules in
the performance category:

[*.cs]

Setting severity of a specific rule:
dotnet_diagnostic.CA1833.severity = warning

Bulk enable all performance rules:
dotnet_analyzer_diagnostic.category-
performance.severity = warning

After the rule is enabled, we get a warning for using the
range-based indexer on the array (Figure 6).

You can invoke the lightbulb menu via Ctrl+., which offers a
fix for this issue, as seen in Figure 7.

The fixer changes the code to slice the array as a span,
which doesn’t need to copy the underlying array:

char[] chars = "Hello".ToArray();
Span<char> span = chars.AsSpan(0..5);

Sweet!

Closing
With .NET 5, we have heavily improved our support for static
code analysis. This includes an analyzer for platform-specif-
ic code and a better mechanism to deal with obsoletions.
The .NET 5 SDK includes over 230 analyzers!

.NET 5 is the successor of .NET Core and .NET Standard. As a
result, the net5.0 name unifies and replaces the netcoreapp
and netstandard framework names. If you still need to tar-
get .NET Framework, you should continue to use netstan-
dard2.0. Starting with .NET 5, we’ll provide a unified imple-
mentation of .NET that can support all workloads, include
console apps, Windows desktop apps, websites, and cloud
services. And, with .NET 6, this will also include the iOS and
Android platforms.

In many cases, a single line of text is insufficient to describe
why an API was obsoleted and what the replacement is. So
another improvement we made is that we added a URL prop-
erty to ObsoleteAttribute. All new obsoletions will have a
documentation page with more details. You can access these
URLs by clicking on the ID in the error list (Figure 3).

Analyzers
The platform compatibility analyzer is only one of about 250
analyzers that we included with the .NET 5 SDK (about 60 of
them are on by default). These analyzers cover the use of
the language (C#, VB) as well as the BCL APIs.

Moving forward, the idea is that as when we add new features
to .NET, we’re also adding corresponding analyzers and code
fixers to help you use them correctly, right out of the gate.

Let’s look at a simple example. I wrote this little Person class for
one of my projects. Because equality is tricky, I made a mistake
in the implementation of the Equals method. Can you spot it?

class Person : IEquatable<Person>
{
 public Person(string name, DateTime birthday)
 {
 Name = name;
 Birthday = birthday;
 }

 private string Name { get; }
 private DateTime Birthday { get; }

 public bool Equals(Person other)
 {
 return ReferenceEquals(Name,
 other.Name) &&
 ReferenceEquals(Birthday,
 other.Birthday);
 }
}

Fortunately, you don’t have to. The new built-in analyz-
er has your back and flags the call to ReferenceEquals
(Figure 4).

Figure 6: Warning when range-based indexers cause copies

Figure 7: Invoking a code fixer

� Immo Landwerth
�

From .NET Standard to .NET 5

13codemag.com

ONLINE QUICK ID 2010031

Introducing C# 9.0

Bill Wagner
wiwagn@microsoft.com
twitter.com/billwagner

Bill Wagner is responsible
for the C# area of
https://docs.microsoft.com.
He creates learning materials
for developers interested
in the C# language and
.NET. He’s a member of
the ECMA C# Standards
Committee and the .NET
Foundation board of directors.
He is President of the
Humanitarian Toolbox.
Before joining Microsoft,
he was awarded Microsoft
Regional Director and
.NET MVP for 10+years.
He is the author of Effective C#
and More Effective C#.

Introducing C# 9.0
C# 9.0 adds many new features, and focuses on a few themes. C# 9.0 is part of .NET 5, which continues the journey toward a
single .NET ecosystem. The new features focus on modern workloads, that is, the software applications and services you’re
building today. The C# 9.0 compiler ships with the .NET 5.0 SDK. Many of the C# 9.0 features rely on new features in the .NET 5.0

libraries and updates to the .NET CLR that’re part of .NET
5.0. Therefore, C# 9.0 is supported only on .NET 5.0. C# 9.0
focuses on features that support native cloud applications,
modern software engineering practices, and more concise
readable code. There are several new features that make up
this release:

•	 Top-level statements
•	 Record types
•	 Init-only setters
•	 Enhancements to pattern matching
•	 Natural-sized integers
•	 Function pointers
•	 Omit localsinit
•	 Target type new
•	 Target type conditional
•	 Static anonymous methods
•	 Covariant return types
•	 Lambda discard parameters
•	 Attributes on local functions

This article explores those features and provides scenarios
where you might use them.

Top-Level Statements
Let’s start the exploration of C# 9.0 with top-level state-
ments. This feature removes unnecessary ceremony from
many applications. Consider the canonical “Hello World!”
program:

using System;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

There’s only one line of code that does anything. With top-
level statements, you can replace all that boilerplate with
the using statement and the single line that does the work:

using System;

Console.WriteLine("Hello World!");

Top-level statements provide a way for you write programs
with less ceremony. Only one file in your application may
use top-level statements. If the compiler finds top-level
statements in multiple source files, it’s an error. It’s also an
error if you combine top-level statements with a declared

program entry point method, typically a Main method. In a
sense, you can think that one file contains the statements
that would normally be in the Main method of a Program
class.

One of the most common uses for this feature is creating
teaching materials. Beginner C# developers can write the
canonical “Hello World!” in one line of code. None of the
extra ceremony is needed. Seasoned developers will find
many uses for this feature, as well. Top-level statements
enable a script-like experience for experimentation similar
to what Jupyter Notebooks provides. Top-level statements
are great for small console programs and utilities. In ad-
dition, Azure functions are an ideal use case for top-level
statements.

Most importantly, top-level statements don’t limit your ap-
plication’s scope or complexity. Those statements can access
or use any .NET class. They also don’t limit your use of com-
mand line arguments or return values. Top-level statements
can access an array or strings named args. If the top-level
statements return an integer value, that value becomes the
integer return code from a synthesized Main method. The
top-level statements may contain async expressions. In
that case, the synthesized entry point returns a Task, or
Task<int>. For example, the canonical Hello World example
could be expanded to take an optional command line argu-
ment for a person’s name. If the argument is present, the
program prints the name. If not, it prints “Hello World!”
like this:

using System;
using System.Linq;

if (args.Any())
{
 var msg =
 args.Aggregate((s1, s2) => $"{s1} {s2}");
 Console.WriteLine($"Hello {msg}");
}
else
 Console.WriteLine("Hello World!");

Record Types
Record types have a major impact on the code you write
every day. There are a lot of smaller language enhancements
that make up records. These enhancements are easier to un-
derstand by starting with the typical uses for records.

.NET types are largely classified as classes or anonymous
types that are reference types and structs or tuples, which
are value types. Although creating immutable value types is
recommended, mutable value types don’t often introduce
errors. That’s because value types are passed by value to
methods, so any changes are made to a copy of the original
data.

14 codemag.comIntroducing C# 9.0

ONLINE QUICK ID 2010031

•	 Methods for value-based equality comparisons
•	 Override for GetHashCode
•	 Copy and Clone members
•	 PrintMembers and ToString
•	 Deconstruct method

Records support inheritance. You can declare a new record
derived from Person as follows:

public record Teacher : Person
{
 public string Subject { get; }

 public Teacher(string first, string last,
 string sub)
 : base(first, last)
 => Subject = sub;
}

You can also seal records to prevent further derivation:

public sealed record Student : Person
{
 public int Level { get; }

 public Student(string first, string last,
 int level)
 : base(first, last)
 => Level = level;
}

The compiler generates different versions of the methods
mentioned above depending on whether or not the record
type is sealed and whether or not the direct base class is an
object. The compiler does this to ensure that equality for re-
cords means that the record types match and the values of
each property of the records are equal. Consider the small hi-
erarchy above. The compiler generates methods so that a Per-
son could not be considered equal to a Student or a Teacher.
In addition to the familiar Equals overloads, operator == and
operator !=, the compiler generates a new EqualityContract
property. The property returns a Type object that matches the
type of the record. If the base type is object, the property is
virtual. If the base type is another record type, the property is
an override. If the record type is sealed, the property is sealed.
The synthesized GetHashCode uses the GetHashCode from all
the public properties declared in the base type and the record
type. These synthesized methods enforce value-based equal-
ity throughout an inheritance hierarchy. That means that a
Student will never be considered equal to a Person with the
same name. The types of the two records must match, as well
as all properties shared among the record types being equal.

Records also have a synthesized constructor and a “clone”
method for creating copies. The synthesized constructor has
one argument of the record type. It produces a new record
with the same values for all properties of the record. This
constructor is private if the record is sealed; otherwise it’s
protected. The synthesized “clone” method supports copy
construction for record hierarchies. The term “clone” is in
quotes because the actual name is compiler-generated. You
can’t create a method named “Clone” in a record type.

The synthesized clone method returns the type of record
being copied using virtual dispatch. If a record type is ab-
stract, the clone method is also abstract. If a record type is

There are a lot of advantages to immutable reference types,
as well. These advantages are more pronounced in concur-
rent programs with shared data. Unfortunately, C# forced
you to write quite a bit of extra code to create immutable
reference types. For that reason, busy developers, which is
all developers, write mutable reference types. Records pro-
vide a type declaration for an immutable reference type that
uses value semantics for equality. The synthesized methods
for equality and hash codes considers two records to be
equal if their properties are all equal. Consider this defini-
tion:

public record Person
{
 public string LastName { get; }
 public string FirstName { get; }

 public Person(string first, string last) =>
 (FirstName, LastName) = (first, last);
}

That record definition creates a Person type that contains
two read-only properties: FirstName and LastName. The Per-
son type is a reference type. If you looked at the IL, it’s a
class. It’s immutable in that none of the properties can be
modified once it’s been created. When you define a record
type, the compiler synthesizes several other methods for
you:

Advertisers Index

CODE Legacy
	 www.codemag.com/legacy� 5

CODE Consulting
	 www.codemag.com/consulting� 7

CODE Magazine
	 www.codemag.com/magazine� 69

Microsoft
	 azure.microsoft.com/free/dotnet� 2

Microsoft
	 www.azure.com/AMP� 3

Microsoft
	 www.dot.net� 38

Microsoft
	 live.dot.net� 75

Microsoft
	 visualstudio.com/download� 76

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

15codemag.com Introducing C# 9.0

The compiler produces a Deconstruct method for positional
records. The deconstruct method has parameters that match
the names of all public properties in the record type. The
Deconstruct method can be used to deconstruct the record
into its component properties.

// Deconstruct is in the order
// declared in the record.
(string first, string last) = p1;
Console.WriteLine(first);
Console.WriteLine(last);

Finally, records support with-expressions. A with expression
instructs the compiler to create a something like a copy of a
record, but with specified properties modified.

Person brother = p1 with { FirstName = "Paul" };

The above line creates a new Person record where the Last-
Name property is a copy of p1, and the first Name is “Paul”.
You can set any number of properties in a with expression.

Any of the synthesized members except the “clone” method
may be written by you. If a record type has a method that
matches the signature of any synthesized method, the com-
piler doesn’t generate that method. The earlier Dog record
example contains a hand-coded ToString method as an ex-
ample.

Init-Only Setters
Init only setters provide consistent syntax to initialize mem-
bers of an object. Property initializers make it clear which
value is setting which property. The downside is that those
properties must be settable. Starting with C# 9.0, you can
create init accessors, instead of set accessors for proper-
ties and indexers. The main benefit is that callers can use
property initializer syntax to set these values in creation
expressions, but those properties are read-only once con-
struction has completed. Init-only setters provide a window
to change state. That window closes when the construction
phase ends. The construction phase effectively ends after
all initialization, including property initializers and with
expressions, has completed. Consider this immutable Point
structure:

public struct Point
{
 public double X { get; init; }
 public double Y { get; init; }

 public double Distance => Math.Sqrt(X * X +
 Y * Y);
}

You can initialize this structure using property initializer
syntax, but you can’t modify the values once construction
and initialization has completed:

var pt = new Point { X = 3, Y = 4 };
pt.X = 7; // Error!
Console.WriteLine(pt.Distance);

In addition to using property initializers, init-only setters
can be very useful to set base class properties from derived
classes, or set derived properties through helpers in a base

sealed, the clone method is sealed. If the base type of the
record is object, the clone method is virtual. Otherwise, it’s
override. The result of all these rules is that you can create
copies of a record ensuring that the copy is the same type.
Furthermore, you can check the equality of any two records
in an inheritance hierarchy and get the results that you in-
tuitively expect.

Person p1 = new Person("Bill", "Wagner");
Student s1 = new Student("Bill", "Wagner", 11);

Console.WriteLine(s1 == p1); // false

The compiler synthesizes two methods that support printed
output: a ToString override and PrintMembers. The Print-
Members method returns a comma-separated list of prop-
erty names and values. The ToString() override returns the
string produced by PrintMembers, surrounded by { and }.
For example, the ToString method for Student generates a
string like the following:

Student { LastName = Wagner, FirstName = Bill,
Level = 11 }

The examples shown so far use traditional syntax to declare
properties. There’s a more concise form called positional
records. Here are the three record types defined earlier us-
ing positional record syntax:

public record Person(string FirstName,
 string LastName);

public record Teacher(string FirstName,
 string LastName,
 string Subject)
 : Person(FirstName, LastName);

public sealed record Student(string FirstName,
 string LastName, string Subject)
 : Person(FirstName, LastName);

These declarations create the same functionality as the ear-
lier version (with a couple extra features that I’ll cover in
a bit). These declarations end with a semicolon instead of
brackets because these records don’t add additional meth-
ods. You can add a body and include any additional methods
as well:

public record Pet(string Name)
{
 public void ShredTheFurniture() =>
 Console.WriteLine("Shredding furniture");
}

public record Dog(string Name) : Pet(Name)
{
 public void WagTail() =>
 Console.WriteLine("It's tail wagging time");

 public override string ToString()
 {
 StringBuilder s = new();
 base.PrintMembers(s);
 return $"{s.ToString()} is a dog";
 }
}

16 codemag.com

MinValue .. int.MaxValue]. You can use constant values for
nuint in the range [uint.MinValue .. uint.MaxValue]. The
compiler performs constant folding for all unary and binary
operators using the Int32 and UInt32 types. If the result
doesn’t fit in 32-bits, the operation is executed at runtime
and isn’t considered a constant. Native-sized integers can
increase performance in scenarios where integer math is
used extensively and needs to have the faster performance
possible.

Function pointers provide an easy syntax to access the IL
opcodes ldftn and calli. You can declare function pointers
using new delegate* syntax. A delegate* type is a pointer
type. Invoking the delegate* type uses calli, in contrast to a
delegate that uses callvirt on the Invoke method. Syntacti-
cally, the invocations are identical. Function pointer invo-
cation uses the managed calling convention. You add the
unmanaged keyword after the delegate* syntax to declare
that you want the unmanaged calling convention. Other
calling conventions can be specified using attributes on the
delegate* declaration.

Finally, you can add the SkipLocalsInitAttribute to instruct
the compiler not to emit the localsinit flag. This flag in-
structs the CLR to zero-initialize all local variables. This
has been the default behavior for C# since 1.0. However,
the extra zero-initialization may have measurable perfor-
mance impact in some scenarios, in particular, when you
use stackalloc. In those cases, you can add the SkipLocal-
sInitAttribute. You may add it to a single method or prop-
erty, or to a class, struct, interface, or even a module. This
attribute does not affect abstract methods; it affects the
code generated for the implementation.

These features can improve performance in some scenarios.
They should be used only after careful benchmarking both
before and after adoption. Code involving native sized in-
tegers must be tested on multiple target platforms with
different integer sizes. The other features require unsafe
code.

Fit and Finish Features
Many of the other features help you write code more effi-
ciently. In C# 9.0, you can omit the type in a new expression
when the created object’s type is already known. The most
common use is in field declarations:

public class PropertyBag
{
 private Dictionary<string, object>
 properties = new();

 // elided
}

Target type new can also be used when you need to create a
new object to pass as a parameter to a method. Consider a
ParseJson() method with the following signature:

public JsonElement ParseJson(string text,
 JsonSerializerOptions opts)

You could call it as follows:

var result = ParseJson(text, new());

class. Positional records declare properties using init-only
setters. Those setters are used in with expressions. You
can declare init-only setters for any class or struct you de-
fine.

Enhanced Pattern Matching
C# 9 includes new pattern-matching improvements:

•	 Type patterns match a variable as a type
•	 Parenthesized patterns enforce or emphasize the pre-

cedence of pattern combinations
•	 Conjunctive and patterns require both patterns to

match
•	 Disjunctive or patterns require either pattern to match
•	 Negated not patterns require that a pattern doesn’t

match
•	 Relational patterns require that the input be less than,

greater than, less than or equal, or greater than or
equal to a given constant

These patterns enrich the syntax for patterns. Consider
these examples:

public static bool IsLetter(this char c) =>
 c is >= 'a' and <= 'z'
 or >= 'A' and <= 'Z';

Alternatively, with optional parentheses to make it clear
that and has higher precedence than or:

public static bool IsLetterIsSeparator(this char c) =>
 c is (>= 'a' and <= 'z')
 or (>= 'A' and <= 'Z')
 or '.'
 or ',';

One of the most common uses is a new clear syntax for a
null check:

if (e is not null)
{
 // ...
}

Any of these patterns can be used in any context where pat-
terns are allowed: is pattern expressions, switch expres-
sions, nested patterns, and the pattern of a switch state-
ment’s case label.

Performance and Interop
Three new features improve support for native interop and
low-level libraries that require high performance: native
sized integers, function pointers, and omitting the local-
sinit flag.

Native sized integers nint and nuint are integer types. They
are expressed by the underlying types System.IntPtr and
System.UIntPtr. The compiler surfaces additional conver-
sions and operations for these types as native ints. Native
sized ints don’t have constants for MaxValue or MinValue,
except for nuint.MinValue, which has a MinValue of 0. Other
values cannot be expressed as constants because it would
depend on the native size of an integer on the target com-
puter. You can use constant values for nint in the range [int.

Introducing C# 9.0

17codemag.com Introducing C# 9.0

CompilerServices.ModuleInitializer attribute attached to
them. These methods are called by the runtime when the
assembly loads. A module initializer method:

•	 Must be static
•	 Must be parameterless
•	 Must return void
•	 Must not be a generic method
•	 Must not be contained in a generic class
•	 Must be accessible from the containing module

That last bullet point effectively means the method and its
containing class must be internal or public. The method
cannot be a local function. Source generators may need to
generate initialization code. Module initializers provide a
standard place for that code to reside.

Summary
C# 9.0 continues the evolution of C# as a modern language.
It’s embracing new idioms and new programming paradigms
while retaining its roots as an object-oriented component-
based language. The new features make it efficient to build
the modern programs that we’re creating today. Try to adopt
the new features today.

A similar feature improves the target type resolution of con-
ditional expressions. With this change, the two expressions
need not have an implicit conversion from one to the other
but may both have implicit conversions to a common type.
You likely won’t notice this change. What you will notice is
that some conditional expressions that previously required
casts or wouldn’t compile now just work.

Starting in C# 9.0, you can add the “static” modifier to
lambda expressions or anonymous methods. That has the
same effect as the “static” modifier on local functions: a
static lambda or anonymous function can’t capture local
variables or instance state. This prevents accidentally cap-
turing other variables.

Covariant return types provide flexibility for the return types
of virtual functions. Previously, overrides had to return the
same type as the base function. Now, overrides may return a
type derived from the return type of the base function. This
can be useful for Records and for other types that support
virtual clone or factory methods.

Next, you can use discards as parameters to lambda expres-
sions. This convenience enables you to avoid naming the
argument, and the compiler may be able to avoid using it.
You use the “_” for any argument.

Finally, you can now apply attributes to local functions.
These are particularly useful to add nullable attribute an-
notations to local functions.

Support for Source Generators
Two final features support C# source generators. C# source
generators are a component you can write that’s similar to
a Roslyn analyzer or code fix. The difference is that source
generators analyze code and write new source code files as
part of the compilation process. A typical source genera-
tor searches code for attributes or other conventions. Based
on the information supplied by the attributes, the source
generator writes new code that’s added to the library or
application.

You can read attributes or other code elements using the
Roslyn analysis APIs. From that information, you can add
new code to the compilation. Source generators can only
add code; they’re not allowed to modify any existing code
in the compilation.

The two features added for source generators are extensions
to partial method syntax and module initializers. First,
there are fewer restrictions to partial methods. Before C#
9.0, partial methods were private but can’t specify an ac-
cess modifier, have a void return, or have out parameters.
These restrictions meant that if no method implementation
was provided, the compiler removed all calls to the partial
method. C# 9.0 removes these restrictions but requires
that partial method declarations have an implementation.
Source generators can provide that implementation. To
avoid introducing a breaking change, the compiler considers
any partial method without an access modifier to follow the
old rules. If the partial method includes the private access
modifier, the new rules govern that partial method.

The second new feature for source generators is module ini-
tializers. These are methods that have the System.Runtime.

� Bill Wagner
�

18 codemag.comEF Core 5: Building on the Foundation

ONLINE QUICK ID 2010041

Julie Lerman
@julielerman
thedatafarm.com/contact

Julie Lerman is a Microsoft
Regional director, Docker
Captain, and a long-time
Microsoft MVP who now
counts her years as a coder
in decades. She makes
her living as a coach and
consultant to software
teams around the world.
You can find Julie presenting
on Entity Framework,
Domain-Driven Design and
other topics at user groups
and conferences around
the world. Julie blogs at
thedatafarm.com/blog,
is the author of the highly
acclaimed “Programming
Entity Framework” books,
and many popular videos
on Pluralsight.com.

EF Core 5: Building on the Foundation
Hot on the tail of EF Core 3 is EF Core 5. Remember when we skipped from EF v1 to EF4 to align with .NET Framework 4.0? Like
that time, this new gap in version numbers was designed to align with the successor to .NET Core 3. Except that successor
is no longer called .NET Core, it’s .NET 5. Yet EF Core 5 is keeping the “Core” (as is ASP.NET Core 5). This allows us to continue

differentiating from the pre-Core versions of EF and ASP.
NET. So, EF Core 5 it is. Happily for me, this article is about
EF Core 5 and I’m not charged with further explaining the
name and other changes to .NET 5, details you can read
about in another article in this issue.

When EF Core 5 was still a few months from release, Arthur
Vickers (from the EF team) tweeted some impressive stats
about the 637 GitHub issues already closed for the EF Core
5 release:

•	 299 bugs fixed
•	 113 docs and cleanup
•	 225 features and minor enhancements

Building on the EF Core 3 Foundation
You may have read my article introducing CODE Magazine
readers to EF Core 3, entitled “Entity Framework Core 3.0,
A Foundation for the Future” (https://codemag.com/Ar-
ticle/1911062/Entity-Framework-Core-3.0-A-Foundation-
for-the-Future). Because the first iteration of EF Core was
a complete rewrite of Entity Framework, it had been a very
“v1” version. EF Core 2 goals were around tightening down
the existing code base and adding critical features, making
EF Core truly production ready. With that stable version in
place (and widely used), the team felt that with EF Core 3, it
was safe to make the kind of low-level changes that would
result in breaking changes. There weren’t many new features
in EF Core 3, so teams could continue to use EF Core 2 if
they wanted while EF Core 3 prepared the framework for a
long future.

With EF Core 5.0, we’re now witnessing that future. I want
to assure you that the great number of breaking changes
in EF Core 3.0 were really a one-time event. Some of you
may be worried that this will happen again, but the EF Core
team is now focused on building on that foundation and
minimizing future breaking changes. EF Core 5 doesn’t have
very many breaking changes, and they’re clearly laid out
in the Breaking Changes page in the docs. Today (as EF
Core 5 is in Preview 8) there is only one listed and it’s very
much an edge case related to SQLite and Geometric Dimen-
sions…something I’ve never even heard of. (https://docs.
microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/
breaking-changes)

Unlike EF Core 3, which had only seven new features, EF
Core 5 has many new features along with improvements to
existing features and the usual bug fixes. There’s no way to
cover all of the new goodies in this article, so be sure to
look at the docs to get a great overview. At the time of writ-
ing this article, there have been eight previews and you’ll
find a list of what’s new for each of the different previews at
https://docs.microsoft.com/en-us/ef/core/what-is-new/
ef-core-5.0/whatsnew. I’ll pick some that I find interesting
and/or important and drill into them in this article.

More importantly, much of the groundwork laid in EF Core 3
has enabled some great additions to EF Core 5.0, including
the return of features from EF6. I think the most notable
of these is support for many-to-many relationships that
doesn’t require us to tangle with classes that represent the
join—the solution we’ve been stuck with since EF Core first
arrived.

And the reason many-to-many took so long to appear is a
nice example of that EF Core 3 groundwork. The original ma-
ny-to-many support was tied to the way Entity Framework
was designed back in 2006. Although it was magical indeed
in the way it inferred and persisted the join data, the source
of that magic put a lot of limitations on what we developers
could do with the data in that relationship. When building
EF Core v1, the team didn’t want to duplicate that limiting
solution. However, re-thinking and re-devising many-to-
many was going to be a lot of work that would have held up
the release. In the meantime, we could at least leverage the
workaround of using the explicit join entity. But now, with
those necessary changes in place, the EF team was able to
build a smarter, more flexible, and non-magical many-to-
many feature in EF Core 5.

Platform Support for EF Core 5
EF Core 5 can be used with any platform that supports .NET
Standard 2.1. This includes .NET Core 3.1 and .NET 5. But it
won’t run on .NET Standard 2.0, which means that starting
with EF Core 5.0, you can no longer use EF Core with .NET
Framework. You can still use .NET Framework with EF Core
1, 2, and 3.

Backward Compatible with EF Core 3
With the exception of the few breaking changes, you should
find EF Core 5 to be backward compatible with your EF Core
3 code. I tested this out with various solutions of my own
(e.g., the demos from the EF Core 3 article and some from
my Pluralsight course, Getting Started with EF Core 3.1) and
everything continued to run, with all tests passing. The ic-
ing on that compatibility cake however, is the opportunity
to improve that code with new EF5 features.

Documentation and Community
There are a few other important themes to be aware of with
EF Core 5. The team is focused on major improvements to
the documentation. You might have noticed that earlier this
year, the docs were reorganized. The home page for EF docs
(Figure 1) at docs.microsoft.com/ef, has guided paths to
more easily find the type of information you’re seeking.

In addition to the already well documented features,
they’ve been adding guidance and best practices. For ex-
ample, there are now Platform Experience documents that
provide guidance for using EF Core on different platforms.

19codemag.com EF Core 5: Building on the Foundation

of addresses, and an address might have a number of resi-
dents. Each Person has a list of Addresses and Address has a
list of person types, called Residents.

public class Person
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public List<Address> Addresses { get; set; }
}

public class Address
{
 public int Id { get; set; }
 public string Street { get; set; }
 public string PostalCode { get; set; }
 public List<Person> Residents { get; set; }
}

The minimal requirement for EF Core 5 to recognize the re-
lationship is that you must make the DbContext aware of
one of the ends (e.g., create a DbSet for either entity). EF
Core 5 can then infer the relationship in the model. For a
simple, conventional many-to-many, there’s no more con-
figuration or effort needed. I’ve chosen to create DbSets
for both types.

public DbSet<Person> People { get; set; }
public DbSet<Address> Addresses { get; set;}

When I add a migration to create the database, EF Core 5 in-
fers a join table between People and Addresses in the data-
base. The migration has CreateTable methods for Addresses,
People, and AddressPerson. In the database created based

Some examples are Getting Started with WPF and EF Core
(https://docs.microsoft.com/en-us/ef/core/get-started/
wpf), Getting Started with Xamarin and EF Core (https://
docs.microsoft.com/en-us/ef/core/get-started/xamarin)
and guidance for Blazor and EF Core (https://docs.micro-
soft.com/en-us/aspnet/core/blazor/blazor-server-ef-core).

The EF team has also begun to have bi-weekly live commu-
nity standups online. In a time when we’re not able to travel
and convene, it’s wonderful to be able to not only visit with
the team members (and some of their cats) but also to get
such great insight into the work they and other members of
the community are doing. These happen on YouTube with
past and upcoming standups listed on this playlist: http://
bit.ly/EFCoreStandups.

Another exciting aspect of EF Core 5 is the number of pull
requests (PRs) that have come from the community and are
now a part of EF Core. Although some of the PRs are very
close to ready-for-primetime when submitted to the GitHub
repository, the team has also worked closely with develop-
ers to help them spruce up PRs that weren’t quite ready to
be merged. What I truly love about this is how much atten-
tion and recognition the EF Core team has paid to these con-
tributors. The weekly status updates that the team shares on
GitHub (https://github.com/dotnet/efcore/issues/19549)
include a list of the pull requests. For example, you can see
PRs from six developers in the community listed in the Au-
gust 6, 2020 update (https://github.com/dotnet/efcore/
issues/19549#issuecomment-670225346). Even cooler is
to see the long list of contributors including their photos
and links to their GitHub accounts at the bottom of the an-
nouncement post for the first preview of EF Core 5 (https://
devblogs.microsoft.com/dotnet/announcing-entity-frame-
work-core-5-0-preview-1/#thank-you-to-our-contributors).

The team is also excited about the community involvement.
Speaking with Arthur Vickers, I could hear the joy in his
voice as we talked about it. He tells me:

New and Improved Many-to-Many
Support
As I mentioned earlier, and you may be quite familiar with,
proper many-to-many support has existed since the outset
of Entity Framework. What I mean by “proper” is where you
aren’t required to have a join entity in your code and EF
infers the connection between the two ends. And as I ex-
plained above, it wasn’t implemented in EF Core, EF Core 2,
or EF Core 3, which left us tangling with a join entity. This
was the most requested feature, as per the “thumbs up”
on the relevant GitHub issue (https://github.com/dotnet/
efcore/issues/1368).

EF Core 5 now has true many-to-many support so that you
can write your classes in a natural way and EF Core will un-
derstand the mapping when it comes to creating and in-
ferring the database schema, building SQL for queries and
updates, and materializing results.

This is, to me, one of the more fascinating features, so I’ll
dig into this more deeply than any other feature in this ar-
ticle.

Here’s an example of the natural way, in a relationship
where people could reside or otherwise be tied to a variety Figure 1: The redesigned EF Docs Home

20 codemag.com

command threshold (at least four commands for SQL Server)
when inserting or updating the ends (person and address),
the person and address inserts are batched together. The
join table inserts will be batched in their own command if
there are at least four of those.

When querying from either end, there’s no need to acknowl-
edge the join thanks to skip navigations. You can eager load
Addresses for People and eager load Residents (i.e., Person
types) for Addresses, and EF Core will work out the correct
queries and materialize the results.

context.People.Include(p=>p.Addresses)

Projection queries and explicit loading also take advantage
of the many-to-many capability.

In the end, the bottom line for simple scenarios is that ma-
ny-to-many works just like it did in EF6.

The bottom line for simple
scenarios is that many-to-many
works just like it did in EF6.

Many-To-Many with Additional Columns
As mentioned earlier, the new property-bag entity type en-
ables EF Core 5 to store additional data in the join table. And
it avoids the detrimental side effect of trying to achieve that
in EF6. In EF6, if you already had a many-to-many relation-
ship and then decided to track additional data in the join
table, it meant abandoning the many-to-many support and
creating an explicit join entity (that maps directly to the join
table) with a one-to-many relationship between that entity
and each of the ends. This also meant the painstaking effort
of navigating through that entity for every query and object
interaction that involved the relationship. This is what carried
through to EF Core as the only way to support many-to-many.

As an example, let’s keep track of the date on which the per-
son was associated with a particular address. Even though
I have already implemented the simpler many-to-many, the
existing code and mappings will continue to work. EF Core 5
lets you do this without impacting the existing relationship
or about breaking a lot of code.

With EF Core 5, you do need to create an explicit entity that
maps to the join table, because you need somewhere to

on that migration (Figure 2), you can see that the join ta-
ble has two columns, AddressesId and ResidentsId. EF Core
picked up the name of the Residents property when choos-
ing the join table schema. The primary key is composed from
both columns and each column is also a foreign key back to
one of the other tables.

This mapping is the same as what we got by convention in
earlier versions of Entity Framework based on the same set up.

A serious limitation about many-to-many support in EF6,
however, is that there is no way to have additional columns
in that join table. For example, the date on which a person
took up residency at an address. In that case, you would
have to create an explicit entity to map to the join table
and manually manage every detail about the relationship
in your code—just as we’ve had to do in EF Core. If you al-
ready had production code with the simpler many-to-many
relationship, this also meant breaking a lot of code. This
problem was a result of the house of cards (my words) on
which many-to-many was originally built. The details are
fairly interesting (to some of us) but I won’t be delving into
those internals in this article.

There are, however, two pieces of the EF Core 5 many-to-
many support that you should know about. One is called
skip navigations, which allows you to skip over the inferred
join entity between Address and Person when writing your
code. The other is property-bag entity types. These are new
to EF Core 5 and are a type of dictionary. Property bag enti-
ties are used to solve a number of mapping quandaries, not
just many-to-many. But for many-to-many, they allow you
to store additional data into the join table while still ben-
efiting from the skip navigation. The ability to have extra
data in the join table is a very big difference from EF6 and,
I hope you will agree, is one of the reasons that many-to-
many support in EF Core was worth the wait.

When building up objects or querying, you don’t have to
make any reference to the join—just work with the direct
navigation properties and EF Core will figure out how to per-
sist and query. For example, here, I’m creating a new person
and adding a few addresses:

var person = new Person
 {FirstName="Jeremy", LastName="Likness" };
person.Addresses.Add(new Address
 {Street="999 Main" });
person.Addresses.Add(new Address
 {Street="1000 Main" });

Then, I add the person to a context instance and save to
the database:

context.People.Add(person);
context.SaveChanges();

EF Core first inserts the person and the addresses, then grabs
the database-generated IDs from those new rows. Then it
uses those values to insert the two relevant rows to the Per-
sonAddress join table. By the way, I used the new streamlined
logging capability in EF Core 5 to see the SQL. I’ll show you
how that works after I finish digging into many-to-many.

Also notable is how EF Core batches commands when per-
forming these inserts. I found that if you reach the batch Figure 2: The schema of the Join table

EF Core 5: Building on the Foundation

21codemag.com

That’s part of the beauty of this re-imagined many-to-many
in EF Core 5.

When I add a new migration, EF Core creates logic to en-
hance the AddressPerson join table, modifying the column
names and fixing up the names of foreign keys and indexes.
Like the table name, you do have agency over these names
using the fluent API, but I’ll just let it use convention and
make the changes. After calling update-database, Figure 3
shows the schema of the modified table.

Now, when I create any new relationship between a Person
and an Address, the new row in the join table will have the
LocatedDate populated by SQL Server.

I can also query the Residents with a DbContext.
Set<Resident> if I want to read that value. There are more
ways to enhance the many-to-many relationship as well that
you can learn about from the docs or perhaps a future ar-
ticle here in CODE Magazine. Let’s look at some other EF
Core 5 features now.

Simplified Logging Returns
with More Smarts
Logging in Entity Framework and EF Core has had a long and
lurid history. Well, not really lurid, but it sounded good,
right? It was rough to get at the SQL created by EF in early
days but then we got a super simple Database.Log method
in EF6. This didn’t make the transition to EF Core but in-
stead, EF Core tied directly into the logging framework in
.NET Core. This was a big advance. The pattern to tap into
EF Core’s logs was to configure the DbContext options to use
a LoggingFactory. In ASP.NET, this is fairly simple because
the LoggingFactory is pre-defined. In other apps, there’s a
bit more ceremony.

Now in EF Core 5, the team has merged the intelligence of
the .NET Core logging framework and the simplicity of tell-
ing EF Core to “just do it.” In fact, you don’t even need to
know that there’s a LoggingFactory involved. Witness the
loveliness of this code. In a console app where I’m explicitly
specifying the optionsBuilder settings in OnConfiguring, I
need only to append a LogTo method, specify the target as a
delegate, e.g., Console.Writeline (notice it’s not a method),
and then specify how much detail to provide with a LogLevel
enum.

capture that additional data (referred to as a payload). I’ll
do this with a class called Resident and add a LocatedDate
property to track the new detail.

public class Resident
{
 public int PersonId { get; set; }
 public int AddressId { get; set; }
 public DateTime LocatedDate {
 get; private set; }
}

Unlike audit data, which you can configure using EF Core’s
shadow properties with no need to expose in your business log-
ic, you’ll be able to access this LocatedDate easily in your code.

I’ll configure the mapping in DbContext.OnModelCreating.

modelBuilder.Entity<Person>()
 .HasMany(p => p.Addresses)
 .WithMany(a => a.Residents)
 .UsingEntity<Resident>(
 r => r.HasOne<Address>().WithMany(),
 r => r.HasOne<Person>().WithMany())
 .Property(r => r.LocatedDate)
 .HasDefaultValueSql("getdate()");

This mapping looked confusing to me at first but after ap-
plying it a few times, it now makes sense. Let me break it
down for you so that you don’t even need to wait until your
second pass.

I start with the Person end, Entity<Person>, which has
many addresses via its Addresses property. Then using With-
Many, I explain that Addresses has many Residents (e.g.,
its List<Person> property). So far, this is an explicit way
to map what EF is already determining through convention.
And in fact, there is even a way to configure the many-to-
many without even coding the navigations in the classes.
Next comes the “how to do it” mapping: UsingEntity. This
uses the join entity, Resident, and then specifies that ev-
ery resident connects one Address and one Person. Each of
those might have many resident properties, which is what
the WithMany method represents. There’s no need to specify
the resident type in the WithMany method; EF Core will be
able to infer that by convention.

Finally, I’m using a familiar mapping to specify that the da-
tabase column that maps to the Resident.LocatedDate prop-
erty should have a default value of the current date, using
SQL Server’s getdate() function.

There’s one more critical change you must make in the map-
pings. By convention, EF Core originally named the join
table AddressPerson. With the new Resident entity, EF Core
convention will want that table to be named Residents. This
causes the migration to drop the AddressPerson table and
recreate it, causing you to lose data. To prevent this, I’ve
included a mapping to ensure that the new Resident entity
still maps to that AddressPerson table.

modelBuilder.Entity<Resident>()
 .ToTable("AddressPerson");

Do keep in mind that there are a lot of other ways you can
configure the mappings for the many-to-many relationship.

Figure 3: The schema of the join table with a Payload
column, LocatedDate

EF Core 5: Building on the Foundation

22 codemag.com

8/15/2020 10:27:31 AM: Bear Cub #2
8/15/2020 10:27:31 AM: Bear Cub #3

To filter and sort, it’s just some more, familiar LINQ inside
the Include method. Let’s check out anything but bears now
and sort them by name.

context.Addresses.Include
 (a => a.WildlifeSightings
 .OrderBy(w=>w.Description)
 .Where(w => !w.Description.Contains("Bear")))
.FirstOrDefault();

EF Core 5 generates SQL that returns only the snake and
squirrel in alphabetical order.

8/15/2020 10:31:14 AM: Garter Snake
8/15/2020 10:31:14 AM: Squirrel

Tweak Performance with Split Queries
I mentioned the LEFT JOIN used for the filtered Include
query above. The default for eager loaded queries is to build
a single query. The more complexity you build into an ea-
ger loaded query, for example if you are piling on Include
or ThenInclude methods when the Includes are pointing to
collections, there’s a good chance of the query performance
degrading. This can be dramatic and I’ve worked with clients
to solve this type of performance problem many times.

Earlier in EF Core’s lifetime, the team tried to improve the
performance by splitting up the query. However, users dis-
covered that this path occasionally returned inconsistent
results. In response, in EF Core 3, the team reverted back
to a single query. Now in EF Core 5, although the single
query remains the default, you have the option to force the
query to be split up with the AsSplitQuery method. Like the
AsNoTracking method, there’s also a way to apply this to the
context itself, not only particular queries. For example, here
is the SQL from the simple Include above before I added the
filter. Notice the LEFT JOIN to retrieve the related data.

SELECT [t].[Id], [t].[PostalCode], [t].[Street],
 [w].[Id], [w].[AddressId], [w].[DateTime],
 [w].[Description]
FROM (
 SELECT TOP(1) [a].[Id], [a].[PostalCode],
 [a].[Street]
 FROM [Addresses] AS [a]
) AS [t]
LEFT JOIN [WildlifeSighting] AS [w]
ON [t].[Id] = [w].[AddressId]
ORDER BY [t].[Id], [w].[Id]

Adding AsSplitQuery into the LINQ query:

context.Addresses.AsSplitQuery()
 .Include(a => a.WildlifeSightings)
 .FirstOrDefault();

This results in a pair of select statements, eliminating the
LEFT JOIN.

SELECT [t].[Id], [t].[PostalCode], [t].[Street]
FROM (
 SELECT TOP(1) [a].[Id], [a].[PostalCode],

optionsBuilder.UseSqlServer(myConnectionString)
 .LogTo(Console.WriteLine,LogLevel.Information);

This syntax is even simpler than EF6 (which required some
additional settings in a config file) and much more flexible.

If you are working in ASP.NET Core, you can continue to take
advantage of the built-in logging while filtering EF Core’s
output in the appsettings.json file.

Finally, Filtered Include!
Here’s a treat we’ve been asking for since the beginning of
time, well, of EF time: the ability to filter when eager load-
ing with the Include method. The way it’s always worked is
that if you use Include to pull in related objects, it’s an all
or nothing grab. Include had no way to filter or sort. To get
around that, we could instead use the Select method to cre-
ate a projection query. Explicit (after the fact) loading also
allows filtering and sorting.

Thanks again to some of the underlying capabilities recently
brought into EF Core, EF Core 5 finally lets you use Where
and other LINQ methods on the related properties specified
in the Include method.

I’ve enhanced my domain to include wildlife sightings at
each address and it’s been a very busy morning at my house
with bears, cubs, snakes, and squirrels all running about!

Here is a simple query with Include without the new capability:

context.Addresses
 .Include(a => a.WildlifeSightings)
 .FirstOrDefault();

This returns every sighting for the first address:

8/15/2020 10:27:31 AM: Bear
8/15/2020 10:27:31 AM: Bear Cub #1
8/15/2020 10:27:31 AM: Bear Cub #2
8/15/2020 10:27:31 AM: Bear Cub #3
8/15/2020 10:27:31 AM: Squirrel
8/15/2020 10:27:31 AM: Garter Snake

Now you can use LINQ methods inside the Include method.
To filter to return only the bear sightings, I’ll add the Where
method to the related WildlifeSightings property.

context.Addresses.Include
 (a => a.WildlifeSightings
 .Where(w=>w.Description.Contains("Bear")))
 .FirstOrDefault();

If you follow me on Twitter, you may know that there has in-
deed been a mother bear with three cubs living in the woods
in my neighborhood this past summer. I saw the momma
from a distance one day, but I’ve not been lucky enough to
see the cubs. Back to EF Core 5, which generated the correct
SQL to filter on only the bear sightings. The SQL Statement
is a single query and has added a filter using LEFT JOIN to
access the related data. Here are the results—the squirrel
and snake are gone.

8/15/2020 10:27:31 AM: Bear
8/15/2020 10:27:31 AM: Bear Cub #1

EF Core 5: Building on the Foundation

23codemag.com

made to idempotency in generated migration scripts and
the EF Core CLI now allows you to pass in the database con-
nection string when updating a database.

There have also been some changes for migrations in SQLite
databases. SQLite has myriad limitations around modifying
table schema, which has created a lot of problems for mi-
grations in the past. Brice Lambson has been tackling this
problem for many years in between working on many other
features. He recently noted on GitHub that he originally cre-
ated the relevant issue before his, now six-year old, child was
born. EF Core 5 enables quite a number of previously unsup-
ported migrations such as AlterColumn and AddForeignKey.
You can see the list of migrations supported (followed by
recommended workarounds) in the document, SQLite EF Core
Database Provider Limitations at https://docs.microsoft.
com/en-us/ef/core/providers/sqlite/limitations.

Transaction Support in Scripted Migrations
Have you ever run a migration that attempts to add a table
that already exists? The migration fails and anything past
that problem won’t get run.

After much discussion and research, the team has added
transactions to SQL generated by the script-migration and
CLI ef migration script commands.

Although the BEGIN TRANSACTION and COMMIT statements
are added by default, you can disable their inclusion with
the NoTransactions parameter.

Transactions are used to wrap what should be natural trans-
action points throughout the script. You can read the dis-
cussion about how this was determined in this GitHub issue
(https://github.com/dotnet/efcore/issues/7681). I would
recommend that you (or in my case, someone with better
DBA smarts) inspect the generated script to ensure that it’s
wrapping at the points that make sense. Personally, I al-
ways defer to the algorithm used to insert the commands if
I don’t have an expert available.

For you SQL Server gurus, here’s a quick shout out to the
new support for transaction savepoints. You can learn more
about that at https://github.com/dotnet/EntityFrame-
work.Docs/issues/2429.

Handy for Testing and Demos:
ChangeTracker.Clear
In my years of researching the capabilities of Entity Frame-
work and EF Core, I’ve often wanted to create a context and
use it to try various things in one go, rather than creating
and disposing short-lived contexts as I would do in a pro-
duction app. However, one of the problems with that is that
the context never forgets about entities that it’s tracking
and if I’m not careful, my results will be wrong and lead me
astray.

For these scenarios—and I’ll stress that this isn’t recom-
mended for production code—I’ve always wished that I
could easily purge the change tracker’s cache without hav-
ing to instantiate a new context. EF Core 5 finally gives
me the tool to fulfill that wish: the ChangeTracker.Clear()
method. It just tells a DbContext’s ChangeTracker to forget
everything it knows and act as though it was newly instanti-
ated. Thanks team!

 [a].[Street]
 FROM [Addresses] AS [a]
) AS [t]
ORDER BY [t].[Id]

SELECT [w].[Id], [w].[AddressId],
 [w].[DateTime],
 [w].[Description], [t].[Id]
 FROM (
 SELECT TOP(1) [a].[Id]
 FROM [Addresses] AS [a]
) AS [t]
INNER JOIN [WildlifeSighting] AS [w]
 ON [t].[Id] = [w].[AddressId]
ORDER BY [t].[Id]

I’m not a DBA and don’t have the skill to determine if this par-
ticular split query will result in better performance, but this is a
very simple example. However, I believe that if you are diligent
about profiling your queries and have someone on your team
who can identify where performance will benefit from split que-
ries, then you’ll be in a position to leverage this feature. What
the EF Core team has done is given you agency over this deci-
sion rather than forcing a single behavior on you.

I also tested AsSplitQuery() with filtered includes and across
the many-to-many relationship with success.

Improving the Migration Experience
for Production Apps
Creating a database and updating its schema as your model
evolves is quite simple on your development computer with
your local database. You can use PowerShell commands or the
dotnet CLI to execute the migrations. EF Core also makes it
easy to share migrations across a development team with mi-
gration files included in your source control and features such
as idempotent migrations.

However, executing migrations in applications deployed to a
server or to the cloud is a much different story. Microsoft
hasn’t yet landed on a great workflow for that. Some develop-
ers look to the Migrate method from the EF Core APIs during
application start up to solve this problem. But if your applica-
tion is deployed across multiple instances for load balanc-
ing, this could create some terrible conflicts if you hit a race
condition between different instances attempting to execute
the migration. Therefore, it’s strongly recommended that you
avoid that pattern.

The safest workflows have involved letting migrations create
SQL and then using other tools to execute that SQL. For exam-
ple, for SQL Server, there is tooling like dacpac or RedGate’s SQL
Change Automation. For a wider variety of relational databases,
I’ve been leveraging RedGate’s FlywayDB (http://flywaydb.org)
in a Docker container to quickly execute migrations and then
disappear. (See my article “Hybrid Database Migrations with EF
Core and Flyway” at bit.ly/2E0VyiD for more on that pattern.)

The team is focused on improving this experience through
better APIs and guidance along with, as per their docs, “lon-
ger-term collaboration with other teams to improve end-to-
end experiences that go beyond just EF.”

For the EF Core 5 timeframe, they were able to accomplish
some specific tasks. For example, improvements have been

EF Core 5: Building on the Foundation

24 codemag.com

In the Blazor app setup, EF Core migrations commands will
be able to find the provider and connection string just as
they do with ASP.NET Core.

The Return of Table-Per-Type Inheritance
TPT inheritance (where inherited types are stored in their own
tables in the database) was a feature of EF from the start
through to EF6. Like the many-to-many support, EF Core didn’t
have the needed building blocks to create a smarter implemen-
tation with better-performing SQL queries. However, it was one
of the top requested features and now it’s back in EF Core 5.

In the 300+ comment GitHub issue for TPT, EF team engineer
Smit Patel shares (in https://github.com/dotnet/efcore/iss
ues/2266#issuecomment-653661902) sample output com-
paring a TPT query in EF6 and EF Core 5 (Figure 4). It’s sure-
ly more readable but there are also performance benefits as
well, described in this same comment.

Setting up TPT works just as it did with EF6.

By default, you create an inherited type, e.g., ScaryWildlife-
Sighting that inherits from WildlifeSighting like this:

public class ScaryWildlifeSighting
 : WildlifeSighting
{
 public string Experience { get; set; }
}

The convention for EF Core is to treat this as a Table-Per-
Hierarchy mapping, where the properties of ScaryWildlife-
Sighting are added to the WildlifeSIghtings table.

You can change this to TPT by letting EF Core know to put
ScaryWildlifeSighting data into its own table using the [Tabl
e(“ScaryWildlifeSightings”)] data annotation or the ToTable
mapping in OnModelCreating:

 modelBuilder.Entity<ScaryWildlifeSighting>()
 .ToTable("ScarySightings");

And you can create, update, and query the related data just as
you would have in EF6. A query to find all of the scary sightings
with the phrase “peed my pants,” for example, would look like:

context.WildlifeSightings
 .OfType<ScaryWildlifeSighting>()
 .Where(s => s.Experience.Contains("peed”))
 .ToList();

So Many More Interesting and
Useful Features
Obviously, I can’t tell you about all 255 features and enhance-
ments that have been added to EF Core 5. And it’s so hard
to pick which ones to list here in the final bit of this article.

I must give a shout out to a few things:

•	 Many enhancements have been made to the Cosmos
DB provider.

•	 There are more ways to tap into SaveChanges besides
overriding the method. For example, there are events
and an interceptor.

New Support for DbContext and
Dependency Injection in Blazor
ASP.NET Core has made it so easy to let your Web app spin
up DbContext instances as needed without hard coding new
instances all over your application, creating tight coupling
and having to manage their lifetime.

But when Blazor, Microsoft’s client-side UI framework,
showed up on the scene, a lot of developers struggled to
find a way to get the same benefit. Doing so involved creat-
ing your own class that implements IDbContextFactory. Not
only was this more complex than the IServiceCollection.
AddDbContext method in ASP.NET Core’s startup class, it
wasn’t discoverable, although it’s documented.

The Blazor team got together with the EF Core team to tack-
le this problem and now there’s a nice solution that can be
used in Blazor and other application types with the ease
that we already experience with ASP.NET Core.

The new IServiceCollection.AddDbContextFactory is the
magic potion. There’s also a version for when you are pool-
ing DbContexts: the AddPooledDbContextFactory.

Like ASP.NET Core, Blazor has a startup class with a Config-
ureServices method. So, it’s easy to use the new method to
a factory into the DI services rather than a DbContext. The
code looks similar to AddDbContext.

services.AddDbContextFactory<PeopleContext>
 (opt => opt.UseSqlServer
 ($”Data Source={myconnectionstring}")
);

Like AddDbContext, you specify the options (e.g., provider,
connection string, and things like EnableSensitiveLogging) for
the DbContext instances that the factory will spin up for you.

Then, in code where you’re using that injected factory, you
only need to call its CreateContext method to get a ready-
to-use instance of your context.

var context = _contextFactory.CreateDbContext()

Don’t forget (as I often do) that your DbContext class will need
a constructor that accepts the DbContextOptions. This isn’t
new, but something you’ve needed to do for using DbContext
in dependency injection since the beginning of ASP.NET Core.
As a reminder, this is what that constructor looks like:

public PeopleContext
 (DbContextOptions<PeopleContext> options)
 : base(options)
{
}

But there’s a big difference between using AddDbContext
and AddDbContextFactory. AddDbContext scopes the life-
time of the DbContexts that get created to the request that
triggers its creation (e.g., a request to a controller meth-
od). But when you use the factory to create those contexts,
you’ll be responsible for the lifetime of each DbContext
instance. In other words, you’ll trigger the factory to cre-
ate those instances as needed and then be responsible for
disposing them.

EF Core 5: Building on the Foundation

25codemag.com

putedColumn mapping, which is a simpler and
more discoverable way to force the database to
store the value so that search and indexing can
benefit.

•	 SQLite Table rebuilds (mentioned as part of the SQLite
migrations above)

•	 Better SQL (the team is always improving the SQL
translations)

•	 Simplifications for Discriminator, NULL and CASE
•	 Transactions and EXEC in migrations script
•	 Better LINQ translation errors (See https://docs.mi-

crosoft.com/en-us/ef/core/what-is-new/ef-core-5.0/
whatsnew#improved-query-translation-exceptions for
more information.)

Microsoft Continues to Invest in
EF Core, So You Can, Too
In the old days of Entity Framework, there was a theme of
“evolution, not revolution” when it came to new versions.
Moving from EF to EF Core was certainly a big revolution,
however that wasn’t an update of EF. EF Core 3 was the first
time that there was what we would call a revolution. But
now that we’re past that, EF Core is back on a path of evolv-
ing in great ways. EF Core 5 is a very sophisticated ORM
and most importantly, the investment made into this ver-
sion is more proof that Microsoft is dedicated to keeping EF
Core around for a good long time to come. I hope you’ll dig
into the excellent documentation as well as the resources
in GitHub to continue to discover what this version brings.

Remember also to check out the team’s standups at http://
bit.ly/EFCoreStandups and watch out for an update to my
Getting Started with EF Core course (http://bit.ly/EFCore31)
on Pluralsight sometime after EF Core 5 is released.

•	 If you were impacted by the regression in EF Core 3.0
that caused serious problems with the performance of
queries involving owned entities, you’ll be happy (as
am I) to know that this was fixed for EF Core 5.

•	 Index properties are an interesting feature that are
something like dynamic types but specific to EF Core.
You might not use them directly (although you could)
but they are also a building block that other features,
such as many-to-many, rely upon.

And now I will let Brice Lambson from the EF team take over
because he posted two great tweets about his favorite fea-
tures in EF Core 5!

In his first tweet (https://twitter.com/bricelambs/sta-
tus/1295789002876784645) he listed features that bring
additional EF6 parity to EF Core 5. I’ve added notes to his
list to provide some insight for you:

•	 Simple logging (covered above)
•	 Get the SQL of a query

•	 Example: Console.WriteLine(someLinqQuery.ToQuery
String();

•	 HasPrecision
•	 Example: modelBuilder.Entity<Address>().Property

(b=>b.SqFeet).HasPrecision(16,4)
•	 Defining query

•	 EF Core 5 makes it easier to specify a defining
query of an entity type as SQL (like EF6) and at
the same time, they deprecated some of the APIs
around using LINQ for defining queries.

•	 Pluralization while scaffolding
•	 Enabled by the Humanizer project (http://github.

com/Humanizr/Humanizer) now being used as the
pluralization service.

•	 Specify connection string in tools
•	 The migrations CLI now has a parameter called

--connection to which you can pass the string
•	 Get-Migration

•	 This, along with the CLI version (dotnet ef migrations
list), will list the status of your migrations, e.g.,
what’s been applied, what’s pending, and if there
are model changes that still need to be migrated.

In the second tweet (https://twitter.com/bricelambs/sta-
tus/1295789904077582336), Brice listed some new fea-
tures that he is especially fond of.

•	 Collation
•	 Indexer properties
•	 AddDbContextFactory (covered above)
•	 Ignore in Migrations

•	 You can edit a migration and force it to ignore a
table that the migration wants to create. There’s
an interesting discussion in the relevant GitHub
issue. See https://github.com/dotnet/efcore/is-
sues/2725.

•	 SQLite Computed columns
•	 The SQLite provider now supports HasComput-

edColumn. But there’s something else I want to
point out. EF (and EF Core) have had computed
column support for a long time for SQL Server.
And if you wanted stored columns, you could use
SQL Server’s PERSISTED attribute so that searches
don’t need to build that value on the fly. Now
there’s a “stored” attribute on EF Core’s HasCom-

Figure 4: Comparison of SQL generated from a TPT query in EF6 vs. EF Core 5

� Julie Lerman
�

SPONSORED SIDEBAR:

Get .NET Core Help
for Free

How does a FREE hour-
long CODE Consulting
virtual meeting with our
expert consultants sound?
Yes, FREE. No strings.
No commitment.
Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

EF Core 5: Building on the Foundation

26 codemag.com

ONLINE QUICK ID 2010051

Project Tye: Creating Microservices in a .NET Way

Shayne Boyer
shboyer@microsoft.com
tattoocoder.com
@spboyer

Shayne is a Principal
Developer Advocate at
Microsoft contributing to
and working on ASP.NET,
microservices, Azure, open
source, and related tools.

Project Tye:
Creating Microservices in a .NET Way
Regardless of what you call your architecture or development practice, no doubt it’s composed of many services built from
many deployed projects and there’s some pain in trying to make it all work. Microservice development, technology stack aside,
can be a long list of tasks just in itself, including tools to use, how to get services set up, mapping ports, learning terminology,

 and deployment tasks. The idea of simply writing, running,
and checking in the code is the ultimate goal toward which
developers strive within the inner loop development cycle
and Project Tye looks to push the pain away and get to just
coding and debugging your services.

Tye is an experimental developer tool from the .NET team at Mi-
crosoft that’s meant to make the experience of creating, testing
and deploying microservices easier. Specifically, .NET microser-
vices understands how .NET applications are built and work.

Getting Started with Tye
Tye is a .NET global tool, and you’ll need to have the .NET
Core SDK installed on your computer. Run the following
command to install it globally.

dotnet tool install -g Microsoft.Tye

Although you could build, run, and debug your services
without Tye, the goals of the project are the reasons you
want it for developing many services together: running
multiple service with a single command, a service discovery
based on convention, and simplicity of deployment to Ku-
bernetes with minimal configuration.

A Simple App
A very basic example of a simple app is a front-end applica-
tion with a data service back-end. Create a front-end Razor
Pages application within a myweatherapp folder.

mkdir myweatherapp
cd myweatherapp

dotnet new razor -n frontend

The standard dotnet commands could be used to run, build,
and debug the application, but instead, you’re going to use
Tye to run the app.

Type the command for Tye run the front-end application.

tye run frontend

The Tye run command creates the output shown in Figure 1,
that builds and starts all services in the application.

The run command identifies the applications and builds them,
automatically setting the ports for bindings as these may
change due to ports in use/conflicts. Finally, a dashboard is
stated to view all of the services running in the application.

Opening the dashboard address reveals the service and some
basic information. The Tye Dashboard is shown in Figure 2.

Looking further into the dashboard, the name of the service
links to metrics, as shown in Figure 3.

For this application, the Bindings column displays the URIs
for the front-end application and the Logs column links to
a display for a console-style streaming logs display. This is

Figure 1: The Tye run command output.

Figure 2: The Tye Dashboard.

27codemag.com Project Tye: Creating Microservices in a .NET Way

similar to that typically produced if the dotnet command line
were used to start the application, as shown in Figure 4.

Unless port bindings are explicitly defined in the bindings,
each service is assigned a random port to avoid conflicts. A
common issue when creating multiple services is tracking
these ports in configuration files and mapping them from
service to service.

Adding Multiple Services
Having a single application is the easy part. With microser-
vices, applications are composed into small components and
work together to accomplish the overall application’s task.
The orchestration of these components when developing
code locally can involve starting up multiple debugging in-
stances, IDEs, and/or consoles to get it all working.

Let’s add a weather api service and see how Tye helps. First,
create the new service with the .NET CLI and call it backend.

dotnet new webapi -n backend

Tye works with the understanding of .NET projects and solu-
tions, in this case, creating a solution file. Adding the proj-
ects to it is the next step.

dotnet new sln -n myweatherapp
dotnet sln add frontend backend

You could use the run command from Tye and see the applica-
tions running in the dashboard, but at this point, there are
just two applications running and no code has been added to
wire them up. Usually, you might put the URI of the api in a
configuration file or environment variable, noting that it may
change when moving through environments while promoting
the application.

As a part of this project, the Tye team has created an exten-
sion to the Configuration NuGet package called Microsoft.Tye.
Extensions.Configuration. Adding a reference to this package
allows your application to easily access the generated URI and
ports needed for service discovery not only during local devel-
opment, but there‘s also no need for you to change your code
when deploying your applications to Kubernetes.

In the example of the front-end/back-end application, after add-
ing a reference to the new package in the front-end; you can set
up a new HttpClient in the ConfigureServices method, as shown
in Listing 1, where the api endpoint is referred to as backend.

After adding the necessary code in the Razor page to render
the data from the api, run the command to start the appli-
cations and view the dashboard.

tye run --dashboard Figure 4: The Tye Dashboard Logs section.

Figure 3: The Tye Dashboard Metrics section.

public void ConfigureServices(IServiceCollection services)
{
 services.AddRazorPages();
 services.AddHttpClient<WeatherClient>(client =>
 {
 client.BaseAddress = Configuration.GetServiceUri("backend");

 });
}

Listing 1: Use GetServiceUri passing the service name

Figure 5: The Tye Dashboard displays services running and port bindings.

28 codemag.com

The dashboard in Figure 5 shows both applications running
with the random assigned ports for the front-end and back-
end services.

Note that the code didn’t define any port or specific URI for
the weather api back-end. All you added was the configura-
tion call for the backend service. Clicking on the URL for the
front-end application shows the Web application running
and retrieving the data, as shown in Figure 6.

Figure 6: The front-end application runs on the random port it was assigned.

Figure 7: Attach the debugger to the running service with the –debug option flag.

Debugging Services
Adding breakpoints, stepping through code, and debugging
statements are crucial processes in the inner development
cycle. While Tye is running the services, it also exposes de-
bugging hooks to attach to from editors and IDEs.

Each service can start in debug mode by passing in the --de-
bug flag with the service name.

tye run --debug backend

This allows an editor like VS Code to attach to the back-end
and hit a breakpoint. Alternatively, passing “*” instead of a
specific service name exposes all the service’s debug hooks,
as shown in Figure 7.

Once the debugger is attached and the breakpoint is hit, the
experience is the same as you’d expect. Locals, step through
processes, call stacks, and other tools are there to use, as
shown in Figure 8.

External Dependencies
Adding more .NET Core services to this project, running,
and debugging them is pretty easy: The process is the
same. However, in the microservice world, applications
are built on many existing services, databases, and other
processes.

Up to this point, you’ve depended on Tye’s inherent under-
standing of the .NET project and solution system to build
and start the applications along with a new configuration
package. When adding in external services or needing more
control over what happens for the services, a configuration
file, tye.yaml, is used for these setting.

To generate this file, Tye has an init command to create the
default file based on the projects that exist in the current
working directory.

tye init

For the myweatherapp example, the tye.yaml file created
looks like Listing 2.

In the file, each service is listed with configuration specif-
ics. To add a database service like PostgreSQL, you could
install that on your local computer and add it to appset-
tings.json as a connectionstring setting, or add a service
configuration in tye.yaml and take advantage of the Docker
container capabilities of Tye. When running the application,
the lifecycle of all services is managed from Tye, starting
and stopping the containers along with your application, as
shown in Listing 3.

tye application configuration file
read all about it at https://github.com/dotnet/tye

name: myweatherapp
services:
- name: frontend
 project: frontend/frontend.csproj
- name: backend
 project: backend/backend.csproj

Listing 2: standard tye.yaml file

name: myweatherapp
services:
- name: frontend
 project: frontend/frontend.csproj
- name: backend
 project: backend/backend.csproj
- name: postgres
 image: postgres
 env:
 - name: POSTGRES_PASSWORD
 value: "pass@word1"
 bindings:
 - port: 5432
 connectionString: Server=${host};Port=${port};User Id=postgres;
Password=${env:POSTGRES_PASSWORD};

Listing 3: tye.yaml adding postgres service

Project Tye: Creating Microservices in a .NET Way

29codemag.com

Tye Run Is a Single
Command Running All
Services

The run command builds and/
or starts all of the services
within the application.
This command is inclusive of
the dotnet restore and build,
if needed for the services.
If there were containers,
the Docker commands are
inclusive as well.

Just as in the initial set up for getting the weather api URI,
the postgres connection string is available via service discov-
ery using the GetConnectionString method of the Configura-
tion extension.

Adding a new section called “postgres” and defining the image
instructs Tye to pull the Docker image when the run command
is issued. In this same section, the password for the connec-
tion string is defined as a new environment variable. Finally,
the port is hard-coded as 5432 as that is the default for Post-
greSQL and you don’t want a dynamic port set each time.

Note the string interpolation formation for some of the val-
ues in the connection string for the database. The ${host}
and ${port) values substitute for localhost:5432 in local
development, but if the port was dynamically assigned; it
would properly set as well. This is where using Microsoft.
Tye.Extensions.Configuration to retrieve the values shows
its value.

When tye run is executed and the dashboard is loaded,
notice that the front-end and back-end services are noted
as “Project” where postgres is a “Container”, as shown in
Figure 9.

Figure 9: The dashboard displaying postgres service running as a container.

Figure 8: Debugging services in VS Code, using the WSL and editing on Ubuntu.

Figure 10: The Tye run command with the --docker option pulling the needed container images.

Project Tye: Creating Microservices in a .NET Way

30 codemag.com

Figure 11: The dashboard running with --docker and all services running as containers.

global companies across an array of industries. Second, it’s
vendor-neutral with support offered from many cloud pro-
viders? Finally, the open source community behind Kuber-
netes is strong.

Deploying microservice applications isn’t always a simple
task. Many of the common concerns include creating the
containers, pushing the docker images to the specified re-
positories, understanding Kubernetes manifests, secrets
for connection strings, and surely, depending on your app,
something else.

Tye is here to help. The deploy command aims to address
each of these items when run. Optionally, there’s an inter-
active flag (-i|--interactive) that prompts you for your im-
age repository among other detected dependencies such as
external database connection string (setup in secrets) and
ingress requirements.

Here’s an example of the output for the myweatherapp proj-
ect using the interactive flag, as shown in Figure 12.

tye deploy --interactive

For services to communicate inside of a Kubernetes clus-
ter, Tye sets environment variables for service discovery,
ports, and connection strings appropriately. For external
services, Kubernetes secrets are used during deployments.
There’s no changing of configuration files, creating Helm
charts, or chasing port numbers; Tye handles these for
each deployment locally or when doing the deployment.
The application is built and deployed to the Kubernetes
cluster based on the .kubeconfig context set on your
computer. Post deployment, using the Kubernetes com-
mand line tool kubectl to inspect the pods; the front-
end and back-end applications are deployed, as shown in
Figure 13.

The connection string for the postgres service is stored in
secrets and, using the same utility, calls get secrets. You
can see that the token exists in Figure 14.

The deploy command is an inclusive command, meaning the
building and pushing of the containers to the registry hap-
pens inside the single gesture. Tye also offers doing this
work using the push command. Or if just building the con-
tainers is the desired task, use the build command.

In short, Tye attempts to simplify the multiple gestures for
all the services within an application to a single command.

Figure 13: The kubectl get tool issues the pods command used to list the services running in
the cluster.

Configuration.GetConnectionString("postgres");

To this point, there has been no discussion about Docker-
files, containers or base images other than for the Post-
gresSQL image. Yet another benefit in Tye is the ability to
continually add dependencies to your application without
writing the Docker files.

Running Apps as Containers
In Figure 9, the dashboard shows the two projects running
and the postgres service running as a service. There are opin-
ions in the community stating that development should get as
close to the production state during development as possible.
In this case, that means containers. Tye offers an option flag,
--docker, where, when the services are started, they’re all built
in containers and run within Docker. Note that Docker for Win-
dows or your OS is required to be installed and running.

tye run --docker

Tye pulls the base images for the projects based on the proj-
ect type, builds the project and image, and subsequently runs
the image(s), also creating any necessary networks for service
discovery.

All of the services are now running in containers on Linux-
based images. There was no need to learn the syntax to write
a dockerfile or docker-compose nor understand how or where
these files should be stored in your structure. It just works with
Tye; all you need is a run command with the --docker flag.

Deploying Your Applications
Tye’s deployment target is only to Kubernetes for a few
reasons. First, Kubernetes is widely used in production for

Figure 14: The kubectl get secrets command is used to view the secrets, like the connection
strings stored/set by the Tye deploy command.

Tye Offers an Extension
for Configuration

Tracking URLs in settings or
ports is cumbersome, often
leading to file transforms or
environment specific files;
the NuGet package offers a
no code change approach
accessing these settings by
service name.

Project Tye: Creating Microservices in a .NET Way

31codemag.com

The Tye Dashboard
Is a Captive View into
All Services

A single panel with links
to all services logs, statistics,
and diagnostics creates a
simpler way to gain access
to what is happening with
your application.

Figure 12: Output for deploying. The image is built for each project, the postgres connection is prompted, and the application
is deployed to a Kubernetes cluster.

name: Build and Deploy

on: [push]

env:
 AZURE_AKS_CLUSTER: myaksclustername
 AKS_RESOURCE_GROUP: myaksresourcegroup
 ACR_RESOURCE_URI: myregistry.azurecr.io

jobs:
 build:
 if: github.event_name == 'push' && \
contains(toJson(github.event.commits), '***NO_CI***') == false && \
 contains(toJson(github.event.commits), '[ci skip]') == false && \
contains(toJson(github.event.commits), '[skip ci]') == false
 name: tye deploy
 runs-on: ubuntu-latest
 steps:
 - name: Checkout
 uses: actions/checkout@v2

 - name: Setup .NET Core
 uses: actions/setup-dotnet@v1.5.0
 with:
 dotnet-version: 3.1.300

 - name: Install Tye tools

 run: |
 dotnet tool install -g Microsoft.Tye \
 --version "0.4.0-alpha.20371.1"

 - name: Login to ACR
 uses: Azure/docker-login@v1
 with:
 login-server: ${{ env.ACR_RESOURCE_URI }}
 username: ${{ secrets.ACR_USER }}
 password: ${{ secrets.ACR_PASSWORD }}

 - name: Set AKS context
 uses: azure/aks-set-context@v1
 with:
 creds: '${{ secrets.AZURE_CREDENTIALS }}'
 cluster-name: ${{ env.AZURE_AKS_CLUSTER }}
 resource-group: ${{ env.AKS_RESOURCE_GROUP }}

 - name: Install ingress-nginx
 run: |
 kubectl apply -f https://aka.ms/tye/ingress/deploy

 - name: tye deploy
 run: |
 tye deploy -v Debug

Listing 4: Github Action for Tye CI/CD

Project Tye: Creating Microservices in a .NET Way

32 codemag.com

When tye run is used, the proper Docker image is pulled and
run and now, without any code changes, the logs are pushed
to Seq, as shown in Figure 15 and Figure 16.

As the project continues to solve for configuration, logging
and diagnostic type services, and other popular microser-
vice patterns and practices; more extensions are bound to
surface.

Roadmap
Project Tye is an experimental tool. The goals of the project
are solving for or easing the development pain points in
service discovery, diagnostics, observability, configuration,
and logging when it comes to microservices.

.NET has a rich ecosystem of tools, IDEs and it continues
to improve with tools from team and community contribu-
tions like this project. All of the source code is available
at https://github.com/dotnet/tye, and you’ll also find sam-
ples, docs, and recipes. Look for monthly release cadence
based on your feedback and contributions.

Continuous Deployment and DevOps
Although using Tye in a “right click deploy” style fashion,
calling deploy for each deployment is great for testing your
code in an environment, but it isn’t optimal.

Using something like Azure DevOps or GitHub Actions where
checking in your code and the services can be deployed is
a more likely path to success. Because Tye is a command
line tool, setting this process up can be accomplished in any
devops system. A recipe for using GitHub actions is docu-
mented in the repository at https://aka.ms/tye/recipes/
githubaction and is shown in Listing 4.

Extensions
Beyond the built-in capabilities, there are extensions be-
ing added to support well-known logging services, such as
Elastic and Seq, distributed tracing support for Zipkin, and
an extension for Dapr, the event-driven runtime.

Here’s an example of adding support for Seq, a simple addi-
tion to the tye.yaml file.

name: myweatherapp

extensions:
 - name: seq
 logPath: ./.logs

services:
- name: frontend
 project: frontend/frontend.csproj

Figure 15: The dashboard displays seq as an additional service.

Figure 16: The Seq dashboard shows application logs.

� Shayne Boyer
�

Azure Functions
Extension

Tye has local development
support for running Azure
Functions’ serverless platform
by setting up the service as an
azureFunction in tye.yaml.

Project Tye: Creating Microservices in a .NET Way

33codemag.com

ONLINE QUICK ID 2010061

Big Data and Machine Learning in .NET 5

Big Data and Machine Learning
in .NET 5
The theme for .NET 5 is a unified runtime and framework that can be used everywhere with uniform runtime behaviors and
developer experiences. Microsoft released tools to work with big data (.NET for Spark) and machine learning (ML.NET) in .NET
that work together to provide a productive end-to-end experience. In this article, we’ll cover the basics of .NET for Spark,

Bri Achtman
briana.achtman@microsoft.com
@briacht

Bri is a Program Manager
at Microsoft on the .NET team,
currently working on ML.NET
and Model Builder. She spends
her time finding and sharing
the many interesting ways
.NET developers are using
machine learning and
improving the user
experience for ML.NET.

Jeremy Likness
jeremy.likness@microsoft.com
https://blog.jeremylikness.com/
@JeremyLikness

Jeremy Likness is a Program
Manager at Microsoft on
the .NET team. Jeremy works
on the overall experience
interacting with data from
.NET with a focus on Entity
Framework Core and .NET
for Spark. Jeremy is an author
and international speaker.

big data, ML.NET, and machine learning, and we’ll dig into
the APIs and capabilities to show you how straightforward
it is to get started building and consuming your own Spark
jobs and ML.NET models.

What’s Big Data?
Big data is an industry term that is practically self-explanato-
ry. The term refers to large data sets, typically involving tera-
bytes or even petabytes of information, that are used as input
for analysis to reveal patterns and trends in the data. The key
differentiator between big data and traditional workloads is
that big data tends to be too large, complex, or variable for
traditional databases and applications to handle. A popular
way to classify data is referred to as the “Three Vs.”

•	 Volume: The amount of data, including number of
items and size of documents or records

•	 Variety: The number of different structures, types, or
schemas represented by the data set

•	 Velocity: How fast the data changes

Most big data solutions provide the means to store
data in a data warehouse that’s typically a distributed
cluster optimized for rapid retrieval and parallel pro-
cessing. Dealing with big data often involves multiple
steps, as demonstrated in Figure 1.

.NET 5 developers who need to create analytics and insights
based on large data sets can take advantage of a popular big
data solution named Apache Spark™ by using .NET for Spark.

What’s .NET for Spark?
.NET for Spark is based on Apache Spark, an open-source analyt-
ics engine for processing big data. It’s designed to process large
amounts of data in memory to provide better performance than
other solutions that rely on persistent storage. It’s a distributed
system and processes workloads in parallel. It provides support
for loading data, querying data (as part of a process and inter-
actively), processing data, and outputting data.

Apache Spark supports Java, Scala, Python, R, and SQL out of
the box. Microsoft created .NET for Spark to add support for
.NET. The solution provides free, open-course, cross-platform
tools for building big data applications using .NET-supported
languages like C# and F# so that you can use existing .NET
libraries while taking advantage of Spark features such as
SparkSQL. Figure 2 illustrates the high-level solution stack.

Listing 1 displays a small but complete .NET for Spark ap-
plication that reads a text file and outputs the word count
in descending order.

Setting up .NET for Apache Spark on a development com-
puter involves installation of several dependencies, includ-
ing the Java SDK and Apache Spark. You can access detailed
step-by-step directions in the Getting Started guide at
https://aka.ms/go-spark-net.

Spark for .NET is designed to run in multiple environments
and can be deployed to run in the cloud. Possible deploy-
ment targets include Azure HDInsight, Azure Synapse, AWS
EMR Spark, and Databricks. Cloud-based jobs connect to stor-
age accounts for data. If the data is available as part of your
project, you can submit it along with your other project files.

Big data is often used in conjunction with machine learning
to gain insights about the data.

What’s Machine Learning?
First, let’s go over the basics of artificial intelligence and
machine learning.

Artificial intelligence (AI) is the ability of a computer to imi-
tate human intelligence and abilities, such as reasoning and
finding meaning. Typical AI techniques often start as rule- or
logic-based systems. As a simple example, think about the
scenario where you want to classify something as “bread” or
“not bread.” When you start, it may seem like an easy problem,
such as “if it has eyes, it’s not bread.” However, you will quickly
start to realize that there are a lot of different features that can
characterize something as bread vs. not bread, and the more
features you have, the longer and more complex the series of if
statements will get, as demonstrated in Figure 3.

As you can see from the example in Figure 3, traditional, rules-
based AI techniques are often difficult to scale. This is where
machine learning comes in. Machine learning (ML) is a subset of
artificial intelligence that finds patterns in past data and learns
from experience to act on new data. ML allows computers to
make predictions without being explicitly programmed with log-
ic rules. Thus, you can use ML when you have a problem that’s
difficult (or impossible) to solve with rules-based programming.
You can think of ML as “programming the unprogrammable.”

To solve the “bread” vs. “not bread” problem with ML, you
provide examples of bread and examples of not bread (as seen
in Figure 4) instead of implementing a long, complicated se-
ries of if statements. You pass these examples to an algo-
rithm, which finds patterns in the data and returns a model
that you can then use to predict whether images, which have
not yet been seen by the model, are “bread” or “not bread.”

Figure 5 demonstrates another way to think about AI vs.
ML. AI takes in rules and data as input with an expected out-

34 codemag.comBig Data and Machine Learning in .NET 5

put of the answers based on those rules. ML, on the other
hand, takes in data and answers as the input and outputs
the rules that can be used to generalize on new data.

What’s ML.NET?
Microsoft released ML.NET, an open-source, cross-platform
ML framework for .NET developers, at Build in May 2019.
Teams at Microsoft have widely used internal versions of the
framework for popular ML-powered features for the last nine

using Microsoft.Spark.Sql;

namespace MySparkApp
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create a Spark session.
 SparkSession spark = SparkSession
 .Builder()
 .AppName("word_count_sample”)
 .GetOrCreate();

 // Create initial DataFrame.
 DataFrame dataFrame = spark.Read()
 .Text("input.txt”);

 // Count words.

 DataFrame words = dataFrame
 .Select(Functions.Split(Functions
 .Col("value”),
 " “).Alias("words”))
 .Select(Functions.Explode(Functions
 .Col("words”))
 .Alias("word”))
 .GroupBy("word”)
 .Count()
 .OrderBy(Functions.Col("count”).Desc());

 // Show results.
 words.Show();

 // Stop Spark session.
 spark.Stop();
 }
 }
}

Listing 1: Use .NET for Spark to generate a word count

Figure 1: The big data process

years; some examples include Dynamics 365 Fraud Detec-
tion, PowerPoint Design Ideas, and Microsoft Defender An-
tivirus Threat Protection.

ML.NET allows you to stay in the .NET ecosystem to build, train,
and consume ML models without requiring a background in ML
or data science. ML.NET runs anywhere that .NET runs: Win-
dows, Linux, macOS, on-prem, offline scenarios like WinForms
or WPF desktop apps, or in any cloud, such as Azure. You can
use ML.NET for a variety of scenarios, as described in Table 1.

ML.NET uses automated machine learning, or AutoML, to au-
tomate the process of building and training an ML model to
find the best model based on the scenario and data provided.
You can use ML.NET’s AutoML via the AutoML.NET API or ML.NET
tooling, which includes Model Builder in Visual Studio and the
cross-platform ML.NET CLI, as seen in Figure 6. In addition to
training the best model, ML.NET tooling also generates the files
and C# code necessary for model consumption in the end-user
.NET application, which can be any .NET app (desktop, Web,
console, etc.). All AutoML scenarios offer a local training op-
tion, and image classification also allows you to take advantage
of the cloud and train using Azure ML from Model Builder.

You can learn more about ML.NET in Microsoft Docs at
https://aka.ms/mlnetdocs.

Combining ML and Big Data
with ML.NET and Spark for .NET
Big data and ML go well together. Let’s build a pipeline that
uses both Spark for .NET and ML.NET to showcase how big
data and ML work together. Markdown is a popular language
for writing documentation and creating static websites that
uses a less complicated syntax than HTML but provides more
control over formatting than plain text. This is an excerpt
from an example markdown file from the publicly available
.NET documentation repo:

title: Welcome to .NET
description: Getting started with the .NET
family of technologies.
ms.date: 12/03/2019
ms.custom: "updateeachrelease”

Welcome to .NETFigure 2: Architecture for .NET for Spark

35codemag.com Big Data and Machine Learning in .NET 5

Figure 3: Determining “bread or not bread?” with AI if statements

Process the Markdown
The DocRepoParser project recursively iterates through
subfolders in a repository to gather metadata about various
documents. The Common project contains several helper
classes. For example, FilesHelper is used for all file I/O. It
keeps track of the location to store files and filenames and
provides services such as reading files to other projects. The
constructor expects a tag (a number that uniquely identifies
a workflow) and the path to the repo or top-level folder that

Task Example scenarios
Classification (text-based) Categorize e-mail messages as spam or not spam or classify survey comments into different groups based on the content.

Regression Predicting the price of a used car based on its make, model, and mileage or predicting sales of products based on advertising budgets.

Forecasting Predicting future product sales based on past sales or weather forecasting.

Anomaly detection Detecting spikes in product sales over time or detecting power outages.

Ranking Predicting the best order to display search engine results or ranking items for a user’s newsfeed.

Clustering Segmenting customers.

Recommendation Recommending movies to a user based on their previously watched movies or recommending products that are frequently bought together.

Image classification Categorizing images of machine parts.

Object detection Detecting license plates on images of cars.

Table 1: ML.NET machine learning tasks and scenarios

Figure 4: Determining “bread or not bread?” with ML

Figure 5: Artificial intelligence compared to machine learning

See
[Get started with .NET Core]
(core/get-started.md)
to learn how to create .NET Core apps.

Build many types of apps with .NET, such as
cloud ,IoT, and games using free cross-
platform tools...

The section between the dashes is called front matter and
provides metadata about the document using YAML. The
section starting with a hash (#) is a top-level heading. Two
hashes (##) indicate a sub-heading. The “Get started with
.NET Core” is a link, followed by text.

The goal is to process a large collection of documents, add
metadata such as word count and estimated reading time,
and automatically group similar articles together.

Here is the pipeline you’ll build:

1.	 Generate an input file from the markdown documents
for Spark to process as part of the “data preparation/
cleaning” step.

2.	 Use Spark for .NET to perform the following operations:
•	 Build a word count for each document.
•	 Estimate reading time for each document.
•	 Create a list of top 20 words for each document

based on “TF-IDF” or “term frequency/inverse doc-
ument frequency” (this will be explained later).

3.	 Pass the processed data to ML.NET, which will use an
approach called k-means clustering to automatically
group the documents into categories.

4.	 Output the categorized list of metadata along with a
sample-rollup showing the chosen categories and titles
that fall underneath them.

The first step is to pull down a document repository and the
reference application. You can use any repository or folder
structure that contains markdown files. The examples used
for this article are from the .NET documentation repository
that is available to clone at https://aka.ms/dot-net-docs.

After you prepare your local environment for .NET and
Spark, you can pull down the project from https://aka.ms/
spark-ml-example.

The solution folder contains a batch command (provided in
the repo) that you can use to run all the steps.

36 codemag.com

submits the job to run on a properly configured Windows
computer. The pattern for a typical job is to create a session
or “app,” perform some logic, then stop the session.

var spark = SparkSession.Builder()
 .AppName(nameof(SparkWordsProcessor))
 .GetOrCreate();
RunJob();
spark.Stop();

The file from the previous step is easily read by passing its
path to the Spark session:

var docs = spark.Read().HasHeader()
 .Csv(filesHelper.TempDataFile);
docs.CreateOrReplaceTempView(nameof(docs));
var totalDocs = docs.Count();

The docs variable resolves to a DataFrame. A data frame
is essentially a table with a set of columns and a common
interface to interact with data regardless of the underly-
ing source. It’s possible to reference a data frame from
other data frames. SparkSQL can also be used to query data
frames. You must create a temporary view that provides an
alias to the data frame to reference it from SQL. The Cre-
ateOrReplaceTempView method makes it possible to select
rows from the data frame like this:

SELECT * FROM docs

The totalDocs variable retrieves a count of all rows in the
document. Spark provides a function called Split to break a
string into an array. The Explode function turns each array
item into a row:

var words = docs
 .Select(
 fileCol,
 Functions.Split(
 nameof(FileDataParse.Words)
 .AsColumn(), " “)
 .Alias(wordList))
 .Select(
 fileCol,
 Functions.Explode(
 wordList.AsColumn())
 .Alias(word));

The query generates one row per word or term. This data
frame is the basis for generating the term frequency (TF),
or the count of each word per document:

var termFrequency = words
 .GroupBy(fileCol, Functions.Lower(
 word.AsColumn()).Alias(word))
 .Count()
 .OrderBy(fileCol, count.AsColumn().Desc());

Spark has built-in models that can determine “term frequen-
cy/inverse document frequency.” For this example, you’ll de-
termine term frequency manually to demonstrate how it is
calculated. Terms occur with a specific frequency in each doc-
ument. A document about wizards might have a high count of
the term “wizards.” The same document probably has a high
count of the words “the” and “is” as well. To us, it’s obvious
that the term “wizard” is more important and provides more

contains the documentation. By default, it creates a folder
under the user’s local application data folder. This can be
overridden if necessary.

MarkdownParser leverages a library called Microsoft.Tool-
kit.Parsers to parse the markdown. The library has two
tasks: first, it must extract titles and subtitles, and sec-
ond, it must extract words. The markdown file is exposed as
“blocks” representing headers, links, and other markdown
features. Blocks, in turn, contain “inlines” that host the
text. For example, this code parses a TableBlock by iterat-
ing over rows and cells to find inlines:

case TableBlock table:
 table.Rows.SelectMany(r => r.Cells)
 .SelectMany(c => c.Inlines)
 .ForEach(i => candidate =
 RecurseInline(i, candidate, words,
 titles));
 break;

This code extracts the text part of an inline hyperlink:

case HyperlinkInline hyper:
 if (!string.IsNullOrWhiteSpace(hyper.Text))
 {
 words.Append(hyper.Text.ExtractWords());
 }
 break;

The result is a comma-delimited (CSV) file that looks like
Figure 7.

The first step simply prepares the data for processing. The
next step uses a Spark for .NET job to determine word count,
reading time, and the top 20 terms for each document.

Build the .NET for Spark Job
The SparkWordsProcessor project hosts the .NET for the
Spark job to run. Although the app is a console project,
it requires Spark to run. The runjob.cmd batch command

Figure 6: ML.NET tooling is built on top of the AutoML.NET
API, which is on top of the ML.NET API

Big Data and Machine Learning in .NET 5

Figure 7: The generated CSV file

37codemag.com Big Data and Machine Learning in .NET 5

So far, you’ve used code to define the data frames. Let’s
try some SparkSQL. To compute the TF-IDF, you join the
document frequency data frame with the inverse document
frequency data frame and create a new column named term-
Freq_inverseDocFreq. Here is the SparkSQL:

var idfJoin = spark.Sql($"SELECT t.File, d.word,
d.{docFrequency}, d.{inverseDocFrequency},
t.count, d.{inverseDocFrequency} * t.count as
{termFreq_inverseDocFreq} from
{nameof(documentFrequency)} d inner join
{nameof(termFrequency)} t on t.word = d.word");

Explore the code to see how the final steps are implement-
ed. These steps include:

1.	 Create a data frame with a total word count per document.
2.	 Sort and partition the TF-IDF data to select the top 20

words per document.
3.	 Remove “stop words” that may have slipped through

the cracks.
4.	 Use a UDF to divide total words by 225 to estimate the

reading time (assuming 225 words per minute).

All of the steps described so far provide a template or defi-
nition for Spark. Like LINQ queries, the actual processing
doesn’t happen until the results are materialized (such as
when the total document count was computed). The final
step calls Collect to process and return the results and write
them to another CSV. You can then use the new file as input
for the ML model. A portion of the file is shown in Figure 8.

Spark for .NET enabled you to query and shape the data. You
built multiple data frames over the same data source and
then joined them to gain insights about important terms,
word count, and read time. The next step is to apply ML to
automatically generate categories.

Predict Categories
The last step is to categorize the documents. The DocMLCat-
egorization project includes the Microsoft.ML package for
ML.NET. Although Spark works with data frames, data views
provide a similar concept in ML.NET.

This example uses a separate project for ML.NET so that the
model can be trained as an independent step. For many sce-
narios, it’s possible to reference ML.NET directly from your
.NET for Spark project and perform ML as part of the same
job.

First, you must tag the class so that ML.NET knows which col-
umns in the source data map to properties in the class. The
FileData class uses the LoadColumn annotation like this:

[LoadColumn(0)]
public string File { get; set; }

[LoadColumn(1)]
public string Title { get; set; }

context. Spark, on the other hand, must be trained to recog-
nize important terms. To determine what’s truly important,
we’ll summarize the document frequency, or the count of
how many times a word appears across all the documents in
the repo. This is a “group by distinct occurrences”:

var documentFrequency = words
 .GroupBy(Functions.Lower(word.AsColumn())
 .Alias(word))
 .Agg(Functions.CountDistinct(fileCol)
 .Alias(docFrequency));

Now it’s time for math. A special equation computes what’s
known as the inverse document frequency, or IDF. The nat-
ural logarithm of total documents (plus one) is input into
the equation and divided by the document frequency (plus
one) for the word:

static double CalculateIdf(
int docFrequency, int totalDocuments) =>
Math.Log(totalDocuments + 1) /
 (docFrequency + 1);

Words that appear across all documents are assigned a lower
value than words that appear less frequently. For example,
given 1000 documents, a term that appears in every docu-
ment has an IDF of 0.003 compared to a term that only ap-
pears in a few documents (~1). Spark supports user-defined
functions which you can register like this:

spark.Udf().Register<int, int, double>(
 nameof(CalculateIdf), CalculateIdf);

Next, you can use the function to compute the IDF of all
words in the data frame:

var idfPrep = documentFrequency.Select(
 word.AsColumn(),
 docFrequency.AsColumn())
 .WithColumn(total, Functions.Lit(totalDocs))
 .WithColumn(
 inverseDocFrequency,
 Functions.CallUDF(
 nameof(CalculateIdf),
 docFrequency.AsColumn(),
 total.AsColumn()));

Using the document frequency data frame, two columns are
added. The first is the literal total number of documents, and
the second is a call to your UDF to compute the IDF. There’s
just one more step to determine the “important words.” Us-
ing TF-IDF, the important words are ones that don’t appear
often across all documents but do appear often in the cur-
rent document. This is simply a product of the IDF and the TF.
Consider the case of “is” with an IDF of 0.002 and a frequency
of 50 in the document, versus “wizard” with an IDF of 1 and
a frequency of 10. The TF-IDF for “is” computes to 0.1, com-
pared to 10 for the term “wizard.” This gives Spark a better
notion of importance than just the raw word count.

Figure 8: Processed metadata that’s ready for ML training

Bu
ild

 y
ou

r
w

or
ld

 w
ith

 .N
ET

•
W

eb
•

Cl
ou

d
•

D
es

kt
op

•
G

am
es

•
M

ob
ile

•
Io

T
(In

te
rn

et
 o

f T
hi

ng
s)

An
y

ap
p,

 a
ny

 p
la

tf
or

m

•
Ar

tifi
ci

al
 In

te
lli

ge
nc

e/
M

ac
hi

ne
Le

ar
ni

ng
 (A

I/M
L)

Co
nt

ai
ne

ri
za

ti
on

 a
nd

 H
os

ti
ng

•
Ap

p
Se

rv
ic

e,
 D

oc
ke

rH
ub

, K
ub

er
ne

te
s,

 A
KS

•
Ap

p
In

sig
ht

s

D
ep

lo
ym

en
t t

o
an

y
po

in
t

A
pp

lic
at

io
n

M
on

it
or

in
g

•
Vi

su
al

 S
tu

di
o

•
Vi

su
al

 S
tu

di
o

Co
de

•
.N

ET
 C

LI
 (c

om
m

an
d

lin
e

 in

te
rfa

ce
)

To
ol

s
to

 g
et

 it
 d

on
e

•
Vi

su
al

 S
tu

di
o

fo
r

M
ac

•
Yo

ur
 fa

vo
rit

e
ed

ito
r

•
G

ith
ub

•
M

ic
ro

se
rv

ic
es

Sc
al

ab
le

 a
pp

lic
at

io
n

ar
ch

ite
ct

ur
es

•
Cl

ou
d

N
at

iv
e

•
Se

rv
er

le
ss

M
ul

ti
-la

ng
ua

ge
•

C#
•

W
in

do
w

s
•

F#
•

Lin
ux

•
VB

.N
ET

•
m

ac
O

S
•

iO
S

•
m

or
e

•
An

dr
oi

d

A
so

lid
 c

or
e Cr

os
s-

Pl
at

fo
rm

O
pe

n
So

ur
ce

Pe
rf

or
m

an
ce

 a
nd

 R
el

ia
bi

lit
y

•
.N

ET
 L

ib
ra

rie
s

•
N

uG
et

•
D

at
a

Co
m

po
ne

nt
s

to
 g

et
 y

ou
 s

ta
rt

ed

•
Id

en
tit

y
an

d
Se

cu
ri

ty

C M Y C
M

M
Y

C
Y

C
M
Y K

M
ul

ti
-la

ng
ua

ge
: Y

ou
 c

an
 w

ri
te

 y
ou

r
.N

ET
 a

pp
s

in
 m

ul
tip

le
pr

og
ra

m
m

in
g

la
ng

ua
ge

s.
• C

(c

-s
ha

rp
) i

s
a

si
m

pl
e,

 m
od

er
n,

 o
bj

ec
t-

or
ie

nt
ed

, a
nd

 ty
pe

-s
af

e

pr
og

ra
m

m
in

g
la

ng
ua

ge
 w

ith
 r

oo
ts

 in
 th

e
C

fa
m

ily
 o

f l
an

gu
ag

es
, m

ak
in

g

it
im

m
ed

ia
te

ly
 fa

m
ili

ar
 to

 C
, C

++
, J

av
a,

 a
nd

 Ja
va

Sc
ri

pt
 p

ro
gr

am
m

er
s.

ht

tp
s:

//
ak

a.
m

s/
st

ar
t-

cs
ha

rp
• F

(f

-s
ha

rp
) i

s
a

fu
nc

tio
na

l p
ro

gr
am

m
in

g
la

ng
ua

ge
 th

at
 a

ls
o

in
cl

ud
es

ob

je
ct

-o
ri

en
te

d
an

d
im

pe
ra

tiv
e

pr
og

ra
m

m
in

g.

ht
tp

s:
//

ak
a.

m
s/

st
ar

t-
fs

ha
rp

• V
is

ua
l B

as
ic

 is
 a

n
ap

pr
oa

ch
ab

le
 la

ng
ua

ge
 w

ith
 a

 s
im

pl
e

sy
nt

ax
 fo

r

bu
ild

in
g

ty
pe

-s
af

e,
 o

bj
ec

t-
or

ie
nt

ed
 p

ro
gr

am
s.

 h
tt

ps
://

ak
a.

m
s/

st
ar

t-
vb

Vi
su

al
 S

tu
di

o
Fa

m
ily

: V
is

ua
l S

tu
di

o
pr

ov
id

es
 b

es
t-

in
-c

la
ss

 to
ol

s
fo

r
an

y
de

ve
lo

pe
r

on
 a

ny
 o

pe
ra

tin
g

sy
st

em
. F

ro
m

 a
dv

an
ce

d
ID

Es
 a

nd
 e

di
to

rs
 to

ag
ile

 to
ol

s,
 C

I/C
D

, m
on

ito
ri

ng
, a

nd
 le

ar
ni

ng
, t

he
y

ha
ve

 y
ou

 c
ov

er
ed

. G
et

st
ar

te
d

fo
r

fr
ee

. w
w

w
.v

is
ua

ls
tu

di
o.

co
m

.N
ET

 C
LI

: T
he

 .N
ET

 C
LI

 (c
om

m
an

d-
lin

e-
in

te
rf

ac
e)

 is
 a

 c
om

m
an

d
lin

e
to

ol
yo

u
ca

n
us

e
w

ith
 a

ny
 e

di
to

r
to

 b
ui

ld
 m

an
y

ty
pe

s
of

 .N
ET

 a
pp

s.
 G

et
 it

 w
ith

th
e

.N
ET

 S
D

K.
 d

ot
.n

et
/g

et
-d

ot
ne

t5

A
ny

 a
pp

, a
ny

 p
la

tf
or

m

Sc
al

ab
le

 a
pp

lic
at

io
n

ar
ch

it
ec

tu
re

s

D
ep

lo
ym

en
t

to
 a

ny
 p

oi
nt

To
ol

s
to

 g
et

 it
 d

on
e

Co
m

po
ne

nt
s

to
 g

et
 y

ou
 s

ta
rt

ed

A
 s

ol
id

 c
or

e

W
eb

: C
re

at
e

sc
al

ab
le

, h
ig

h-
pe

rf
or

m
an

ce
 w

eb
si

te
s

an
d

se
rv

ic
es

 th
at

 r
un

 o
n

W
in

do
w

s,
 m

ac
O

S,
 a

nd
 L

in
ux

. h
tt

ps
://

ak
a.

m
s/

st
ar

tw
eb

Cl
ou

d:
 C

re
at

e
po

w
er

fu
l,

in
te

lli
ge

nt
 c

lo
ud

 a
pp

s
w

ith
 .N

ET
 u

si
ng

 a
 fu

lly
m

an
ag

ed
 p

la
tf

or
m

. h
tt

ps
://

ak
a.

m
s/

st
ar

tc
lo

ud
D

es
kt

op
: C

re
at

e
be

au
tif

ul
 a

nd
 c

om
pe

lli
ng

 n
at

iv
e

de
sk

to
p

ap
ps

 o
n

W
in

do
w

s
an

d
m

ac
O

S.
 h

tt
ps

://
ak

a.
m

s/
st

ar
td

es
kt

op
M

ob
ile

: U
se

 a
 s

in
gl

e
co

de
 b

as
e

to
 b

ui
ld

 n
at

iv
e

m
ob

ile
 a

pp
s

fo
r

iO
S,

 A
nd

ro
id

,
an

d
W

in
do

w
s.

 h
tt

ps
://

ak
a.

m
s/

st
ar

tm
ob

ile
G

am
es

: D
ev

el
op

 2
D

 a
nd

 3
D

 g
am

es
 fo

r
th

e
m

os
t p

op
ul

ar
 d

es
kt

op
s,

 p
ho

ne
s,

an
d

co
ns

ol
es

. h
tt

ps
://

ak
a.

m
s/

st
ar

tg
am

in
g

A
I/

M
L

(A
rt

ifi
ci

al
 In

te
lli

ge
nc

e
an

d
M

ac
hi

ne
 L

ea
rn

in
g)

: I
nf

us
e

AI
 a

nd
M

ac
hi

ne
 L

ea
rn

in
g

in
to

 y
ou

r
.N

ET
 a

pp
s

su
ch

 a
s

vi
si

on
 a

lg
or

ith
m

s,
 s

pe
ec

h
pr

oc
es

si
ng

, p
re

di
ct

iv
e

m
od

el
s,

 a
nd

 m
or

e.
 h

tt
ps

://
ak

a.
m

s/
st

ar
ta

i
Io

T
(In

te
rn

et
 o

f T
hi

ng
s)

: M
ak

e
Io

T
ap

ps
 w

ith
 n

at
iv

e
su

pp
or

t f
or

 th
e

Ra
sp

be
rr

y
Pi

 a
nd

 o
th

er
 s

in
gl

e-
bo

ar
d

co
m

pu
te

rs
. h

tt
ps

://
ak

a.
m

s/
st

ar
tio

th
in

gs

M
ic

ro
se

rv
ic

es
: M

ic
ro

se
rv

ic
es

 a
re

 h
ig

hl
y

sc
al

ab
le

, r
es

ili
en

t,
an

d
co

m
po

sa
bl

e
un

its
 o

f d
ep

lo
ym

en
t f

or
 m

od
er

n
ap

pl
ic

at
io

ns
 a

nd
 .N

ET
 is

 a
 p

er
fe

ct
 p

la
tf

or
m

fo
r

cr
ea

tin
g

th
em

. G
et

 s
ta

rt
ed

 le
ar

ni
ng

 a
nd

 b
ui

ld
in

g
th

em
.

ht
tp

s:
//

ak
a.

m
s/

st
ar

tm
ic

ro
se

rv
ic

es
Cl

ou
d

N
at

iv
e:

 L
ea

rn
 a

bo
ut

 th
e

es
se

nt
ia

l d
es

ig
n

pa
tt

er
ns

 th
at

 a
re

 u
se

fu
l f

or
bu

ild
in

g
re

lia
bl

e,
 s

ca
la

bl
e,

 s
ec

ur
e

ap
pl

ic
at

io
ns

 th
at

 a
re

 b
or

n
in

 th
e

cl
ou

d.
ht

tp
s:

//
ak

a.
m

s/
st

ar
tp

at
te

rn
s

G
ui

de
s:

 G
et

 s
ta

rt
ed

 w
ith

 m
od

er
n

.N
ET

 a
pp

lic
at

io
n

ar
ch

ite
ct

ur
es

 fo
r

bu
ild

in
g

an
y

ty
pe

 o
f a

pp
lic

at
io

n
w

he
th

er
 it

's
 fo

r
w

eb
, m

ob
ile

, d
es

kt
op

 o
r

th
e

cl
ou

d.
ht

tp
s:

//
ak

a.
m

s/
st

ar
ta

rc
h

Co
nt

ai
ne

ri
za

ti
on

 a
nd

 H
os

ti
ng

: C
on

ta
in

er
s

si
m

pl
ify

 d
ep

lo
ym

en
t a

nd
 te

st
in

g
by

 b
un

dl
in

g
a

se
rv

ic
e

an
d

its
 d

ep
en

de
nc

ie
s

in
to

 a
 s

in
gl

e
un

it,
 w

hi
ch

 is
 th

en

ru
n

in
 a

n
is

ol
at

ed
 e

nv
ir

on
m

en
t.

O
rc

he
st

ra
to

rs
 s

uc
h

as
 K

ub
er

ne
te

s
au

to
m

at
e

de
pl

oy
m

en
t,

sc
al

in
g,

 a
nd

 m
an

ag
em

en
t o

f c
on

ta
in

er
iz

ed
 a

pp
lic

at
io

ns
.

A
pp

lic
at

io
n

M
on

it
or

in
g:

 G
et

 a
ct

io
na

bl
e

in
si

gh
ts

 th
ro

ug
h

ap
pl

ic
at

io
n

pe
rf

or
m

an
ce

 m
an

ag
em

en
t a

nd
 in

st
an

t a
na

ly
tic

s
w

ith
 A

pp
 In

si
gh

ts
.

ht
tp

s:
//

ak
a.

m
s/

st
ar

ta
pp

in
si

gh
ts

• D
oc

ke
r

co
nt

ai
ne

r
im

ag
es

 fo
r

.N
ET

 o
n

Li
nu

x
an

d
W

in
do

w
s

ar
e

av
ai

la
bl

e
on

D

oc
ke

r
H

ub
. h

tt
ps

://
ak

a.
m

s/
st

ar
td

oc
ke

r
• S

im
pl

ify
 th

e
de

pl
oy

m
en

t,
m

an
ag

em
en

t,
an

d
op

er
at

io
ns

 o
f K

ub
er

ne
te

s

w
ith

 A
KS

. h
tt

ps
://

ak
a.

m
s/

st
ar

ta
ks

• Q
ui

ck
ly

 c
re

at
e

po
w

er
fu

l c
lo

ud
 a

pp
s

w
ith

 o
r

w
ith

ou
t c

on
ta

in
er

s
us

in
g

a

fu
lly

 m
an

ag
ed

 p
la

tf
or

m
 w

ith
 A

pp
 S

er
vi

ce
. h

tt
ps

://
ak

a.
m

s/
st

ar
ta

pp
se

rv
ic

e

.N
ET

 L
ib

ra
ri

es
: .

N
ET

 p
ro

vi
de

s
th

ou
sa

nd
s

of
 b

ui
lt-

in
 A

PI
s

in
 b

as
e

cl
as

s
lib

ra
ri

es
 th

at
 h

el
p

yo
u

bu
ild

 c
ro

ss
-p

la
tf

or
m

 c
od

e
th

at
 c

an
 d

o
ju

st
 a

bo
ut

an
yt

hi
ng

, m
ak

in
g

it
si

m
pl

e
to

 s
ha

re
 li

br
ar

ie
s

ac
ro

ss
 a

ny
 a

pp
lic

at
io

n.
ht

tp
s:

//
ak

a.
m

s/
ne

ts
ta

nd
ar

da
pi

s
N

uG
et

: F
ro

m
 d

at
a

co
m

po
ne

nt
s

to
 U

I c
on

tr
ol

s
an

d
th

ou
sa

nd
s

m
or

e
re

us
ab

le
lib

ra
ri

es
, t

he
 N

uG
et

 p
ac

ka
ge

 m
an

ag
er

 h
el

ps
 y

ou
 c

re
at

e
.N

ET
 a

pp
s

fa
st

er
.

w
w

w
.n

ug
et

.o
rg

Cr
os

s-
pl

at
fo

rm
: Y

ou
r

.N
ET

 a
pp

s
w

ill
 r

un
 o

n
a

va
ri

et
y

of
 o

pe
ra

tin
g

sy
st

em
s,

de
pe

nd
in

g
on

 th
e

ap
p

yo
u’

re
 b

ui
ld

in
g.

 F
or

 in
st

an
ce

, w
eb

 a
pp

s
ca

n
be

 h
os

te
d

on
 W

in
do

w
s,

 m
ac

O
S,

 o
r

m
ul

tip
le

 d
is

tr
os

 o
f L

in
ux

. O
r

bu
ild

 m
ob

ile
 a

pp
s

fo
r

An
dr

oi
d

an
d

iO
S

al
l w

ith
 .N

ET
.

Pe
rf

or
m

an
ce

: .
N

ET
 is

 fa
st

. R
ea

lly
 fa

st
! .

N
ET

 p
er

fo
rm

s
fa

st
er

 th
an

 a
ny

 o
th

er
po

pu
la

r
fr

am
ew

or
k

on
 T

ec
hE

m
po

w
er

 b
en

ch
m

ar
ks

. F
ro

m
 p

ro
vi

di
ng

 s
af

er
,

fa
st

er
 m

em
or

y
ac

ce
ss

 w
ith

 S
pa

n<
T>

 to
 a

 fa
st

er
 ju

st
-in

-t
im

e
co

m
pi

le
r,

gr
ea

t
pe

rf
or

m
an

ce
 is

 a
t t

he
 c

or
e

of
 .N

ET
. h

tt
ps

://
ak

a.
m

s/
do

tn
et

pe
rf

O
pe

n
So

ur
ce

: .
N

ET
 is

 o
pe

n
so

ur
ce

 u
nd

er
 th

e
.N

ET
 F

ou
nd

at
io

n.
Th

e
.N

ET
 F

ou
nd

at
io

n
is

 a
n

in
de

pe
nd

en
t o

rg
an

iz
at

io
n

to
 fo

st
er

 o
pe

n
de

ve
lo

pm
en

t a
nd

 c
ol

la
bo

ra
tio

n
ar

ou
nd

 th
e

.N
ET

 e
co

sy
st

em
.

w
w

w
.d

ot
ne

tf
ou

nd
at

io
n.

or
g

C M Y C
M

M
Y

C
Y

C
M
Y K

40 codemag.com

 FeatureColumnName = features,
 NumberOfClusters = categories,
};
var clusterPipeline = pipeline.Append(
 context.Clustering.Trainers
 .KMeans(options));
var model = clusterPipeline.Fit(dataToTrain);
var predictions = model.Transform(dataToTrain);
var metrics = context.Clustering.Evaluate(
 predictions);
distances.Add(categories,
 metrics.AverageDistance);

After training and evaluation, you can then save the op-
timal model and use it to make predictions on the data
set. An output file is generated along with a summary that
shows some metadata about each category and lists the ti-
tles underneath. The title is only one of several features, so
sometimes it requires looking into the details to make sense
of the categories. In local tests, documents such as tutori-
als end up in one group, API documentation in another, and
exceptions in their own group.

The machine learning model is saved as a single zip file. The
file can be included in other projects to use with the Predic-
tion Engine to make predictions on new data. For example,
you could create a WPF application that allows users to browse
to a directory and then loads and uses the trained model to
categorize documents without having to train it first.

What’s Next?
Spark for .NET is scheduled to GA around the same time as
.NET 5. Read the roadmap and plans for upcoming features
at https://aka.ms/spark-net-roadmap.

This walkthrough focused on a local development expe-
rience. To tap into the real power of big data, you can
submit jobs to the cloud. There are a variety of cloud hosts
that can accommodate petabytes of data and provide doz-
ens of cores of computing power for your workloads. Azure
Synapse Analytics is an Azure service that is designed to
host large amounts of data, provide clusters for running
big data jobs, and enable interactive exploration through
notebooks and chart-based dashboards. To learn how
to submit Spark for .NET jobs to Azure Synapse, visit
https://aka.ms/spark-net-synapse.

You can then create a context for the model and load the data
view from the file that was generated in the previous step:

var context = new MLContext(seed: 0);

var dataToTrain = context.Data
 .LoadFromTextFile<FileData>(
 path: filesHelper.ModelTrainingFile,
 hasHeader: true,
 allowQuoting: true,
 separatorChar: ',’);

ML algorithms work best with numbers, so the text in the docu-
ment must be converted to numeric vectors. ML.NET provides
the FeaturizeText method for this. In one step, the model:

•	 Detects the language
•	 Tokenizes the text into individual words or tokens
•	 Normalizes the text so that variations of words are

standardized and cased similarly
•	 Transforms the terms into consistent numerical values

or “feature vectors” that are ready for processing

The code in Listing 2 transforms columns into features and
then creates a single “Features” column with the features
combined.

At this point, the data is properly prepared to train the model.
The training is unsupervised, which means it must infer infor-
mation with an example. You’re not inputting sample catego-
ries into the model, so the algorithm must figure out how the
data is interrelated by analyzing how features cluster together.
You will use the k-means clustering algorithm. This algorithm
uses the features to compute the “distance” between docu-
ments and then “draws” bounds around the grouped docu-
ments. The algorithm involves randomization so no two runs
will be alike. The main challenge is determining the optimal
cluster size for training. Different documentation sets ideally
have different optimal category counts, but the algorithm re-
quires you to input the number of categories before training.

The code iterates between two and 20 clusters to determine the
optimal size. For each run, it takes the feature data and applies
the algorithm or trainer. It then transforms the existing data
based on the prediction model. The result is evaluated to de-
termine the average distance of documents in each cluster, and
the result with the lowest average distance is selected.

var options = new KMeansTrainer.Options
{

var pipeline = context.Transforms
 .Text.FeaturizeText(nameof(FileData.Title).Featurized(),
 nameof(FileData.Title))
 .Append(context.Transforms.Text.FeaturizeText(
 nameof(FileData.Subtitle1).Featurized(),
 nameof(FileData.Subtitle1)))
 .Append(context.Transforms.Text.FeaturizeText(
 nameof(FileData.Subtitle2).Featurized(),
 nameof(FileData.Subtitle2)))
 .Append(context.Transforms.Text.FeaturizeText(
 nameof(FileData.Subtitle3).Featurized(),
 nameof(FileData.Subtitle3)))
 .Append(context.Transforms.Text.FeaturizeText(
 nameof(FileData.Subtitle4).Featurized(),
 nameof(FileData.Subtitle4)))

 .Append(context.Transforms.Text.FeaturizeText(
 nameof(FileData.Subtitle5).Featurized(),
 nameof(FileData.Subtitle5)))
 .Append(context.Transforms.Text.FeaturizeText(
 nameof(FileData.Top20Words).Featurized(),
 nameof(FileData.Top20Words)))
 .Append(context.Transforms.Concatenate(
 features,
 nameof(FileData.Title).Featurized(),
 nameof(FileData.Subtitle1).Featurized(),
 nameof(FileData.Subtitle2).Featurized(),
 nameof(FileData.Subtitle3).Featurized(),
 nameof(FileData.Subtitle4).Featurized(),
 nameof(FileData.Subtitle5).Featurized(),
 nameof(FileData.Top20Words).Featurized()));

Listing 2: Transforming text into features for machine learning

Big Data and Machine Learning in .NET 5

� Jeremy Likness and Bri Achtman
�

Explore Data Interactively
with Notebooks

Batch jobs aren’t the only way
to explore big data. Synapse
Studio Notebooks provide
a Web interface to interact
with data live.

In notebooks, you can provide
code blocks in cells that
define or show the contents
of data frames, visualize data,
and even share comments
and narrative. It’s a great way
to explore data in real-time
and gain insights.

Learn more about Synapse
Studio notebooks by visiting:
https://aka.ms/synapse-
notebooks

41codemag.com

ONLINE QUICK ID 2010071

F# 5: A New Era of Functional Programming with .NET

Phillip Carter
phillipcarter.dev/
twitter.com/_cartermp

Phillip Carter is a Senior
Program Manager on the
.NET team at Microsoft,
focusing on .NET languages
and tools. He works on
all things F#: language
design, the compiler,
the core library, and
tooling. He also helps
out with the C# compiler
and .NET project tooling
in Visual Studio.

F# 5: A New Era of Functional
Programming with .NET
On the F# team at Microsoft, we’re constantly improving the F# language to empower developers to do functional programming
on .NET. Over the previous four releases, from 2017 until now, we’ve been on a long journey to make F# awesome on .NET
Core. We’ve revamped the F# compiler and core library to run cross-platform, added support for Span<T> and low-level,

cross-platform programming, and added the ability to preview
language features that can ship with .NET preview releases.

With the .NET 5 release, we’re releasing F# 5, the next major
version of the F# language. But F# 5 isn’t just a bundle of fea-
tures that comes along for the ride with .NET 5. F# 5 marks the
end of the current era—bringing up support for .NET Core—
and the beginning of a new one. With F# 5, we’re considering
our journey to bring F# to .NET Core mostly complete. With F#
5, our focus shifts from .NET Core to three major areas:

•	 Interactive programming
•	 Making analytical-oriented programming convenient

and fun
•	 Great fundamentals and performance for functional

programming on .NET

In this article, I’ll go through the F# language and tooling
features we’ve implemented for F# 5 and explain how they
align with our goals.

F# 5 Makes Interactive Programming
a Joy
F# has a long history of being interactive. In fact, when F# 1.0
was developed, a tool called F# Interactive (FSI) was developed
for the eventual release of F# 1.0 in 2006. This coincided with
the first tooling integration into Visual Studio. FSI was used quite
heavily in the initial marketing of F# (as shown in Figure 1) to
demonstrate iterative and interactive development of Windows
Forms applications, graphics scenes, and games on Windows.

The core experiences of FSI have largely remained the same
in F# 5. These include:

•	 The ability to reference and call into assemblies on
your computer

•	 The ability to load other F# scripts to execute as a
collection of scripts

•	 Integration with Visual Studio
•	 The ability to customize output

Figure 1: Initial prototype of F# Interactive in Visual Studio 2005

42 codemag.comF# 5: A New Era of Functional Programming with .NET

F# scripts. However, because Paket is an alternative to NuGet
instead of a default tool, most F# programmers don’t use it.

Now with F# 5, you can simply reference any NuGet pack-
age in an F# script. FSI restores this package with NuGet
and automatically references all assemblies in the package.
Here’s an example:

#r "nuget: Newtonsoft.Json"

open Newtonsoft.Json

let o = {| X = 2; Y = "Hello" |}
printfn "%s" (JsonConvert.SerializeObject o)

When you execute the code in that snippet, you’ll see the
following output:

{"X":2,"Y":"Hello"}
val o : {| X: int; Y: string |} = { X = 2
 Y = "Hello" }
val it : unit = ()

The package management feature can handle just about any-
thing you want to throw at it. It supports packages with na-
tive dependencies like ML.NET or Flips. It also supports pack-
ages like FParsec, which previously required that each assem-
bly in the package is referenced in a specific order in FSI.

Introducing dotnet FSI
The second major frustration for F# programmers using FSI
is that it was missing in .NET Core for a long time. Microsoft
released an initial version of FSI for .NET Core with .NET Core
3.0, but it was only useful for F# scripts that didn’t incor-
porate any dependencies. Now, in conjunction with package
management, you can use FSI for all the same tasks on ma-
cOS or Linux as you would on Windows (except for launching
WinForms and WPF apps, for obvious reasons). This is done
with a single command: dotnet fsi.

Introducing F# Support in Jupyter Notebooks
There’s no question that package management and making FSI
available everywhere makes F# better for interactive program-
ming. But Microsoft felt that we could do more than just that.
Interactive programming has exploded in recent years in the Py-
thon community, thanks in large part to Jupyter Notebooks. The
F# community had built initial support for F# in Jupyter many
years ago, so we worked with its current maintainer to learn
about what a good experience for Jupyter meant and built it.

Now, with F# 5, you can pull in packages, inspect data, and
chart the results of your experimentation in a sharable,
cross-platform notebook that anyone can read and adjust,
as shown in Figure 2.

Another reason why we’re very excited about F# support in
Jupyter Notebooks is that the notebooks are easy to share
with other people. Juputer Notebooks render as markdown
documents in GitHub and other environments. Not only are
they a programming tool, but they produce a document that
can be used to instruct others how to perform tasks, share
findings, learn a library, or even learn F# itself!

Introducing F# Support in Visual Studio Code Notebooks
F# support in Jupyter Notebooks brings interactivity to a whole
new level. But Jupyter isn’t the only way to program for a note-

However, as F# and the .NET ecosystem moved from assem-
blies on a computer to packages installed via a package man-
ager, many F# developers using FSI for various tasks found
themselves annoyed by having to manually download a pack-
age and reference its assemblies manually. Additionally, as
.NET’s reach extended beyond Windows, developers on macOS
or Linux found themselves missing features and relying on a
Mono installation to use FSI in their environments.

Introducing Package Management Support in FSI
Using a package in an F# script has long been a source of
frustration for F# programmers. They typically downloaded
packages themselves and referenced assemblies in the path
to the package manually. A smaller set of F# programmers
used the Paket package manager and generated a “load
script”—a feature in Paket that generates an F# script file
with references to all the assemblies in the packages you
want to reference—and loads this script into their working

Figure 2: Charting in Jupyter notebooks with F#

Figure 3: Installing a package and using it in Visual Studio Code Notebooks

Figure 4: Converting a Jupyter Notebook in Visual Studio Code

43codemag.com F# 5: A New Era of Functional Programming with .NET

The reasoning for this is largely because in F#, empty slic-
es compose with nonempty slices. An empty string can be
added to a nonempty string, empty arrays can be appended
to nonempty arrays, etc. This change is non-breaking and
allows for predictability in behavior.

Fixed Index Slicing for 3D and 4D Arrays
F# has built-in support for 3D and 4D arrays. These array
types have always supported slicing and indexing, but never
slicing based on a fixed index. With F# 5, this is now possible:

// First, create a 3D array
// with values from 0 to 7
let dim = 2
let m = Array3D.zeroCreate<int> dim dim dim

let mutable cnt = 0

for z in 0..dim-1 do
 for y in 0..dim-1 do
 for x in 0..dim-1 do
 m.[x,y,z] <- cnt
 cnt <- cnt + 1

// Now let's get the [4;5] slice!
m.[*, 0, 1]

This helps complete the picture for slicing scenarios with 3D
and 4D arrays.

Preview: Reverse Indexes
Microsoft is also introducing the ability to use reverse indexes,
which can be used with slices, as a preview in F# 5. To use it, sim-
ply place <LangVersion>preview</LangVersion> in your project file.

let xs = [1..10]

// Get element 1 from the end:
xs.[^1]

// Old way to get the last two elements
let lastTwoOldStyle = xs.[(xs.Length-2)..]

// New way to get the last two elements
let lastTwoNewStyle = xs.[^1..]

lastTwoOldStyle = lastTwoNewStyle // true

You can also define your own members via an F# type ex-
tension to augment these types to support F# slicing and
reverse indexes. The following example does so with the
Span<’T> type:

open System

type Span<'T> with
 member sp.GetSlice(startIdx, endIdx) =
 let s = defaultArg startIdx 0
 let e = defaultArg endIdx sp.Length
 sp.Slice(s, e - s)

 member sp.GetReverseIndex(_, offset: int) =
 sp.Length - offset

let sp = [| 1; 2; 3; 4; 5 |].AsSpan()
sp.[..^2] // [|1; 2; 3|]

book. Visual Studio Code is also bringing notebook program-
ming into the fold, with all the power of a language service
that you would expect to find when editing code in a normal
file. With F# support in Visual Studio Code Notebooks, you can
enjoy language service integration when building a notebook,
as shown in Figure 3.

Another benefit of Visual Studio Code notebooks is its file
format, which is designed to be human-readable and easy to
diff in source control. It supports importing Jupyter Note-
books and exporting Visual Studio Code notebooks as Jupy-
ter Notebooks, as you can see in Figure 4.

You can do many things with F# in Visual Studio Code and
Jupyter Notebooks, and we’re looking to expand the capa-
bilities beyond what’s been described so far. Our roadmap
includes integration with various other tools, more cohesive
data visualization, and data interop with Python.

F# 5 Lays More Foundations
for Analytical Programming
A paradigm of growing importance in the age of ubiqui-
tous machine learning and data science is what I like to
call “analytical programming.” This paradigm isn’t exactly
new, although there are new techniques, libraries, and
frameworks coming out every day to further advance the
space. Analytical programming is all about analyzing and
manipulating data, usually applying numerical techniques
to deliver insights. This ranges from importing a CSV and
computing a linear regression on the data to the most ad-
vanced and compute-intensive neural networks coming out
of AI research institutions.

F# 5 represents the beginning of our foray into this space.
The team at Microsoft thinks that F# is already great for ma-
nipulating data, as countless F# users have demonstrated by
using F# for exactly that purpose. F# also has great support
for numeric programming with some built-in types and func-
tions and a syntax that’s approachable and succinct. So we
kept that in mind and identified some more areas to improve.

Consistent Behavior with Slices
A very common operation performed in analytical programming
is taking a slice of a data structure, particularly arrays. F# slices
used to behave inconsistently, with some out-of-bounds behav-
ior resulting in a runtime exception and others resulting in an
empty slice. We’ve changed all slices for F# intrinsic types—ar-
rays, lists, strings, 3D arrays, and 4D arrays—to return an empty
slice for any slice you might specify that couldn’t possibly exist:

let l = [1..10]
let a = [| 1..10 |]
let s = "hello!"

// Before: empty list
// F# 5: same
let emptyList = l.[-2..(-1)]

// Before: would throw exception
// F# 5: empty array
let emptyArray = a.[-2..(-1)]

// Before: would throw exception
// F# 5: empty string
let emptyString = s.[-2..(-1)]

44 codemag.com

operator is often used for logging diagnostics in a running
application.

#r "nuget: FSharp.SystemTextJson"

open System.Text.Json
open System.Text.Json.Serialization
open System.Runtime.CompilerServices

module M =
 let f x = nameof x

printfn "%s" (M.f 12)
printfn "%s" (nameof M)
printfn "%s" (nameof M.f)

/// Simplified version of EventStore's API
type RecordedEvent =
 { EventType: string
 Data: byte[] }

/// My concrete type:
type MyEvent =
 | AData of int
 | BData of string

// use 'nameof' instead of the string literal in
// the match expression
let deserialize (e: RecordedEvent) : MyEvent =
 match e.EventType with
 | nameof AData ->
 JsonSerializer.Deserialize<AData> e.Data
 |> AData
 | nameof BData ->
 JsonSerializer.Deserialize<BData> e.Data
 |> BData
 | t -> failwithf "Invalid EventType: %s" t

Interpolated Strings
Next is a feature seen in languages such as C# and JavaScript:
Interpolated Strings. Interpolated strings allow you to cre-
ate interpolations or holes in a string that you can fill in
with any F# expression. F# interpolated strings support
typed interpolations synonymous with the same format
specifies in sprintf and printf strings formats. F# interpo-
lated strings also support triple-quotes strings. Just like in
C#, all symbols in an F# interpolation are navigable, able to
be renamed, and so on.

// Basic interpolated string
let name = "Phillip"
let age = 29
let message = $"Name: {name}, Age: {age}"

// Typed interpolation
// '%s' requires the interpolation to be a string
// '%d' requires the interpolation to be an int
let message2 = $"Name: %s{name}, Age: %d{age}"

// Verbatim interpolated strings
// Note the string quotes allowed inside the
// interpolated string
let messageJson = $"""
"Name": "{name}",
"Age": {age}"""

F# intrinsic types have reverse indexes built in. In a future
release of F#, we’ll also support full interop with System.
Index and System.Range, at which point, the feature will
no longer be in preview.

Enhanced Code Quotations
F# Code Quotations are a metaprogramming feature that al-
lows you to manipulate the structure of F# code and evalu-
ate it in an environment of your choosing. This capability is
essential for using F# as a model construction language for
machine learning tasks, where the AI model may run on dif-
ferent hardware, such as a GPU. A critical piece missing in
this puzzle has been the ability to faithfully represent F# type
constraint information, such as those used in generic arith-
metic, in the F# quotation so that an evaluator can know to
apply those constraints in the environment it’s evaluating in.

Starting with F# 5, constraints are now retained in code quo-
tations, unlocking the ability for certain libraries such as Diff-
Sharp to use this part of the F# type system to its advantage.
A simple way to demonstrate this is the following code:

open FSharp.Linq.RuntimeHelpers

let eval q =
 LeafExpressionConverter
 .EvaluateQuotation q

let inline negate x = -x

// Crucially, 'negate' has
// the following signature:
//
// val inline negate:
// x: ^a -> ^a
// when ^a:
// (static member (~-): ^a -> ^a)
//
// This constraint is critical to F# type safety
// and is now retained in quotations.
<@ negate 1.0 @> |> eval

The use of an arithmetic operator implies a type constraint
such that all types passed to negate must support the ‘–‘ op-
erator. This code fails at runtime because the code quotation
doesn’t retain this constraint information, so evaluating it
throws an exception.

Code quotations are the foundation for some more R&D-heavy
work being done to use F# as a language for creating AI mod-
els, and so the ability to retain type constraint information in
them helps make F# a compelling language for programmers
in this space who seek a little more type safety in their lives.

F# 5 Has Great Fundamentals
F# 5 may be about making interactivity and analytical pro-
gramming better, but at its core, F# 5 is still about making
everyday coding in F# a joy. F# 5 includes several new fea-
tures that both app developers and library authors can enjoy.

Support for nameof
First up is a feature that C# developers have come to love:
nameof. The nameof operator takes an F# symbol as input
and produces a string at compile-time that represents that
symbol. It supports just about all F# constructs. The nameof

F# 5: A New Era of Functional Programming with .NET

45codemag.com F# 5: A New Era of Functional Programming with .NET

“Applicative forms for computation expressions” is a bit of a
mouthful. I’ll avoid diving into category theory and instead
work through an example:

// First, define a 'zip' function
module Result =
 let zip x1 x2 =
 match x1,x2 with
 | Ok x1res, Ok x2res ->
 Ok (x1res, x2res)
 | Error e, _ -> Error e
 | _, Error e -> Error e

// Next, define a builder with 'MergeSources'
// and 'BindReturn'
type ResultBuilder() =
 member _.MergeSources(t1: Result<'T,'U>,
 t2: Result<'T1,'U>) =
 Result.zip t1 t2
 member _.BindReturn(x: Result<'T,'U>, f) =
 Result.map f x

let result = ResultBuilder()

let run r1 r2 r3 =
 // And here is our applicative!
 let res1: Result<int, string> =
 result {
 let! a = r1
 and! b = r2
 and! c = r3
 return a + b - c
 }

 match res1 with
 | Ok x ->
 printfn "%s is: %d" (nameof res1) x
 | Error e ->
 printfn "%s is: %s" (nameof res1) e

Additionally, you can write multiple expressions inside interpo-
lated strings, producing a different value for the interpolated
expression based on an input to the function. This is a more of
a niche use of the feature, but because any interpolation can
be a valid F# expression, it allows for a great deal of flexibility.

Open Type Declarations
F# has always allowed you to open a namespace or a module
to expose its public constructs. Now, with F# 5, you can
open any type to expose static constructs like static meth-
ods, static fields, static properties, and so on. F# union and
records can also be opened. You can also open a generic
type at a specific type instantiation.

open type System.Math

let x = Min(1.0, 2.0)

module M =
 type DU = A | B | C

 let someOtherFunction x = x + 1

// Open only the type inside the module
open type M.DU

printfn "%A" A

Enhanced Computation Expressions
Computation expressions are a well-loved set of features
that allow library authors to write expressive code. For
those versed in category theory, they are also the formal
way to write Monadic and Monoidal computations. F# 5 ex-
tends computation expressions with two new features:

•	 Applicative forms for computation expressions via
let!..and! keywords

•	 Proper support for overloading Custom Operations

type InputKind =
 | Text of placeholder:string option
 | Password of placeholder: string option

type InputOptions =
 { Label: string option
 Kind: InputKind
 Validators: (string -> bool) array }

type InputBuilder() =
 member t.Yield(_) =
 { Label = None
 Kind = Text None
 Validators = [||] }

 [<CustomOperation("text")>]
 member this.Text(io,?placeholder) =
 { io with Kind = Text placeholder }

 [<CustomOperation("password")>]
 member this.Password(io,?placeholder) =
 { io with Kind = Password placeholder }

 [<CustomOperation("label")>]
 member this.Label(io,label) =
 { io with Label = Some label }

 [<CustomOperation("with_validators")>]
 member this.Validators(io, [<System.ParamArray>] validators) =
 { io with Validators = validators }

let input = InputBuilder()

let name =
 input {
 label "Name"
 text
 with_validators
 (String.IsNullOrWhiteSpace >> not)
 }

let email =
 input {
 label "Email"
 text "Your email"
 with_validators
 (String.IsNullOrWhiteSpace >> not)
 (fun s -> s.Contains "@")
 }

let password =
 input {
 label "Password"
 password "Must contains at least 6 characters, one number and one uppercase"
 with_validators
 (String.exists Char.IsUpper)
 (String.exists Char.IsDigit)
 (fun s -> s.Length >= 6)
 }

Listing 1: Computation Expressions can overload custom operations

46 codemag.com

 interface IA<int> with
 member x.Get() = 1
 interface IA<string> with
 member x.Get() = "hello"

let mc = MyClass()
let asInt = mc :> IA<int>
let asString = mc :> IA<string>

asInt.Get() // 1
asString.Get() // "hello"

More .NET Interop Improvements
.NET is an evolving platform, with new concepts introduced
every release and thus, more opportunities to interoperate.
Interfaces in .NET can now specify default implementations
for methods and properties. F# 5 lets you consume these
interfaces directly. Consider the following C# code:

using System;

namespace CSharpLibrary
{
 public interface MyDim
 {
 public int Z => 0;
 }
}

This interface can be consumed directly in F#:

open CSharp

// Create an object expression
// to implement the interface
let md = { new MyDim }
printfn $"DIM from C#: {md.Z}"

Another concept in .NET that’s getting some more attention
is nullable value types (formerly called Nullable Types). Ini-
tially created to better represent SQL data types, they are
also foundational for core data manipulation libraries like the
Data Frame abstraction in Microsoft.Data.Analysis. To make it
a little easier to interop with these libraries, you apply a new
type-directed rule for calling methods and assigning values
to properties that are a nullable value type. Consider the fol-
lowing sample using this package with a package reference
directive:

#r "nuget: Microsoft.Data.Analysis"

open System
open Microsoft.Data.Analysis

let dateTimes =
 "Datetimes"
 |> PrimitiveDataFrameColumn<DateTime>

// The following used to fail to compile
Let date = DateTime.Parse("2019/01/01")
dateTimes.Append(date)

// The previous is now equivalent to:
Let date = DateTime.Parse("2019/01/01")
Let data = Nullable<DateTime>(date)
dateTimes.Append(data)

Prior to F# 5, each of these and! keywords would have been
let! keywords. The and! keyword differs in that the expres-
sion that follows it must be 100% independent. It cannot
depend on the result of a previous let!-bound value. That
means code like the following fails to compile:

let res1: Result<int, string> =
 result {
 let! a = r1
 and! b = r2 a // try to pass 'a'
 and! c = r3 b // try to pass 'b'
 return a + b - c
 }

So, why would we make that code fail to compile? A few rea-
sons. First, it enforces computational independence at com-
pile-time. Second, it does buy a little performance at runtime
because it allows the compiler to build out the call graph stati-
cally. Third, because each computation is independent, they
can be executed in parallel by whatever environment they’re
running in. Lastly, if a computation fails, such as in the previ-
ous example where one may return an Error value instead of an
Ok value, the whole thing doesn’t short-circuit on that failure.
Applicative forms “gather” all resulting values and allow each
computation to run before finishing. If you were to replace each
and! with a let!, any that returned an Error short-circuits out
of the function. This differing behavior allows library authors
and users to choose the right behavior based on their scenario.

If this sounds like it’s a little concept-heavy, that’s fine!
Applicative computations are a bit of an advanced concept
from a library author’s point of view, but they’re a powerful
tool for abstraction. As a user of them, you don’t need to
know all the ins and outs of how they work; you can simply
know that each computation in a computation expression is
guaranteed to be run independently of the others.

Another enhancement to computation expressions is the ability
to properly support overloading for custom operations with the
same keyword name, support for optional arguments, and sup-
port for System.ParamArray arguments. A custom operation is
a way for a library author to specify a special keyword that repre-
sents their own kind of operation that can happen in a computa-
tion expression. This feature is used a lot in frameworks like Sat-
urn to define an expressive DSL for building Web apps. Starting
with F# 5, authors of components like Saturn can overload their
custom operations without any caveats, as shown in Listing 1.

Proper support for overloads in Custom operations are de-
veloped entirely by two F# open source contributors Diego
Esmerio and Ryan Riley.

With applicative forms for computation expressions and the
ability to overload custom operations, we’re excited to see
what F# library authors can do next.

Interface Implementations at Different Generic
Instantiations
Starting with F# 5, you can now implement the same interface
at different generic instantiations. This feature was developed
in partnership with Lukas Rieger, an F# open source contributor.

type IA<'T> =
 abstract member Get : unit -> 'T

type MyClass() =

F# 5: A New Era of Functional Programming with .NET

47codemag.com F# 5: A New Era of Functional Programming with .NET

Jupyter Notebooks

Jupyter Notebooks are an
interactive programming tool
that lets you mix markdown
and code in a document.
The code can be executed
in the notebook, often to
produce structured data or
charts that go hand-in-hand
with an explanation.

Jupyter Notebooks started
as IPython, an interactive
programming tool for Python
programs. It has grown
to support many different
languages and is now one
of the primary tools used
by data scientists in their
work. It’s also being used
as an educational tool.

Learn more at: https://jupyter.org/

goes to show how much better performance is when you’re
using F# 5 and the latest tooling for F# compared to just
a year ago.

Performance is something that is constantly worked on, and
improvements often come from our open source contribu-
tors. Some of them include Steffen Forkmann, Eugene Au-
duchinok, Chet Hust, Saul Rennison, Abel Braaksma, Isaac
Abraham, and more. Every release features amazing work
by open source contributorse’re eternally grateful for their
work.

The Continuing F# Journey and
How to Get Involved
The Microsoft F# team is very excited to release F# 5 this
year and we hope you’ll love it as much as we do. F# 5 rep-
resents the start of a new journey for us. Looking forward,
we’re going to continually improve interactive experiences
to make F# the best choice for notebooks and other interac-
tive tooling. We’re going to go deeper in language design
and continue to support libraries like DiffSharp to make F#
a compelling choice for machine learning. And as always,
we’re going to improve on F# compiler and tooling funda-
mentals and incorporate language features that everyone
can enjoy.

We’d love to see you come along for the ride, too. F# is en-
tirely open source, with language suggestions, language de-
sign, and core development all happening on GitHub. There
are some excellent contributors today and we’re seeking out
more contributors who want to have a stake in how the F#
language and tools evolve moving forward.

To get involved on a technical level, check out the following
links:

•	 F# language suggestions: https://github.com/fsharp/
fslang-suggestions

•	 F# language design: https://github.com/fsharp/
fslang-design

•	 F# development: https://github.com/dotnet/fsharp
•	 F# running on JavaScript: https://fable.io/
•	 F# tooling for Visual Studio Code: http://ionide.io/
•	 F# running on Web Assembly: https://fsbolero.io/

The F# Software Foundation also hosts a large slack com-
munity, in addition to being a central point for various sub-
communities to share information with one another. It’s
free to join, so head over to the website here to learn more:
http://foundation.fsharp.org/join

Want to have a say in where F# goes next and how it does it?
Come join us. We’d love to work together.

These examples used to require that you explicitly construct
a nullable value type with the Nullable type constructor as
the example shows.

Better Performance
The Microsoft team has spent the past year improving F#
compiler performance both in terms of throughput and
tooling performance in IDEs like Visual Studio. These per-
formance improvements have rolled out gradually rather
than as part of one big release. The sum of this work that
culminates in F# 5 can make a difference for everyday F#
programming. As an example, I’ve compiled the same code-
base—the core project in FSharpLus, a project that notori-
ously stresses the F# compiler—three times. Once for F# 5,
once for the latest F# 4.7 with .NET Core, and once for the
latest F# 4.5 in .NET Core, as shown in Table 1.

The results in Table 1 come from running dotnet build /
clp:PerformanceSunnary from the command-line and look-
ing at the total time spent in the Fsc task, which is the F#
compiler. Results might vary on your computer depending
on things like process priority or background work, but you
should see roughly the same decreases in compile times.

IDE performance is typically influenced by memory usage
because IDEs, like Visual Studio, host a compiler within
a language service as a long-lived process. As with other
server processes, the less memory you use up, the less GC
time is spent cleaning up old memory and the more time
can be spent processing useful information. We focused on
two major areas:

•	 Making use of memory-mapped files to back metadata
read from the compiler

•	 Re-architecting operations that find symbols across a
solution, like Find All References and Rename

The result is significantly less memory usage for larger solu-
tions when using IDE features. Figure 5 shows an example
of memory usage when running Find References on the
string type in FAKE, a very large open source codebase, prior
to the changes we made.

This operation also takes one minute and 11 seconds to
complete when run for the first time.

With F# 5 and the updated F# tools for Visual Studio, the
same operation takes 43 seconds to complete and uses over
500MB less memory, as shown in Figure 6.

The example with results shown in Figure 5 and Figure 6 is
extreme, since most developers aren’t looking for usages
of a base type like string in a very large codebase, but it

Figure 5: Peak memory usage running Find References on
string in FAKE.sln in VS 16.5

Figure 6: Peak memory usage running Find References on
string in FAKE.sln in VS 16.6 and higher

F# and .NET SDK version Time to compile (in seconds)
F# 5 and .NET 5 SDK 49.23 seconds

F# 4.7 and .NET Core 3.1 SDK 68.2 seconds

F# 4.5 and .NET Core 2.1 SDK 100.7 seconds

Table 1: Compile times for FSharpPlus.dll across recent F# versions

� Phillip Carter
�

48 codemag.com

ONLINE QUICK ID 2010081

Xamarin.Forms 5: Dual Screens, Dark Modes, Designing with Shapes, and More

David Ortinau
david.ortinau@microsoft.com
twitter.com/davidortinau

David is a Principal Program
Manager on the .NET team at
Microsoft, focused on Xama-
rin.Forms. A .NET developer
since 2002, and versed in a
range of programming lan-
guages, David has developed
Web, environmental, and
mobile experiences for a wide
variety of industries. After
several successes with tech
startups and running his own
software company, David
joined Microsoft to follow his
passion: crafting tools that
help developers create better
app experiences. When not
at a computer or with his
family, David is exploring
trails through the woods.

Xamarin.Forms 5:
Dual Screens, Dark Modes,
Designing with Shapes, and More
Beginning in early 2020, the Xamarin team started collaborating with the Surface and Windows developer teams to think about
a new dual screen device that we were about to launch at Microsoft, and which you have no doubt heard about by now, the
Surface Duo. This new device, which also makes phone calls, poses some unique opportunities to create new, productive

mobile experiences. Our engineering team leapt at the
chance to showcase how powerful Xamarin development can
be for Android and cross-platform developers alike. How do
you display controls on one screen which then spans to an-
other screen? Where do you put navigation? Should content
flow below the hinge, or space evenly? So many questions...

At our Developer Day launch event in early February, we deliv-
ered a fully functional native application built with Xamarin.
Forms. The most remarkable thing about this application is that
no core modifications to Xamarin.Forms were needed in order to
achieve this. It’s a strong validation to the design of the product.
You can explore the source at https://aka.ms/app-xamarintv.

During six years in the market, Xamarin.Forms has spanned six
versions of iOS and Android, run on Windows Phones, tablets,
and desktops from WPF to UWP and now WinUI, and even been
extended by contributors to macOS, Linux, and Samsung’s Ti-
zen platform. Thousands of companies of all sizes are using
Xamarin.Forms to power mobile and desktop apps used in the
consumer market as well as suites of line-of-business needs.

For the Surface Duo, we added a TwoPaneView layout (based
on work by our Windows team), and a whole bunch of new
state triggers to help you adapt to new screen sizes, orienta-
tions, and postures. Xamarin.Forms 5 also introduces drag-
and-drop gestures. What we’ve done in Xamarin.Forms 5 to
make your experience developing for dual-screens more de-
lightful is just the beginning of what you can do with this
release. Xamarin.Forms 5 contains the simplicity and produc-
tivity we’ve added based on your constant feedback to make
it easier and faster for you to deliver beautiful cross-platform
applications that share more code than ever before.

To give you the whirlwind tour of the development power
you’ll experience using Xamarin.Forms 5, I’ll run you through
the Fly Me sample app I built in the hopes that one day soon
I’ll again be able to board a plane and travel the globe. Xa-
marin.Forms 5 uses Shell to simplify the top-level things
that every app needs. It also adds new design features such
as shapes and brushes; combined with control templates;
these new features speed up your UI development.

Simplicity Is Primary
Simplicity starts at the container level of your application,
commonly referred to as the app shell. In Xamarin.Forms 5,
every app template starts with a simple Shell in a file named
AppShell.xaml. This is where you describe the visible navigation

structure for your application, whether using a flyout menu, tab
menus, or any combination, as you can see in Figure 2.

Login and Flyout Navigation
Fly Me uses a flyout menu that flies out from the side of the UI
over the app content. In Figure 2 you can see a header, flyout
items to navigate to pages throughout the app, and a logout
menu item. The code begins simply with the Shell container.

<Shell
 xmlns="…"
 xmlns:x="…"
 xmlns:views="clr-namespace:FlyMe.Views"
 xmlns:vm="clr-namespace:FlyMe.ViewModels"
 FlyoutHeaderTemplate="{DataTemplate views:HeaderView}"
 x:Class="FlyMe.AppShell">

 <Shell.BindingContext>
 <vm:AppViewModel/>
 </Shell.BindingContext>
</Shell>

To begin populating the Shell, you add nodes for each item
you wish to appear in the flyout. Each item can take a vari-
ety of properties including a named route for URI navigation,
and the title and icon you wish to display. The content, of
type ContentPage, that’s displayed when the user selects the
item, is contained in the ShellContent. The DataTemplate is
used to make sure that the content is only created when you
need it, thus keeping your application load time minimal.

<FlyoutItem
 Route="home"
 Title="My Flights"
 Icon="{StaticResource IconTabMyFlights}">
 <ShellContent
 ContentTemplate="{DataTemplate views:MyFlightsPage}" />
</FlyoutItem>

<FlyoutItem
 Title="Today"
 Icon="{StaticResource IconTabToday}">
 <ShellContent
 ContentTemplate="{DataTemplate views:TodayPage}" />
</FlyoutItem>

If all you have are a series of FlyoutItems, the application will
load the first ShellContent and display the flyout menu icon in
the upper left. In this application, you’ll first display a log in

Figure 1: Xamarin.Forms was
featured at the Surface Duo
SDK launch event.

49codemag.com

What is Xamarin.Forms?

Xamarin.Forms is a cross-
platform toolkit for building
native mobile and desktop
apps with .NET and Visual
Studio. You can use XAML
and C# to declare your UI,
and common architectural
patterns like Model-View-
ViewModel and Reactive UI.

Using these style classes, you can style the layout for each
flyout item and use VisualStateManager with the new Tar-
getName property to change the color of the label based on
selection, as seen in Listing 1.

Before I finish discussing Shell, one last styling challenge
to conquer is changing the color and opacity of the flyout’s
backdrop. The backdrop is the layer that sits behind the fly-
out and in front of the content page. The new FlyoutBack-
drop takes a color or brush and is applied to any ShellItem
via an attached property.

<Style
 TargetType="ShellItem"
 ApplyToDerivedTypes="true">
 <Setter Property="Shell.FlyoutBackdrop"
 Value="#CC333333"/>
</Style>

Limitless Design
Xamarin.Forms 5 introduces several new design-focused
capabilities, including embedded fonts, font image sup-
port, shapes and paths, and brushes. These enhancements
combine to bring any UI design within easy reach by using
simple APIs shipping “in the box.”

Embedded Fonts and Font Image Source
Adding fonts is now easier than ever, whether for beautify-
ing your text or for using font icon glyphs. Add any mobile-
supported font file such as TTF or OTF to your Xamarin.Forms
.NET Standard Library and set the build type to “Embedded
Resource.” You can then add an assembly tag that tells the

page, and make sure that the rest of the application isn’t ac-
cessible until the user authenticates. In order to do this, place
a ShellItem before the FlyoutItems in the AppShell.xaml.

<ShellItem
 Route="login"
 IsVisible="{Binding IsNotLoggedIn}">
 <ShellContent
 ContentTemplate="{DataTemplate views:LoginPage}" />
</ShellItem>

<FlyoutItem
 Route="home"
 Title="My Flights"
 Icon="{StaticResource IconTabMyFlights}">
 <ShellContent
 ContentTemplate="{DataTemplate views:MyFlightsPage}" />
</FlyoutItem>

In XAML, the order of items matters, and you use that to your
benefit here by making sure the ShellItem for the LoginPage
appears before the FlyoutItem. This tells Shell to display just
the first and not the second item. The same pattern is useful for
displaying onboarding sequences and the like before the rest of
your application is displayed. If you’ve used XAML before, this
mixing of visual and non-visual elements may seem a bit odd.
The AppShell is a unique use of XAML that both expresses the
content of the application and some UI expectations (that you
want Shell to render a flyout or tabs or both). A ContentPage,
by comparison, explicitly describes UI elements.

In order to hide the log in page and let Shell proceed with
displaying the rest of the application, you use the new
ShellItem.IsVisible property. Any item in your Shell that
should not be navigable may be protected by setting that
property to false.

Styling Your Flyout
You could create renderers to completely replace all the con-
tent of the flyout, but that tends to be a lot more code than
you really need. Xamarin.Forms 5 simplifies adding content
to the header, styling the flyout item templates, and even
styling the backdrop that appears behind the flyout but over
the page. You can instead add your own header content us-
ing the Shell’s FlyoutHeaderTemplate property, which in
this example, is simply a grid and an image:

<Grid
 RowDefinitions="66,120"
 BackgroundColor="#5561F9">
 <Image
 Grid.RowSpan="2"
 VerticalOptions="Center"
 HorizontalOptions="Center"
 Source="{FontImage
 FontFamily=FontAwesome,
 Glyph=,
 Color=GhostWhite,
 Size=32}"/>
</Grid>

Each FlyoutItem has a title and icon. When you wish to style
them further, changing the font size, colors, and selected
states, you can now use new style classes to achieve the
look you desire. Three classes and two element names are
now available, as shown in Table 1.

Figure 2: Shell flyout menu

Table 1: The available classes and elements

Flyout Item Part Style Class Name Element Name
Text FlyoutItemLabelStyle FlyoutItemLabel
Icon FlyoutItemIconStyle FlyoutItemIcon
Container FlyoutItemLayoutStyle

Figure 3: Log in with shapes, paths, and clipping

Xamarin.Forms 5: Dual Screens, Dark Modes, Designing with Shapes, and More

50 codemag.comXamarin.Forms 5: Dual Screens, Dark Modes, Designing with Shapes, and More

build tasks to make that font available by name or alias to
your app, no matter which platform it’s running on.

Fly Me uses Font Awesome, a popular free font with useful
icons. In any *.cs file in the project, you can add the as-
sembly attribute ExportFont. Although you could use the
filename to refer to the font, it’s helpful to provide an alias
to declare your preferred name.

[assembly: ExportFont("fa-solid-900.ttf",
 Alias = "FontAwesome")]

To then display icons using the embedded font, assign your
FontImageSource to any control that accepts an image
source. You need only provide the font family, the glyph to
be displayed, and styling information such as color and size.
The flyout header demonstrates this using the handy FontI-
mage markup extension.

Shapes, Paths, and Clipping
With shapes and paths, you have a whole new way to achieve
your designs in Xamarin.Forms. Paths are a series of vector
points and lines that can describe complex shapes. Due to
their complexity, you won’t really want to type the path data
by hand. From almost any design tool (I like Figma) you can
copy path data for a vector shape and copy it right into your
code. In Figure 3 you can see a different style of login screen
that uses an interesting shape for the form background.

<Path
 Fill="#333333"
 Data="M251,0 C266.463973,-2.84068575e-15 279,12.536027
279,28 L279,276 C279,291.463973 266.463973,304 251,304
L214.607,304 L214.629319,304.009394 L202.570739,304.356889
C196.091582,304.5436 190.154631,308.020457
186.821897,313.579883 L186.821897,313.579883
L183.402481,319.283905 C177.100406,337.175023
160.04792,350 140,350 C119.890172,350 102.794306,337.095694
96.5412691,319.115947 L96.5273695,319.126964
L92.8752676,313.28194 C89.5084023,307.893423
83.6708508,304.544546 77.3197008,304.358047 L65.133,304
L28,304 C12.536027,304 1.8937905e-15,291.463973 0,276 L0,28
C-1.8937905e-15,12.536027 12.536027,2.84068575e-15 28,0
L251,0 Z"
/>

Be glad that you don’t have to type that data string your-
self, though with some practice you’ll get pretty good un-
derstanding what’s going on. SVG images also commonly
use path data, and you can use your favorite text editor to
read and copy the data string.

You can also draw primitive shapes like ellipse, line, poly-
gon, polyline, and rectangle. Each of these shapes support
common styling properties such as aspect, fill, and a variety
of stroke options.

<StackLayout
 Orientation="Horizontal"
 HorizontalOptions="Center">
 <Ellipse Fill="#FF9900" />
 <Line />
 <Ellipse />
 <Line />
 <Ellipse />
</StackLayout>

<Style
 TargetType="Layout"
 ApplyToDerivedTypes="True"
 Class="FlyoutItemLayoutStyle">
 <Setter
 Property="HeightRequest"
 Value="44" />
 <Setter
 TargetName="FlyoutItemLabel"
 Property="Label.FontSize"
 Value="16" />
 <Setter
 TargetName="FlyoutItemLabel"
 Property="Label.TextColor"
 Value="{StaticResource TextOnLightColor}" />
 <Setter
 TargetName="FlyoutItemLabel"
 Property="Label.HeightRequest"
 Value="44" />
 <Setter
 Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup
 x:Name="CommonStates">
 <VisualState
 x:Name="Normal">
 <VisualState.Setters>
 </VisualState.Setters>
 </VisualState>
 <VisualState
 x:Name="Selected">
 <VisualState.Setters>
 <Setter
 Property="BackgroundColor"
 Value="#FF3300" />
 <Setter
 TargetName="FlyoutItemLabel"
 Property="Label.TextColor"
 Value="White" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

Listing 1: Styling the layout of the flyout items

Figure 4: Appearance modes support light and dark

51codemag.com Xamarin.Forms 5: Dual Screens, Dark Modes, Designing with Shapes, and More

Now when appearance mode changes on the devices for any rea-
son, the application updates at runtime. How can you then opt-
out of this behavior and allow the user to set their own appear-
ance mode preference? Xamarin.Forms 5 provides App.Current.
UserAppTheme that you can set from anywhere in the applica-
tion. You can choose from OSAppTheme.Dark, OSAppTheme.
Light, or OSAppTheme.Unspecified. Choosing Unspecified
gives control back to the platform to trigger appearing changes.

App.Current.UserAppTheme = OSAppTheme.Dark;

New Control Customizations
Windows desktop platforms have long enjoyed “lookless
controls” that allow you to skin parts of a control by sup-
plying a control template. You may not realize this, but Xa-
marin.Forms has supported control templates since version
2! In Figure 5, you can see the default RadioButton control
without any styling applied. As you would expect the XAML
is plain.

<StackLayout
RadioButtonGroup.GroupName="SimpleRadios"
Orientation="Horizontal">
<RadioButton Content="Day"/>
<RadioButton Content="Week"/>
<RadioButton Content="Month"/>

</StackLayout>

The main difference between control templates in Xamarin.
Forms versus other platforms is that, because the controls
have adhered closely to the native experience, we didn’t
provide the ability to supply a template that works seam-
lessly with core controls...until now. In Xamarin.Forms 5,
we’re introducing support for control templating on the new
RadioButton control.

You can apply a control template, such as Listing 2, directly
to the RadioButton.ControlTemplate property, or better
yet by setting a style. And because RadioButton takes any
content, you can provide layout and controls that will be
applied to the ContentPresenter in the template. Check out
how much better this looks now in Figure 6!

One of the most powerful uses of shapes is the ability to clip
other controls, also known as “masking.” A square profile
image can become a circle by applying an EllipseGeometry
to the Image.Clip property. The same can be done with a
path or any other shape, and clipping can be applied to any
control or layout in Xamarin.Forms!

<Image
 HorizontalOptions="Center"
 VerticalOptions="Center"
 WidthRequest="150"
 HeightRequest="150"
 Source="profile.png">
 <Image.Clip>
 <EllipseGeometry
 Center="75,75"
 RadiusX="75"
 RadiusY="75"/>
 </Image.Clip>
</Image>

Dark Mode
Modern operating systems all now have some form of sup-
port for light and dark modes, like those seen in Figure 4.
These modes may be triggered by ambient light sensors,
time of day, or by user preference. You can make your colors
and styles aware of appearance modes using a new bind-
ing extension appropriately called AppThemeBinding. If
you use the default colors provided by the platform, and
you make no customization, and then your application uses
the platform default colors for light and dark appearance
modes. To take more creative control, update your applica-
tion styles and set the colors directly.

<Style
 TargetType="Page"
 ApplyToDerivedTypes="True">
 <Setter
 Property="BackgroundColor"
 Value="{AppThemeBinding Dark=#222222,
 Light=#f1f1f1}" />
</Style>

<ControlTemplate x:Key="CalendarRadioTemplate">
 <Frame HasShadow="False" HeightRequest="100" WidthRequest="100"
 HorizontalOptions="Start" VerticalOptions="Start"
 Padding="0">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 <VisualState.Setters>
 <Setter Property="BackgroundColor"
 Value="#f3f2f1"/>
 <Setter Property="BorderColor"
 Value="DarkBlue"/>
 <Setter Property="Grid.IsVisible"
 TargetName="RadioIcon"
 Value="False"/>
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Checked">
 <VisualState.Setters>
 <Setter Property="BorderColor"
 Value="DarkBlue"/>
 <Setter Property="Grid.IsVisible"

 TargetName="RadioIcon"
 Value="False"/>
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </VisualStateManager.VisualStateGroups>
 <Grid Margin="4" WidthRequest="100">
 <Grid x:Name="RadioIcon" WidthRequest="18"
 HeightRequest="18" HorizontalOptions="End"
 VerticalOptions="Start">
 <Ellipse Stroke="DarkBlue" WidthRequest="16"
 HeightRequest="16" StrokeThickness="0.5"
 VerticalOptions="Center"
 HorizontalOptions="Center" Fill="White" />
 <Ellipse WidthRequest="8" HeightRequest="8"
 Fill="DarkBlue" VerticalOptions="Center"
 HorizontalOptions="Center" />
 </Grid>
 <ContentPresenter></ContentPresenter>
 </Grid>
 </Frame>
</ControlTemplate>

Listing 2: Control template for a RadioButton

Faster Development
in Visual Studio

The tooling experience
continues to improve for
Xamarin.Forms developers.
Install the very latest release
of Visual Studio 2019 to enjoy
XAML Hot Reload for Android,
iOS, macOS, and UWP, a new
control toolbox and property
panel with help for bindings
and color selection, and a live
visual tree inspector when
debugging. For Windows
developers, you can use Hot
Restart to develop directly to
your iOS device.

52 codemag.com

You just need to assign a custom template to the control’s
template property; described in C# or XAML, it doesn’t matter.

Supplying a control template is a very powerful and conve-
nient way to fully customize a control. When you do this, be
aware that the control no longer uses the native platform
control but only the cross-platform features. In most cases,
this flexibility and control far outweighs that trade-off. For
special cases, you can always adopt the custom renderer
strategy.

What’s Next
Xamarin.Forms 5 is a monumental release, and it wouldn’t
be that without amazing work from our many contributors.
In this release, as compared to the last, contributions have
increased nearly 34%. In 2020, Xamarin.Forms has twice set
new high marks for usage, and you’ve reported to us the
highest satisfaction ratings the platform has ever seen. This
is really a celebration of you and your continued contribu-
tions and collaboration. Thank you!

Much of Xamarin.Forms 5 has been in preview for several
months while we worked through your feedback to make it
ready for a stable release. This article showcases only some
the new features at your disposal. See the documentation at
https://docs.microsoft.com/xamarin/whats-new/ for details
about many more features, such as those shown in Table 2.

Our .NET team is already working on .NET 6 and the next
release that will focus on surmounting significant chal-
lenges in app performance, improved desktop support, and
advanced control customizations. It’s encouraging that ev-
erything you invest today in .NET and Xamarin.Forms 5 has
a future path for many years to come within .NET.

To get started today with Xamarin.Forms 5, you can quickly
update your existing projects via your favorite NuGet pack-
age manager. The new project templates in Visual Studio will
also be updated to use Xamarin.Forms 5 by default, so you
get the very best experience. Continue to send us feedback
and let us know how we’re doing. Happy coding!

<RadioButton
 ControlTemplate="{StaticResource
 CalendarRadioTemplate}">
 <RadioButton.Content>
 <StackLayout
 HorizontalOptions="Center"
 VerticalOptions="Center">
 <Image Source="{FontImage
 FontFamily=FontAwesome,
 Glyph=,
 Color=#323130, Size=32}"/>
 <Label Text="Day" TextColor="#323130"/>
 </StackLayout>
 </RadioButton.Content>
</RadioButton>

Although this is traditionally something you’d only think of
doing in XAML, and I know that many of you do just that,
control templates are equally powerful directly from C#.

Xamarin.Forms 5: Dual Screens, Dark Modes, Designing with Shapes, and More

Figure 5: Basic RadioButton
controls

Figure 6: RadioButtons with
content and control template

Table 2: There are many more features to explore.

In Xamarin.Forms 5 you’ll also find:
Accessibility - TabIndex FontImageSource RefreshView
AdaptiveTrigger GIF support Shapes & Paths
AndroidX Grid Row/Col simplificiation Shell Modals
AppTheme (Dark Mode) HTML Label SourceLink
Brushes - gradient and solid Image loading and error source SpanModeStateTrigger
Bug fixes IndicatorView StateTrigger
CarouselView Kerning / Character Spacing SwipeView
CheckBox Label padding Switch VisualStates
Clipping Label Transform Transparent background modals
CollectionView Map Shapes TwoPaneView
CompareStateTrigger MultiBindings Various markup extensions
DeviceStateTrigger MultiTriggers Various Platform Specifics
Drag & Drop gestures Native enhancements to Maps and WebView VisualStateManager Target
DualScreen SDK OrientationStateTrigger WebView Cookies

� David Ortinau
�

53codemag.com

ONLINE QUICK ID 2010091

.NET 5.0 Runtime Highlights

.NET 5.0 Runtime Highlights
The .NET runtime is the foundation of the .NET platform and is therefore the source of many improvements and a key component
of many new features and enabled scenarios. This is even more true since Microsoft started the .NET Core project. Many of the
performance improvements and key changes we made to optimize scenarios (like Docker containers) have come from the runtime.

Richard Lander
rlander@microsoft.com

Richard Lander is a Principal
Program Manager on the
.NET team at Microsoft.
He works on making .NET
work great in the cloud,
in memory-limited Docker
containers, and on ARM
hardware like the Raspberry
Pi. He’s part of the design
team that defines new
.NET runtime capabilities
and features. Richard also
focuses on making the
.NET open source project
a safe and inclusive place
for people to learn, do
interesting projects, and
develop their skills. He also
writes extensively for the
.NET blog. Richard reported
for work at Microsoft in
2000, having just gradu-
ated from the University
of Waterloo (Canada) with
an Honors English degree,
with intensive study areas
in Computer Science and
SGML/XML markup lan-
guages. In his spare time,
he swims, bikes, and runs,
and he enjoys using power
tools. He grew up in Canada
and New Zealand.

With each new .NET version, the .NET team chooses which
new features and scenarios to enable. We listen to feedback
from users, with most of it coming from GitHub issues. We
also look at where the industry is headed next and try to
predict the new ways that developers will want to use .NET.
The features I want to tell you about are a direct outcome of
those observations and predictions.

I’m going to tell you about two big .NET 5.0 projects: single
file apps, and ARM64. There are many other improvements
in .NET 5.0 that there simply isn’t room to cover here, like
P95 performance improvements, new diagnostic capabilities
(like dotnet-monitor), and advances in native interop (like
function pointers). If you’re mostly interested in perfor-
mance improvements, please check out the .NET 5.0 perfor-
mance post at https://aka.ms/dotnet5-performance. Take
a look at the .NET blog (https://aka.ms/dotnet5) to learn
about the full set of improvements in this release and why
you should consider adopting .NET 5.0 for your next project.

Single File Apps
Single file apps significantly expand .NET application de-
ployment options with .NET 5.0. They enable you to create
standalone, true xcopy, single-file executables. This capa-
bility is appealing for command-line tools, client applica-
tions, and Web applications. There’s something truly simpli-
fying and productive about launching a single file app from
a network share or a USB drive, for example, and having it
reliably just run on any computer without requiring instal-
lation pre-steps.

Single file apps are supported for all application types (ASP.
NET Core, Windows Forms, etc.). There are some differences,
depending on the operating system or application type.
Those will be covered in the following sections.

All of This Has Happened Before
Many people have correctly observed and noted that .NET
Core apps are not as simple as .NET Framework ones. For the
longest time, .NET Framework has been part of Windows and
.NET Framework executables have been very small single
files. That’s been really nice. You could put a console or Win-
dows Forms app on a network share and expect it run. This
has been possible because .NET Framework is integrated
into Windows. The Windows Loader understands .NET ex-
ecutable files (like myapp.exe), and then hands execution
off to the .NET Framework to take over.

When Microsoft built .NET Core, we had to start from scratch
with many aspects of the platform, including how apps were
launched. A driving goal was providing the same application
behavior on all operating systems. We also didn’t want to re-
quire operating system updates to change the behavior (like
needing to run Windows Update to get a .NET Core app work-
ing). This led us to not replicate the approach we used for
.NET Framework, even though we (very) briefly considered it.

We needed to build a native launcher for discovering and
loading the runtime for each supported operating system.
That’s how we ended up with multiple files: at least one for
the launcher and another for the app. We’re not alone; mul-
tiple other platforms have this too. For example, Java and
Node.js apps have launchers.

Back to Basics
Over time, we heard more and more feedback that people
wanted a single file application solution. Although it’s com-
mon for language platforms to require launchers, other
platforms like C++, Rust, and Go don’t require them, and
they offer single file as a default or an option you can use.

You wouldn’t necessarily think of single file apps as a run-
time feature. It’s a publish option, right? In actuality, the
work to enable single file apps was done almost exclusively
in the runtime. There are two primary outcomes we needed
to enable: include the runtime within the single file and load
managed assemblies from within the single file. In short, we
needed to adapt the runtime to being embedded in a single
file configuration. It’s sort of a new hosting model.

As I said, we use a launcher for .NET Core apps. It’s respon-
sible for being a native executable, discovering the runtime,
and then loading the runtime and the managed app. The
most obvious solution was to statically link the runtime into
the launcher. That’s what we did, starting with Linux for the
.NET 5.0 release. We call the result the “super host.” Native
code runtime and library components are linked into the
super host. Linux names are listed here (Windows names
in brackets):

•	 libcoreclr.so (coreclr.dll)
•	 libclrjit.so (clrjit.dll)
•	 libmscordaccore.so (mscordaccore.dll)
•	 Library native components (for example, libSystem.

IO.Compression.Native.so)

We focused on Linux for the single file experience with
.NET 5.0. Some parts of the experience are only available
on Linux, and other parts are also supported on Windows
and macOS. These differences in capability will be called out
throughout this document. There are critical challenges that
we ran into building this feature. The combination of these
issues led us to enable the broadest set of experiences with
Linux, and then to wait to spend more time improving the
other operating systems in upcoming releases. We also have
work left to do to improve the Linux experience.

The first problem relates to the structure of the single file.
The single file bundler copies managed assemblies to the
end of the host (apphost or superhost) to create your app,
a bit like adding ice cream to a cone. These assemblies can
contain ready-to-run native code. Windows and macOS place
extra requirements on executing native code that has been
bundled in this way. We haven’t done the work yet to satisfy

54 codemag.com.NET 5.0 Runtime Highlights

•	 On Windows and macOS, native runtime binaries are
copied beside your (not quite) single file app, by de-
fault. For WPF apps, you’ll see additional WPF native
binaries copied. You can opt to embed native runtime
binaries instead, however, they’ll be unpacked to a
temporary directory on application launch.

Because I focused on Linux for this scenario, I’ll demon-
strate this experience on Linux and then show which parts
work on Windows and macOS.

Let’s start with the Linux experience. I’ll do this in a Docker
container, which may be easier for you to replicate. I’ll start
by building an app as framework-dependent (the default),
then as a self-contained single file app, and then as an as-
sembly-trimmed self-contained single file app. A lot of tool
output text has been removed for brevity.

r@thundera ~ % docker pull mcr.microsoft.com/dotnet/sdk:5.0
r@thundera ~ % docker run --rm -it mcr.microsoft.com/dotnet/sdk:5.0
root@a255:/# dotnet new console -o app
"Console Application" was created
root@a255:/# cd app
root@a255:/app# dotnet build -c release
root@a255:/app# time ./bin/release/net5.0/app
Hello World!

real	 0m0.040s
root@a255:/app# ls -s bin/release/net5.0/
total 232
200 app	 8 app.dll	
4 app.runtimeconfig.dev.json
4 app.deps.json 12 app.pdb	
4 app.runtimeconfig.json
root@a255:/app# dotnet publish -c release
-r linux-x64 --self-contained true /p:PublishSingleFile=true
root@a255:/app# time ./bin/release/net5.0/
linux-x64/publish/app
Hello World!

real	 0m0.039s
root@a255:/app# ls -s bin/release/net5.0/
linux-x64/publish
total 65848
65836 app 12 app.pdb
root@a255:/app# dotnet publish -c release
-r linux-x64 --self-contained true /p:PublishSingleFile=true
/p:PublishTrimmed=true /p:PublishReadyToRun=true
root@a255:/app# time ./bin/release/net5.0/
linux-x64/publish/app
Hello World!

real	 0m0.040s
root@a255:/app# ls -s bin/release/net5.0/
linux-x64/publish
total 27820
27808 app 12 app.pdb
root@a255:/app# exit
r@thundera ~ %

This set of dotnet commands and the extra information
shown for size and startup performance demonstrates how
to publish single file apps and what you can expect from
them. You’ll see that apps using the assembly trimmer (via
the PublishTrimmed property) are much smaller. You will
also see PublishReadyToRun used. It isn’t strictly neces-

these requirements. Continuing the analogy, these OSes re-
quire chocolate chips in the ice cream, but we only had time
to get the basic vanilla and chocolate flavors ready. Fortu-
nately, the runtime can work around this issue by copying
and remapping assemblies in-memory. The workaround has
a performance cost and applies to both self-contained and
framework-dependent single file apps.

The second problem relates to diagnostics. We still need to teach
the Visual Studio debugger to attach to and debug this execut-
able type. This applies to other tools that use the diagnostics
APIs, too. This problem only applies to single file apps that use
the superhost, which is only Linux for .NET 5.0. You’ll need to use
LLDB to debug self-contained single file applications on Linux.

The last problem applies to digital signing on macOS. The
macOS signing tool won’t sign a file that’s bundled (at least
in the way we’ve approached bundling), the macOS app
store won’t accept .NET single file apps as a result. It also
applies to macOS environments that require the “hardened
runtime” mode, which is the case with the upcoming Apple
Silicon computers. This restriction applies to both self-con-
tained and framework-dependent single file apps.

We’ve significantly improved single file apps with .NET 5.0,
but as you can likely tell, this release is just a stopping point
on the .NET single file journey. We’ll continue to improve
single file apps in the next release, based on your feedback.

Now that we’re through the theory, I’d like to show you the
new experience. If you’ve been following .NET Core, you’ll
know that there are two deployment options: self-contained
and framework dependent. Those same two options equally
apply to single file apps. That’s good. There are no new con-
cepts to learn. Let’s take a look.

Self-Contained Single File Apps
Self-contained single file apps include your app and a copy
of the .NET runtime in one executable binary. You could
launch one of these apps from a DVD or a USB stick and it
would work. They don’t rely on installing the .NET runtime
ahead of time. In fact, self-contained apps (single file or
otherwise) won’t use a globally installed .NET runtime, even
if it’s there. Self-contained single file apps have a certain
minimum size (by virtue of containing the runtime) and
grow as you add dependencies on NuGet libraries. You can
use the assembly trimmer to reduce the size of the binary.

Let’s double check that we’re on the same page. A self-con-
tained single file app includes the following content:

•	 Native executable launcher
•	 .NET runtime
•	 .NET libraries
•	 Your app + dependencies (PackageRef and ProjectRef)

What you can expect:

•	 The apps will be larger because they’re self-contained,
so will take longer to download/copy.

•	 Startup is fast as it’s unaffected by file size.
•	 Debugging is limited on Linux. You’ll need to use LLDB.
•	 The native launcher is native code, so the app will

only work in one environment (like Linux x64, Linux
ARM64, or Windows x64). You need to publish for each
environment you want to support.

55codemag.com .NET 5.0 Runtime Highlights

The command to launch the app: ./bin/release/net5.0/
linux-x64/publish/webapi.

The ASP.NET Core example is very similar to the console app.
The big difference is that the size increases due to ready-
to-run compilation is more apparent. Again, you should
test your application in various configurations to see what’s
best.

If you publish a self-contained single-file app with contain-
ers, you should base it on a runtime-deps image. You don’t
need to use an aspnet image, because ASP.NET Core is already
contained in the single-file app. See image URLs below.

•	 https://hub.docker.com/_/microsoft-dotnet-run-
time-deps/

•	 https://hub.docker.com/_/microsoft-dotnet-aspnet

I’ll now show you the experience on macOS, which matches
the experience on Windows. As stated earlier, we didn’t
build a superhost for macOS or Windows in .NET 5.0. That
means that the native runtime binaries are present beside
the (not quite) single file. That’s not the desired behavior,
but it’s what we have for .NET 5.0. We added a feature to
embed these files and then unpack them upon application
launch: IncludeNativeLibrariesForSelfExtract. That model
isn’t perfect. For example, the files can get deleted from
the temp location (or are never deleted). This feature isn’t
generally recommended, but it may be the right choice in
some cases.

r@thundera ~ % dotnet new console -o app
"Console Application" was created
r@thundera ~ % cd app
r@thundera app % dotnet publish -c release
-r osx-x64 --self-contained true
/p:PublishSingleFile=true /p:PublishTrimmed=true
/p:PublishReadyToRun=true
r@thundera app % ls -s bin/release/net5.0/
osx-x64/publish
total 47856

sary but is available to make applications start faster. It
will result in larger binaries. We recommend testing these
features to see if they work well for your application and
provide a benefit. Assembly trimming is known to break WPF
apps, for example, by over-trimming. Check out https://aka.
ms/dotnet5-assembly-trimming for more information on as-
sembly trimming.

The following example shows how to set these same proper-
ties in a project file.

<Project
 Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net5.0</TargetFramework>
 <!-- Enable single file -->
 <PublishSingleFile>true</PublishSingleFile>
 <!-- Self-contained or
 framework-dependent -->
 <SelfContained>true</SelfContained>
 <!-- The OS and CPU type you are targeting -->
 <RuntimeIdentifier>linux-x64</RuntimeIdentifier>
 <!-- Enable assembly trimming – for
 self-contained apps -->
 <PublishTrimmed>true</PublishTrimmed>
 <!-- Enable AOT compilation -->
 <PublishReadyToRun>true</PublishReadyToRun>
 </PropertyGroup>

</Project>

The “Hello world” console app example demonstrates the
baseline experience. Let’s take a quick look at an ASP.NET
Core Web service. You’ll see that it’s very similar. This time,
I’ll show the file sizes using ready-to-run and not.

r@thundera ~ % docker run --rm -it mcr.microsoft.com/dotnet/sdk:5.0
root@71c:/# dotnet new webapi -o webapi
"ASP.NET Core Web API" was created
root@71c:/# cd webapi/
root@71c:/webapi# dotnet publish -c release
-r linux-x64 --self-contained true /p:PublishSingleFile=true
/p:PublishTrimmed=true /p:PublishReadyToRun=true
root@71c:/webapi# ls -s bin/release/net5.0/
linux-x64/publish/
total 75508
 4 appsettings.Development.json 4 web.config
20 webapi.pdb 4 appsettings.json		
75476 webapi
root@71c:/webapi# dotnet publish -c release
-r linux-x64 --self-contained true /p:PublishSingleFile=true
/p:PublishTrimmed=true
root@71c:/webapi# ls -s bin/release/net5.0/
linux-x64/publish/
total 44056
4 appsettings.Development.json 4 web.config
20 webapi.pdb 4 appsettings.json		
44024 webapi
root@71c:/webapi# tmux

Next, I’ll also show the app running by launching it and
calling it with curl. In order to show the app and call it at
the same time, I’ll use a two-pane horizontally split tmux
(installed via apt-get) session. Again, I’m using Docker.

Figure 1: Calling single file ASP.NET Core Web API with curl

56 codemag.com.NET 5.0 Runtime Highlights

Resources

.NET blog:
https://devblogs.microsoft.
com/dotnet/

ASP.NET blog:
https://devblogs.microsoft.
com/aspnet/

.NET on GitHub:
https://github.com/dotnet/core

Download .NET:
https://dot.net/

.NET on Twitter:
https://twitter.com/dotnet

.NET on Facebook:
https://www.facebook.com/
dotnet/

.NET on YouTube:
https://www.youtube.com/
dotnet

Assembly trimming:
https://aka.ms/dotnet5-
assembly-trimming

ARM64 performance:
https://aka.ms/dotnet5-
arm64-performance

.NET 5.0 performance:
https://aka.ms/dotnet5-
performance

.NET container images:
https://hub.docker.com/_/
microsoft-dotnet

C:\Users\rich\app>dir bin\Debug\net5.0\
win-x64\publish
 Volume in drive C has no label.
 Volume Serial Number is 9E31-D4BD

 Directory of C:\Users\rich\app\bin\Debug\net5.0\
win-x64\publish

 148,236 app.exe
 9,432 app.pdb
 2 File(s) 157,668 bytes
C:\Users\rich\app>bin\Debug\net5.0\
win-x64\publish\app.exe
Hello World!

We can do the same thing with an ASP.NET Core application.

C:\Users\rich>dotnet new webapi -o webapi
"ASP.NET Core Web API" was created
C:\Users\rich>cd webapi
C:\Users\rich\webapi>dotnet publish -r win-x64
--self-contained false /p:PublishSingleFile=true
C:\Users\rich\webapi>dir bin\Debug\net5.0\
win-x64\publish
 Volume in drive C has no label.
 Volume Serial Number is 9E31-D4BD

 Directory of C:\Users\rich\webapi\bin\Debu…

 162 appsettings.Development.json
 192 appsettings.json
 473 web.config
 267,292 webapi.exe
 19,880 webapi.pdb
 5 File(s) 287,999 bytes

The difference between self-contained and framework-
dependent apps becomes apparent. Framework-dependent
single file apps are tiny. As stated at the start of this sec-
tion, they’re the clear winner for environments where you
can count on the runtime being installed.

A great example of being able to depend on a runtime being
available is Docker. If you publish a framework-dependent
single-file ASP.NET Core app with containers, you should
base it on an ASP.NET image, since you will need ASP.NET
Core to be provided by a lower-level image layer. Image loca-
tion: https://hub.docker.com/_/microsoft-dotnet-aspnet.

Next Steps for Single File Apps
We haven’t defined our final plan for .NET 6.0 yet, but we
do have some ideas, some of which I’ve already drawn at-
tention to. The two most obvious focus areas are enabling
the superhost model for Windows and macOS in addition to
Linux, and enabling first-class debugging for self-contained
single file apps. You may have noticed that ASP.NET Core
apps have some extra files hanging around. Those should
be cleaned up and made optional. That’s likely a small work-
item.

Assembly trimming is an important capability for making
single file apps smaller. We have implemented both con-
servative and aggressive modes for assembly trimming but
haven’t yet landed a model where we’d feel confident en-
abling the aggressive mode by default. This will be a contin-
ued area of focus, likely for the next couple releases.

26640 app
 24 app.pdb
 1792 libSystem.IO.Compression.Native.dylib
 144 libSystem.Native.dylib
 32 libSystem.Net.Security.Native.dylib
 104 libSystem.Security.Cryptography.Native…
 304 libSystem.Security.Cryptography.Native…
 5232 libclrjit.dylib
13584 libcoreclr.dylib
r@thundera app % ./bin/release/net5.0/
osx-x64/publish/app
Hello World!
r@thundera app % dotnet publish -c release
-r osx-x64 --self-contained true /p:PublishSingleFile=true
/p:PublishTrimmed=true
/p:PublishReadyToRun=true /p:IncludeNativeLibrariesForSelfEx
tract=true
r@thundera app % ls -s bin/release/net5.0/osx-x64/publish
total 49264
49240 app	 24 app.pdb

Zooming out, self-contained single-file apps are good in the
same scenarios that self-contained apps generally are: com-
puters that you don’t control and where you can’t count on a
runtime being installed. We expect this deployment option
to show up in a lot of new places, given the greatly improved
ease to-use and convenience.

Framework-Dependent Single File Apps
Framework-dependent single file apps include only your app
in one executable binary. They rely on a globally installed
runtime (of the right version). They’re really just a small
step-function optimization on framework-dependent apps,
as they already exist. For example, they don’t use the su-
perhost described earlier, but the regular apphost. If you
deploy apps to an environment that’s always guaranteed to
have the right .NET version installed, framework-dependent
single file apps are the way to go. They will be much smaller
than self-contained single file apps.

Let’s double check that we’re on the same page. A framework-
dependent single file app includes the following content:

•	 Native executable launcher (apphost, not superhost)
•	 Your app + dependencies (PackageRef and ProjectRef)

What you can expect:

•	 The apps will be smaller, so will be quick to download.
•	 Startup is fast, as it’s unaffected by size.
•	 The native launcher is native code, so the app will

only work in one environment (like Linux x64, Linux
ARM64, or Windows x64). You’ll need to publish for
each environment you want to support.

•	 Unlike self-contained single file apps, there’ll be no
additional native runtime binaries copied beside your
single file app.

I’ll demonstrate this experience on Windows. The experi-
ence is the same on Linux and macOS.

C:\Users\rich>dotnet new console -o app
"Console Application" was created
C:\Users\rich>cd app
C:\Users\rich\app>dotnet publish -r win-x64
--self-contained false /p:PublishSingleFile=true

57codemag.com .NET 5.0 Runtime Highlights

Hardware Intrinsics
CPUs are big blocks of silicon and transistors. The great way
to get higher levels of performance is to light up as many of
those transistors as possible. Soon after starting the .NET
Core project, we created a new set of APIs that enabled call-
ing CPU instructions directly. This enables low-level code
to tell the JIT compiler “hey, I know exactly what I want
to do; please call instruction A, then B and C, and please
don’t try to guess that it’s something else.” We started out
with hardware intrinsics for Intel and AMD processors for
the x86 instruction set. That worked out very well, and we
saw significant performance improvements on x86 and x86-
64 processors.

We started the process of defining hardware intrinsic APIs
for ARM processors in the .NET Core 3.0 project. Due to
schedule issues, we weren’t able to finish the project at that
time. Fortunately, ARM intrinsics are included in the .NET
5.0 release. Even better, their usage has been sprinkled
throughout the .NET libraries, in the places where hard-
ware intrinsics were already used. As a result, .NET code
is now much faster on ARM processors, and the gap with
performance on x86-64 processors is now significantly
less.

ARM64 Performance Improvements
Let’s take a look at some performance improvements. The
following are improvements to low-level APIs. You won’t
necessarily call these directly from your code, but it’s likely
that some APIs you already use call these APIs as an imple-
mentation detail.

You can see the improvements to System.Numerics.BitOp-
erations in Table 1, measured in nanoseconds.

System.Collections.BitArray improvements are listed in
Table 2, measured in nanoseconds.

ARM64
ARM64 is a very popular family of CPUs, designed by Arm
holdings. You have an Arm chip in your phone, and it’s look-
ing like Arm chips will become popular in laptops, too. The
Surface Pro X, The Samsung Galaxy Book S and the upcom-
ing Apple Silicon-based Mac line all use ARM64 chips. On
the .NET team, we’re familiar with the various ARM instruc-
tion sets and have had support for ARM with .NET Core since
the 2.0 version. More recently, we’ve been improving ARM64
performance to ensure that .NET apps perform well in envi-
ronments that rely on ARM chips. ARM chips are also popular
with IoT. The Raspberry Pi 3 and Raspberry Pi 4 single board
computers use ARM64 chips. Wherever ARM chips end up be-
ing used, we want .NET apps to be a good option.

Take a look at https://aka.ms/dotnet5-arm64-performance to
learn more about what we’ve done for ARM64 in this release.

What’s Special about Arm Chips?
Arm chips aren’t new. They’ve been used in embedded sce-
narios for years, along with chip families like MIPS. That’s
why, for most people, their first awareness of Arm chips is
with their phones. Arm’s two big advantages are low power
and low cost. No one enjoys their phone running out of
power. Arm chips help to prolong battery length. Electrical
usage is important in plenty of other domains, and that’s
why we’ve seen Arm chips show up in laptops more recently.

The downside of Arm chips has been lower performance.
Everyone knows that a Raspberry Pi as a desktop computer
isn’t going to be competitive with an Intel i7 or AMD Ry-
zen PC. More recently, we’ve seen Arm chips deliver higher
performance. For example, most people think of the lat-
est iPhone or iPad from Apple as high-performance. Even
though Apple doesn’t use the Arm branding, the “A” in their
“A” series chips could equally apply to Apple as it could to
Arm. The future looks bright for Arm technology.

Table 1: Hardware intrinsics performance improvements—BitOperations

BitOperations method Benchmark .NET Core 3.1 .NET 5 Improvements
LeadingZeroCount(uint) LeadingZeroCount_uint 10976.5 1155.85 -89%

Log2(ulong) Log2_ulong 11550.03 1347.46 -88%

TrailingZeroCount(uint) TrailingZeroCount_uint 7313.95 1164.10 -84%

PopCount(ulong) PopCount_ulong 4234.18 1541.48 -64%

PopCount(uint) PopCount_uint 4233.58 1733.83 -59%

Table 2: Hardware intrinsics performance improvements—BitArray

BitArray method Benchmark .NET Core 3.1 .NET 5 Improvements
ctor(bool[]) BitArrayBoolArrayCtor(Size: 512) 1704.68 215.55 -87%

CopyTo(Array, int) BitArrayCopyToBoolArray(Size: 4) 269.20 60.42 -78%

CopyTo(Array, int) BitArrayCopyToIntArray(Size: 4) 87.83 22.24 -75%

And(BitArray) BitArrayAnd(Size: 512) 212.33 65.17 -69%

Or(BitArray) BitArrayOr(Size: 512) 208.82 64.24 -69%

Xor(BitArray) BitArrayXor(Size: 512) 212.34 67.33 -68%

Not() BitArrayNot(Size: 512) 152.55 54.47 -64%

SetAll(bool) BitArraySetAll(Size: 512) 108.41 59.71 -45%

ctor(BitArray) BitArrayBitArrayCtor(Size: 4) 113.39 74.63 -34%

ctor(byte[]) BitArrayByteArrayCtor(Size: 512) 395.87 356.61 -10%

58 codemag.com.NET 5.0 Runtime Highlights

We are, at the time of writing, enabling very early .NET 6.0
builds on Apple Silicon, on Desktop Transition Kits that
Apple made available to our team. It’s exciting for us to
see the Arm landscape expand within the Apple ecosystem.
We look forward to seeing developers taking advantage of
.NET ARM64 improvements on Mac desktops and laptops.

In Closing
.NET has proven to be a truly adaptable platform, in terms
of application types, deployment models, and chip architec-
tures. We’ve made technical choices that enable a uniform
experience across application types while offering the best
of what an underlying operating system or chip architecture
has to offer, with few or any compromises. We’ll continue
expanding the capabilities of .NET and improving perfor-
mance so that your applications can run in new places and
find new markets.

Just over five years ago, we announced a plan to move to an
open source development model on GitHub. Many of the im-
provements in .NET 5.0 have come from the .NET community.
This includes individuals and corporations. Thanks! A sound
architecture matters, but the care and technical capability
of the .NET community is the source of forward progress for
the platform.

You now know more about what we’re delivering with .NET
5.0. Did we make good choices? We’re always listening on
the dotnet/runtime repo on GitHub. Tell us what you think.

Thanks to Kunal Pathak for ARM64 performance information.

Code-Size Improvements
By virtue of generating better code for ARM64, we found that
code size dropped—a lot. This affected size in memory but
also the size of ready-to-run code (which affects the size of
single file apps, for example). To test that, we compared the
ARM64 code produced in .NET Core 3.1 vs. .NET 5.0 for the top
25 NuGet packages (subset shown in the Table 3). On average,
we improved the code size of ready-to-run binaries by 16.61%.
Table 3 lists NuGet packages with the associated improve-
ment. All the measurements are in bytes (lower is better).

Straight-Out Sprint
You might be wondering how these changes play out in an
actual application. If you’ve been following .NET perfor-
mance for a while, you’ll know that we use the TechEmpower
benchmark to measure performance, release after release.
We compared the various TechEmpower benchmarks on
ARM64, for .NET Core 3.1 vs .NET 5.0. Naturally, there have
been other changes in .NET 5.0 that improve the TechEmpower
results. The numbers in Table 4 represent all product chang-
es for .NET 5.0, not just those targeted ARM64. That’s OK!
We’ll take whatever improvements are on offer. Higher num-
bers are better.

Next Steps for .NET and ARM64
To a large degree, we implemented the straightforward
and obvious opportunities to improve .NET performance on
ARM64. As part of .NET 6.0 and beyond, we’ll need users to
provide us with reports of ARM64 performance challenges
that we can address, and to perform much deeper and more
exotic analysis of ARM64 behavior. We will also be looking
for new features in the Arm instruction set that we can take
advantage of.

Table 3: ARM64 code-size improvements: Top NuGet packages

Nuget package Package version .NET Core 3.1 .NET 5.0 Code size improvement
Microsoft.EntityFrameworkCore 3.1.6 2414572 1944756 -19.46%

HtmlAgilityPack 1.11.24 255700 205944 -19.46%

WebDriver 3.141.0 330236 266116 -19.42%

System.Data.SqlClient 4.8.1 118588 96636 -18.51%

System.Web.Razor 3.2.7 474180 387296 -18.32%

Moq 4.14.5 307540 251264 -18.30%

MongoDB.Bson 2.11.0 863688 706152 -18.24%

AWSSDK.Core 3.3.107.32 889712 728000 -18.18%

AutoMapper 10.0.0 411132 338068 -17.77%

xunit.core 2.4.1 41488 34192 -17.59%

Google.Protobuf 3.12.4 643172 532372 -17.23%

Table 4: ARM64 Web throughput performance improvements: TechEmpower

TechEmpower Benchmark .NET Core 3.1 .NET 5 Improvements
JSON RPS 484,256 542,463 +12.02%

Single Query RPS 49,663 53,392 +7.51%

20-Query RPS 10,730 11,114 +3.58%

Fortunes RPS 61,164 71,528 +16.95%

Updates RPS 9,154 10,217 +11.61%

Plaintext RPS 6,763,328 7,415,041 +9.64%

TechEmpower Performance Rating (TPR) 484 538 +11.16%

� Richard Lander
�

59codemag.com

ONLINE QUICK ID 2010101

Blazor Updates in .NET 5

Daniel Roth
daroth@microsoft.com
@danroth27

Daniel Roth is a Principal
Program Manager at
Microsoft on the ASP.NET
team. He has worked on
various parts of .NET over
the years including WCF,
XAML, ASP.NET Web API,
ASP.NET MVC, and ASP.NET
Core. His current passion
is making Web UI develop-
ment easy with .NET and
Blazor.

Blazor Updates in .NET 5
.NET 5 comes with Blazor included, so that you have everything you need to build rich, modern Web apps with.NET and C#.
.NET has long supported building high-performance server applications with ASP.NET Core. Blazor in .NET 5 enables building
rich, interactive, client-side Web UIs for single page apps using .NET instead of JavaScript. With ASP.NET Core and Blazor,

you can build full-stack Web apps with just .NET. Blazor in
.NET 5 includes many exciting updates and improvements that
will make building your next Web app simple and productive.
In this article, I’ll show you what Blazor in .NET 5 has to offer.

A Choice of Hosting Models
Blazor apps are made up of reusable UI components. You
implement Blazor components using Razor syntax, a natu-
ral mixture of HTML and C#. Blazor components handle UI
events, manage their own state, and render UI updates.
Blazor does the clever work of keeping track of all the ren-
dered updates and figuring out exactly what needs to be
updated in the browser DOM.

A typical Blazor Counter component that updates a dis-
played count each time a button is pressed looks like this:

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button @onclick="IncrementCount">
 Click me
</button>

@code {
 private int currentCount = 0;

 private void IncrementCount()
 {
 currentCount++;
 }
}

The markup in a Blazor component consists of standard
HTML. The @onclick attribute specifies a C# event handler
that gets called each time the user clicks the button. The
IncrementCount method updates the value of the current-
Count field, and then the component renders the updated
value. The Web UI updates seamlessly without you having to
write a single line of JavaScript.

How Blazor handles updating the UI depends on how your
components are hosted. Blazor can execute your compo-
nents either on the server or client-side in the browser via

WebAssembly. .NET 5 includes support for both of these
hosting models.

Blazor Server apps execute your UI components on the
server from within an ASP.NET Core app. When a Blazor
Server app is loaded in the browser, it sets up a real-time
connection back to the server using SignalR. Blazor Server
uses this connection to manage all UI interactions. Blazor
sends all UI events from the browser to the server over the
connection and the event is dispatched to the appropriate
component to handle the event. The component renders its
updates, and Blazor handles serializing the exact UI chang-
es over the SignalR connection so they can then be applied
in the browser. Blazor Server apps do all the hard work of
managing the UI and app state on the server, while still giv-
ing you the rich interactivity of a single-page app.

Blazor WebAssembly apps download the .NET assemblies
containing your component implementations to the browser
along with a WebAssembly-based .NET runtime and then ex-
ecute your components and .NET code directly in the brows-
er. From the browser, Blazor dispatches UI events to the
appropriate components and then applies the UI updates
from the components. All of your .NET code is executed
client-side without any required server process.

.NET 5 gives you the choice of two Blazor hosting models:
Blazor Server and Blazor WebAssembly. Which model you
choose depends on your app requirements. Table 1 summariz-
es the advantages and disadvantages of each hosting model.

Regardless of which Blazor hosting model you choose, the
way you write your components is the same. The same com-
ponents can be used with either hosting model. By using
components that are hosting model agnostic, you can easily
convert a Blazor app from one hosting model to the other.

.NET 5 Core Libraries
Blazor WebAssembly apps in .NET 5 have access to all the
.NET 5 APIs from with the browser; you’re no longer con-
strained to .NET Standard 2.1. The functionality of the avail-
able APIs is still subject to the limitations imposed by the
browser (same origin policy, networking and file system re-
strictions, etc.), but .NET 5 makes many more APIs available
to you, like nullability annotations and Span-based APIs.

Table 1: Advantages and disadvantages of the different Blazor hosting models

Blazor Server Blazor WebAssembly
Advantages • Full access to server capabilities

• Fast to startup
• Code never leaves the server
• �Supports older browsers and thin clients

• Runs fully client-side
• No required server component
• Host as a static site
• Can execute offline

Disadvantages • �Requires persistent connection and UI state
• Higher UI latency

• Larger download size
• Slower runtime performance

60 codemag.comBlazor Updates in .NET 5

Microsoft did specific optimization work for JSON serializa-
tion and deserialization on WebAssembly to speed up all
those Web API calls from the browser. JSON handling when
running on WebAssembly is approximately two times faster
in .NET 5.

Microsoft also made several optimizations to improve the
performance of Blazor component rendering, particularly
for UI involving lots of components, like when using high-
density grids. Component rendering in Blazor WebAssembly
is two-to-four times faster in .NET 5, depending on the spe-
cific scenario.

To test the performance of grid component rendering in
.NET 5, Microsoft used three different grid component im-
plementations, each rendering 300 rows with 20 columns:

•	 Fast Grid: A minimal, highly optimized implementa-
tion of a grid

•	 Plain Table: A minimal but not optimized implementa-
tion of a grid

•	 Complex Grid: A maximal, not optimized implementa-
tion of a grid, using a wide range of Blazor features
at once

Table 2 shows the performance improvements for these grid
rendering scenarios in .NET 5 at the time of this writing.

Virtualization
You can further optimize your Blazor Web UI by taking ad-
vantage of the new built-in support for virtualization. Virtu-
alization is a technique for limiting the number of rendered
component to just the ones that are currently visible, like
when you have a long list or table with many items and only
a small subset is visible at any given time. Blazor in .NET 5
adds a new Virtualize component that can be used to easily
add virtualization to your components.

A typical list or table-based component might use a C#
foreach loop to render each item in the list or each row in
the table, like this:

@foreach (var employee in employees)
{
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
}

As the size of the list gets large (companies do grow!) ren-
dering all the table rows this way may take a while, resulting
in a noticeable UI delay.

Instead, you can replace the foreach loop with the Virtual-
ize component, which only renders the rows that are cur-
rently visible.

<Virtualize Items="employees" ItemSize="40"
 Context="employee">
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>

Blazor WebAssembly projects include a compatibility ana-
lyzer to help you know if your Blazor WebAssembly app tries
to use .NET 5 APIs that are not supported in the browser.

Blazor WebAssembly in .NET 5 also uses the same core li-
braries used for server workloads in .NET 5. Unifying on a
single implementation of the .NET core libraries is part of
the single .NET vision for the .NET 5 and 6 wave. Having a
single implementation of the core framework libraries pro-
vides greater consistency for app developers and makes the
platform much easier to maintain.

New Blazor WebAssembly SDK
All the logic for building, linking, and publishing a Blazor
WebAssembly is now packaged in a Blazor WebAssembly
SDK. This new SDK replaces the functionality provided previ-
ously by the Microsoft.AspNetCore.Components.WebAssem-
bly.Build NuGet package.

Thanks to the new SDK, the project file for a Blazor WebAs-
sembly app in .NET 5 is simpler. It looks like this:

<Project
 Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">

 <PropertyGroup>
 <TargetFramework>net5.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <!-- Package references -->
 </ItemGroup>

</Project>

Improved WebAssembly Runtime
Performance
Blazor WebAssembly apps run .NET code directly in the
browser using a WebAssembly-based .NET runtime. This run-
time is a based on a .NET IL interpreter without any JIT com-
pilation support, so it generally runs .NET code much slower
than what you would see from the JIT-based .NET runtime
used for native app and server scenarios. For .NET 5, we’ve
improved Blazor WebAssembly performance significantly at
multiple layers of the stack. The amount of performance im-
provement you’ll see depends on the type of code you’re
running.

For arbitrary CPU-intensive code, Blazor WebAssembly in .NET
5 runs about 30% faster than Blazor WebAssembly 3.2. This
performance boost is mainly due to optimizations in the core
framework libraries, and improvements to the .NET IL inter-
preter. Things like string comparisons and dictionary lookups
are generally much faster in .NET 5 on WebAssembly.

Table 2: Blazor WebAssembly performance improvements for different grid implementations.

Fast Grid Plain Table Complex Grid
3.2.0 162ms 490ms 1920ms

5.0 Preview 8 62ms 291ms 1050ms

5.0 RC1 52ms 255ms 780m

Improvement 3.1x 1.9x 2.5x

One .NET

Starting with .NET 5,
the .NET team is working
toward unifying the various
.NET implementations for
cloud, desktop, mobile,
and devices into a single
unified .NET platform.
This work includes combining
the best parts of .NET Core
and Mono. Switching Blazor
WebAssembly to use the
.NET 5 core libraries instead
of the Mono libraries is part
of this effort.

You can learn more about
the .NET team’s efforts to unify
the .NET Platform by watching
Scott Hunter and Scott
Hanselman’s “The Journey
to One .NET” presentation
from Microsoft BUILD 2020:
https://aka.ms/onedotnet

61codemag.com Blazor Updates in .NET 5

Prerendering for Blazor WebAssembly
Prerendering your Blazor app on the server can significantly
speed up the perceived load time of your app. Prerendering
works by rendering the UI on the server in response to the first
request. Prerendering is also great for search engine optimiza-
tion (SEO), as it makes your app easier to crawl and index.

Blazor Server apps already have support for prerendering
through the component tag helper. The Blazor Server proj-
ect template is set up by default to prerender the entire app
from the Pages/_Host.cshtml page using the component
tag helper.

<component type="typeof(App)"
 render-mode="ServerPrerendered" />

The component tag helper renders the specified Blazor com-
ponent into the page or view. Previously, the component
tag helper only supported the following rendering modes:

•	 ServerPrerendered: Prerenders the component into
static HTML and includes a marker for a Blazor Server
app to later use to make the component interactive
when loaded in the browser.

•	 Server: Renders a marker for a Blazor Server app to
use to include an interactive component when loaded
in the browser. The component is not prerendered.

•	 Static: Renders the component into static HTML. The
component is not interactive.

In .NET 5, the component tag helper now supports two ad-
ditional render modes for prerendering a component from a
Blazor WebAssembly app:

•	 WebAssemblyPrerendered: Prerenders the compo-
nent into static HTML and includes a marker for a
Blazor WebAssembly app to later use to make the com-
ponent interactive when loaded in the browser.

•	 WebAssembly: Renders a marker for a Blazor WebAs-
sembly app to use to include an interactive compo-
nent when loaded in the browser. The component is
not prerendered.

To set up prerendering in a Blazor WebAssembly app, you
first need to host the app in an ASP.NET Core app. Then,
replace the default static index.html file in the client project
with a _Host.cshtml file in the server project and update
the server startup logic to fallback to the new page instead
of index.html (similar to how the Blazor Server template is
set up). Once that’s done, you can prerender the root App
component like this:

<component type="typeof(App)"
 render-mode="WebAssemblyPrerendered" />

In addition to dramatically improving the perceived load
time of a Blazor WebAssembly app, you can also use the
component tag helper with the new render modes to add
multiple components on different pages and views. You
don’t need to configure these components as root compo-
nents in the app or add your own market tags on the page—
the framework handles that for you.

You can also pass parameters to the component tag helper
when using the WebAssembly-based render modes if the pa-
rameters are serializable.

 </tr>
</Virtualize>

The Virtualize component calculates how many items to ren-
der based on the height of the container and the size of the
rendered items in pixels. You specify how to render each
item using the ItemContent template or with child content.
If the rendered items end up being slightly off from the
specified size, the Virtualize component adjusts the number
of items rendered based on the previously rendered output.

If you don’t want to load all items into memory, you can
specify an ItemsProvider, like this:

<Virtualize ItemsProvider="LoadEmployees"
 ItemSize="40" Context="employee">

 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
</Virtualize>

An items provider is a delegate method that asynchronously
retrieves the requested items on demand. The items pro-
vider receives an ItemsProviderRequest, which specifies the
required number of items starting at a specific start in-
dex. The items provider then retrieves the requested items
from a database or other service and returns them as an
ItemsProviderResult<TItem> along with a count of the total
number of items available. The items provider can choose to
retrieve the items with each request, or cache them so they
are readily available.

async ValueTask<ItemsProviderResult<Employee>>
 LoadEmployees(ItemsProviderRequest request)
{
 var numEmployees = Math.Min(request.Count,
 totalEmployees - request.StartIndex);
 var employees = await EmployeesService
 .GetEmployeesAsync(request.StartIndex,
 numEmployees, request.CancellationToken);
 return new ItemsProviderResult<Employee>(
 employees, totalEmployees);
}

Because requesting items from a data source might take a
bit, you also have the option to render a placeholder until
the item is available.

<Virtualize ItemsProvider="LoadEmployees"
 ItemSize="40" Context="employee">
 <ItemContent>
 <tr>
 <td>@employee.FirstName</td>
 <td>@employee.LastName</td>
 <td>@employee.JobTitle</td>
 </tr>
 </ItemContent>
 <Placeholder>
 <tr>
 <td>Loading...</td>
 </tr>
 </Placeholder>
</Virtualize>

62 codemag.comBlazor Updates in .NET 5

Managing App State
in Blazor

Blazor WebAssembly and
Blazor Server have some
important differences with
how they handle app state.
In a Blazor WebAssembly app,
all of the app state lives in
the browser on the client
device. If the browser is
running, the app state is
available in memory.

Blazor Server apps, however,
maintain all of the app state
for all connected users on
the server. If the browser
connection to the server is
lost, the UI can’t function.
If the server process goes
down, all of the app state held
in memory is lost unless it
has otherwise been persisted.
A common approach for
persisting app state is to
leverage the local storage
available in the user’s browser.
The new protected local and
session storage support
in .NET 5 makes persisting
app state from Blazor Server
apps much easier.

CSS preprocessors like Sass or Less, you can still integrate
CSS preprocessors with Blazor projects to generate compo-
nent specific styles before they’re rewritten as part of the
Blazor build system.

Lazy Loading
Lazy loading enables you to improve the load time of your
Blazor WebAssembly app by deferring the download of some
assemblies until they are required. For many apps, lazy load-
ing different parts of the app isn’t necessary. The .NET IL that
makes up .NET assemblies is very compact, especially when
its compressed. You may be surprised by how much code you
have to write in your app before it significantly impacts the
app size. The download size of a Blazor WebAssembly app
is typically dominated by the size of the runtime and core
framework libraries, which Blazor aggressively trims to re-
move unused code. Lazy loading may be helpful if your Blazor
WebAssembly app grows exceptionally large or you have parts
of your app with large dependencies that aren’t used else-
where and can’t be reasonably reduced through IL trimming.

Normally, Blazor downloads and loads all dependencies of
the app when it’s first loaded. To delay the loading of a .NET
assembly, you add it to the BlazorWebAssemblyLazyLoad
item group in your project file:

<BlazorWebAssemblyLazyLoad Include="Lib1.dll" />

Assemblies marked for lazy loading must be explicitly load-
ed by the app before they’re used. To lazy load assemblies at
runtime, use the LazyAssemblyLoader service:

@inject LazyAssemblyLoader LazyAssemblyLoader

@code {
 var assemblies = await LazyAssemblyLoader
 .LoadAssembliesAsync(new string[]
 {
 "Lib1.dll"
 });
}

Often, assembles need to be loaded when the user navi-
gates to a particular page. The Router component has a new
OnNavigateAsync event that’s fired on every page naviga-
tion and can be used to lazy load assemblies for a particular
route. You can also lazily load the entire page for a route by
passing any loaded assemblies as additional assemblies to
the Router.

You can see a full example of integrating lazy loading with
the Router component in Listing 1.

Less JavaScript, More C#
Blazor’s purpose is to enable building rich interactive Web
UIs with .NET, but sometimes you still need some JavaScript.
This might be because you want to reuse an existing library
or because Blazor doesn’t yet expose a native browser ca-
pability that you need. Blazor supports JavaScript interop,
where you can call into any JavaScript code from your .NET
code, but writing JavaScript interop code with Blazor should
be rare. In .NET 5, Microsoft has added some new built-in
features that reduce or eliminate the amount of JavaScript
interop code required for some common scenarios.

<component type="typeof(Counter)"
 render-mode="WebAssemblyPrerendered"
 param-IncrementAmount="10" />

The parameters must be serializable so that they can be
transferred to the client and used to initialize the compo-
nent in the browser. You’ll also need to be sure to author
your components so that they can gracefully execute server-
side without access to the browser.

CSS Isolation
Blazor now supports CSS isolation, where you can define styles
that are scoped to a given component. Blazor applies compo-
nent-specific styles to only that component without pollut-
ing the global styles and without affecting child components.
Component-specific CSS styles make it easier to reason about
the styles in your app and to avoid unintentional side effects as
styles are added, updated, and composed from multiple sources.

You define component-specific styles in a .razor.css file that
matches the name of the .razor file for the component. For
example, let’s say you have a component MyComponent.ra-
zor file that looks like this:

<h1>My Component</h1>

<ul class="cool-list">
 Item1
 Item2

You can then define a MyComponent.razor.css with the
styles for MyComponent:

h1 {
 font-family: 'Comic Sans MS'
}

.cool-list li {
 color: red;
}

The styles in MyComponent.razor.css only get applied to
the rendered output of MyComponent; the h1 elements ren-
dered by other components, for example, are not affected.

To write a selector in component specific styles that affects
child components, use the ::deep combinator.

.parent ::deep .child {
 color: red;
}

By using the ::deep combinator, only the .parent class se-
lector is scoped to the component; the .child class selector
isn’t scoped, and matches content from child components.

Blazor achieves CSS isolation by rewriting the CSS selec-
tors as part of the build so that they only match markup
rendered by the component. Blazor adds component-spe-
cific attributes to the rendered output and updates the CSS
selectors to require these attributes. Blazor then bundles
together the rewritten CSS files and makes the bundle avail-
able to the app as a static Web asset at the path [LIBRARY
NAME].styles.css. Although Blazor doesn’t natively support

63codemag.com Blazor Updates in .NET 5

Download the Code

You can download the
sample code from this article
at https://aka.ms/blazor-
net5-samples.

@if (unreadNotificationsCount > 0)
{
 var title =
 $"Notifications ({unreadNotificationsCount})";
 <Title Value="title"></Title>
 <Link rel="icon" href="icon-unread.ico" />
}

Protected Browser Storage
In Blazor Server apps, you may want to persist the app state
in local or session storage so that the app can rehydrate it
later if needed. When storing app state in the user’s browser,
you also need to ensure that it hasn’t been tampered with.
Blazor in .NET 5 helps solve this problem by providing two
new services: ProtectedLocalStorage and ProtectedSession-
Storage. These services help you store state in local and ses-
sion storage respectively, and they take care of protecting
the stored data using the ASP.NET Core data protection APIs.

To use the new services, simply inject either of them into
your component implementations:

@inject ProtectedLocalStorage LocalStorage
@inject ProtectedSessionStorage SessionStorage

You can then get, set, and delete state asynchronously.

private async Task IncrementCount()
{
 await LocalStorage.SetAsync("count",
 ++currentCount);
}

JavaScript Isolation and
Object References
When you do need to write some JavaScript for your Blazor
app, Blazor now enables you to isolate your JavaScript as
standard JavaScript modules. This has a couple of ben-
efits: imported JavaScript no longer pollutes the global
namespace, and consumers of your library and components
no longer need to manually import the related JavaScript.

For example, the following JavaScript module exports a
simple JavaScript function for showing a browser prompt:

Set UI Focus
Sometimes you need to set the focus on a UI element pro-
grammatically. Blazor in .NET 5 now has a convenient method
on ElementReference for setting the UI focus on that element.

<button @onclick="() => textInput.FocusAsync()">
 Set focus
</button>
<input @ref="textInput"/>

File Upload
Blazor now offers an InputFile component for handling file
uploads. The InputFile component is based on an HTML in-
put of type “file”. By default, you can upload single files,
or you can add the “multiple” attribute to enable support
for multiple files. When one or more files is selected for up-
load, the InputFile component fires an OnChange event and
passes in an InputFileChangeEventArgs that provides access
to the selected file list and details about each file.

<InputFile OnChange="OnInputFileChange"
 multiple />

To read a file, you call OpenReadStream on the file and read
from the returned stream. In a Blazor WebAssembly app this
reads the file into memory on the client. In a Blazor Server app,
the file is transmitted to the server and read into memory on
the server. Blazor also provides a ToImageFileAsync convenience
method for resizing images files before they’re uploaded.

The example code in Listing 2 shows how to resize and re-
format user selected images as 100x100 pixel PNG files. The
example code then uploads the resized images and displays
them as data URLs.

Influencing the HTML Head
Use the new Title, Link, and Meta components to program-
matically set the title of a page and dynamically add link and
meta tags to the HTML head in a Blazor app. To use these
components, add a reference to the Microsoft.AspNetCore.
Components.WebExtensions NuGet packages.

The following example programmatically sets the page title
to show the number of unread user notifications, and up-
dates the page icon a as well:

@using System.Reflection
@using Microsoft.AspNetCore.Components.Routing
@using Microsoft.AspNetCore.Components.WebAssembly.Services
@inject LazyAssemblyLoader LazyAssemblyLoader

<Router AppAssembly="@typeof(Program).Assembly"
 AdditionalAssemblies="@lazyLoadedAssemblies"
 OnNavigateAsync="@OnNavigateAsync">
 <Navigating>
 <div>
 <p>Loading the requested page...</p>
 </div>
 </Navigating>
 <Found Context="routeData">
 <RouteView RouteData="@routeData"
 DefaultLayout="@typeof(MainLayout)" />
 </Found>
 <NotFound>
 <LayoutView Layout="@typeof(MainLayout)">
 <p>Sorry, there's nothing at this address.</p>
 </LayoutView>

 </NotFound>
</Router>

@code {
 private List<Assembly> lazyLoadedAssemblies =
 new List<Assembly>();

 private async Task OnNavigateAsync(NavigationContext args)
 {
 if (args.Path.EndsWith("/page1"))
 {
 var assemblies = await LazyAssemblyLoader
 .LoadAssembliesAsync(new string[]
 {
 "Lib1.dll"
 });
 lazyLoadedAssemblies.AddRange(assemblies);
 }
 }
}

Listing 1: Integrating lazy loading with the Blazor Router

64 codemag.comBlazor Updates in .NET 5

changes and then rebuilds and restarts the app so that you
can see the results of your changes quickly. New in .NET 5,
dotnet watch launches your default browser for you once
the app is started and auto refreshes the browser as you
make changes. This means that you can open your Blazor
project (or any ASP.NET Core project) in your favorite text
editor, run dotnet watch run once, and then focus on your
code changes while the tooling handles rebuilding, restart-
ing, and reloading your app. Microsoft expects to bring the
auto refresh functionality to Visual Studio as well.

More Blazor Goodies
Although this article summarizes most of the major new
Blazor features in .NET 5, there are still plenty of other smaller
Blazor enhancements and improvements to check out. These
improvements include:

•	 IAsyncDisposable support
•	 Control Blazor component instantiation
•	 New InputRadio component
•	 Support for catch-all route parameters
•	 Support for toggle events
•	 Parameterless InvokeAsync overload on EventCallback
•	 Blazor Server reconnection improvements
•	 Prerendering for Blazor WebAssembly apps

Many of these features and improvements came from the en-
thusiastic community of open source contributors. Microsoft
greatly appreciates all of the preview feedback, bug reports,
feature suggestions, doc updates, and design, and code re-
views from countless individuals. Thank you to everyone who
helped with this release. I hope you enjoy Blazor in .NET 5!
Give Blazor a try today by going to https://blazor.net.

Now, dotnet watch launches your
default browser for you once the
app is started and auto refreshes
the browser as you make changes.

<div class="image-list">
 @foreach (var imageDataUrl in imageDataUrls)
 {

 }
</div>

@code {
 ElementReference textInput;

 IList<string> imageDataUrls = new List<string>();

 async Task OnInputFileChange(InputFileChangeEventArgs e)
 {
 var imageFiles = e.Files
 .Where(file => file.Type.StartsWith("image/"));

 var format = "image/png";
 foreach (var imageFile in imageFiles)
 {
 var resizedImageFile =
 await imageFile.ToImageFileAsync(format, 100, 100);
 var buffer = new byte[resizedImageFile.Size];
 await resizedImageFile.OpenReadStream()
 .ReadAsync(buffer);
 var imageDataUrl =
 $"data:{format};base64,{Convert.ToBase64String(buffer)}";
 imageDataUrls.Add(imageDataUrl);
 }
 }
}

Listing 2: Using InputFile to resize and upload multiple images

� Daniel Roth
�

SPONSORED SIDEBAR:

Your Legacy Apps
Stuck in the Past?

Get FREE advice on migrating
your legacy application to
today’s modern platforms.
Leverage CODE Consulting’s
years of experience migrating
legacy applications by
contacting us today to
schedule your free hour
of CODE consulting call.
No strings. No commitment.
Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

export function showPrompt(message) {
 return prompt(message, 'Type anything here');
}

You can add this JavaScript module to your .NET library as a
static Web asset (wwwroot/exampleJsInterop.js) using the
Razor SDK and then import the module into your .NET code
using the IJSRuntime service:

var module = await jsRuntime
 .InvokeAsync<IJSObjectReference>("import",
 "./_content/MyComponents/exampleJsInterop.js");

The “import” identifier is a special identifier used specifical-
ly for importing the specified JavaScript module. You specify
the module using its stable static Web asset path: _content/
[LIBRARY NAME]/[PATH UNDER WWWROOT].

The IJSRuntime imports the module as an IJSObjectRefer-
ence, which represents a reference to a JavaScript object
from .NET code. You can then use the IJSObjectReference
to invoke exported JavaScript functions from the module:

public async ValueTask<string> Prompt(
 string message)
{
 return await module.InvokeAsync<string>(
 "showPrompt", message);
}

Debugging Improvements
Blazor WebAssembly debugging is significantly improved in
.NET 5. Launching a Blazor WebAssembly app for debugging
is now much faster and more reliable. The debugger now
breaks on unhandled exceptions in your code. Microsoft has
enabled support for debugging into external dependencies.
The Blazor WebAssembly debug proxy has also been moved
into its own process to enable future work to support de-
bugging Blazor WebAssembly apps running in remote en-
vironments like Docker, Windows Subsystem for Linux, and
Codespaces.

See UI Updates Faster with dotnet watch
When building UIs, you need to be able to see your changes
as fast as possible. .NET 5 makes this easy with some nice
improvements to the dotnet watch tool. When you run dot-
net watch run on a project, it watches your files for code

65codemag.com

ONLINE QUICK ID 2010111

Azure Tools for .NET in Visual Studio 2019

Angelos Petropoulos
angelos.petropoulos@microsoft.com
devblogs.microsoft.com

Angelos Petropoulos is a
Senior Program Manager at
Microsoft working on .NET,
Azure and Visual Studio.
Before joining Microsoft,
he spent 10 years designing
and implementing enterprise
applications as a .NET
consultant. He was born in
Greece, but he studied in
the UK where he got a BSc
in Software Engineering
and a MSc in Object-Oriented
Software Technology. He’s one
of those guys who still creates
new WinForms projects.

Keep reading to learn more about how Visual Studio 2019
automatically discovers your app’s dependencies on Azure
services, helps you configure your local environment giving
you a choice between accessing live Azure services or us-
ing local emulators, and helps you not just deploy your ap-
plication in Azure, but more importantly make sure it runs
correctly.

Microsoft always tries to light up new tools for as many
.NET project types as possible. Even after the initial re-
lease of a new tool, we’ll continue to add support for more
project types in subsequent updates. Right now, the tools
covered in this article are available for the following proj-
ect types: ASP.NET, Azure Functions, WinForms, WPF, and
Console.

In Brief: What It Takes to Consume
Azure Services
If you already have a lot of experience consuming Azure
services, you can safely skip this part. If it’s been a while
though, this is worth brushing up on. Here are the basics of
what’s required to consume Azure services from .NET apps:

•	 The SDK, which is comprised of binaries required to
talk to Azure services and are distributed via NuGet.
Today, each Azure service tends to have its own SDK,
although keep in mind that it’s not a hard requirement
for every single Azure service to require an SDK.

•	 A small amount of source code that enables the
project to make use of the SDK. Some use the term
“bootstrapping” or “bootstrap code” to describe this.
Sometimes this is where the authentication mode for
communicating with the Azure service is configured.

•	 The configuration artifacts required by the SDK. The
SDK may require certain configuration values to be
read when the app runs. These configuration values
are read from well-known configuration artifacts that
must be added to the project for everything to work.

•	 The configuration values for the configuration arti-
facts. The value can be different for every environ-
ment the app runs in. For example, in a dev environ-
ment, you may want to connect to storageAccount1
and in a pre-production environment, you may want to
connect to storageAccount2. This is achieved by hav-
ing a different value in each environment.

Next, I’m going to cover how Visual Studio helps you man-
age all of the above with ease so you can focus on what
matters the most: writing the business logic for your app.

Consume Azure Services Using
Connected Services
I talked about what it takes to consume Azure services from
a .NET app. You need an SDK in the form of NuGet packages,
which you could acquire using Visual Studio’s NuGet Package

Manager, but what package names and versions do you need?
Then you need some configuration artifacts, which you
could add using Visual Studio’s Add Item dialog, but which
ones is this SDK going to look for? Also, when you put the
configuration values in the configuration artifacts, what
name should you use for each key-value pair?

You can get answers to all of these questions by going
through the docs of each Azure service, but that takes time.
On top of that, you must be careful to read the right version
of the docs for the same framework version and project-type
you’re working with. Microsoft has observed customers in
user studies making simple mistakes along the way, such as
missing a step or misreading an instruction, which some-
times leads to frustration and loss of productivity. We real-
ized that we could do more to help customers be successful,
so in Visual Studio 2019, we came up with a revamped Con-
nected Services experience (see Figure 1).

Let’s quickly go over the UI changes to the Connected Ser-
vices page. As you can see in Figure 1, the page contains
three sections: Service Dependencies, Service References,
and Other Services. Prior to Visual Studio 2019, the Con-
nected Services page gave you a list of items to pick from,
but the list wasn’t uniform. Some items on the list help
you consume Azure services while others help you stand-
up and consume APIs by generating code. That made it
challenging to add more functionality to the list without
also adding confusion. We decided to split the old list up
into Service Dependencies and Service References; leftover
items that haven’t been migrated but are still available
under Other Services. Let’s focus on the Service Depen-
dencies section and talk about how it helps you consume
Azure services and configure your local environment all in
one go.

Azure Tools for .NET in Visual Studio 2019
With the cloud being such a big part of IT these days, it will come as no surprise to you that Visual Studio includes tools to help
you consume Azure services and deploy your app to Azure. What you might not already know, though, is how much Microsoft
has invested in these tools in Visual Studio 2019 and the new experiences that are built on top of them.

Figure 1: The Connected Services tab

66 codemag.comAzure Tools for .NET in Visual Studio 2019

Get Started with Connected Services
Start by clicking the + icon on the top right corner of the
Service Dependencies section (see Figure 1). A list of the
supported Azure services (and their local emulators/alter-
natives) shows up, asking for you to pick one, as shown in
Figure 2.

Table 1 has the complete list of what is currently supported,
although keep in mind that we’re continuously adding sup-
port for new Azure services with each update of Visual Stu-
dio. If you’re looking for hosting Azure services such as Web
Apps and Functions, you won’t find them in this list; those
are covered later in the section entitled Deploy Your App
to Azure.

After picking an Azure service, you go through the follow-
ing steps:

•	 Either provision a new instance of the service or
search for an existing one, without leaving the IDE.

•	 Visual Studio reaches out to the instance selected and
retrieves all information required to establish a suc-
cessful connection. If any of the information is consid-

Figure 2: The Add dependency dialog in Connected Services

Figure 3: The Summary of changes tab in the Add dependency dialog

ered an application secret (e.g., connection strings,
usernames, passwords, tokens, etc.) you also get the
opportunity to either store it in Azure Key Vault or in
a local secrets.json file that lives outside of your repo
so that you never accidentally check it in.

•	 Get a summary of the actions/changes that are about
to take place. You can see an example of that in Figure
3 for adding Azure Storage.

With just a few clicks, you’ve enabled your application to
consume an Azure service, configured how it should work
locally, secured any related application secrets, and you’re
ready to start writing your business logic.

One Click to Restore Dependencies
If your local environment stops connecting to your Azure ser-
vices successfully, Visual Studio can restore all the dependen-
cies back to their working state by clicking the Restore icon at
the top of the Service Dependencies table, two icons to the
right of the + icon, as seen in Figure 1. Visual Studio checks
to see if instances are missing and re-provisions them as well
as checks whether configuration values are missing or incor-
rect and updates them with the correct values. If you really
want to, you can even customize the restore operation by
supplying optional parameters that let you overwrite things
such as Azure resource group names and other details.

A Peek Under the Covers
To support all of this, Visual Studio creates two new files vis-
ible in Solution Explorer under Properties called serviceDe-
pendencies.json and serviceDependencies.local.json. Both
files are safe to check into your repo, as they don’t contain
any secrets. Here’s an example for serviceDependencies.json:

{
 "dependencies": {
 "secrets1": {
 "type": "secrets"
 },
 "storage1": {
 "type": "storage",
 "connectionId": "myConnectionToAzStorage"
 }
 }
}

Here’s an example for serviceDendencies.local.json:

{
 "dependencies": {
 "secrets1": {
 "type": "secrets.user"
 },
 "storage1": {
 "resourceId": "/subscriptions/
 [parameters('subscriptionId')]
 /resourceGroups/
 [parameters('resourceGroupName')]
 /providers/Microsoft.Storage/
 storageAccounts/storagevv",
 "type": "storage.azure",
 "connectionId": "myConnectionToAzStorage",
 "secretStore": "LocalSecretsFile"
 }
 }
}

Deep Integration with
Azure Key Vault

Azure Key Vault is the
recommended way for
keeping app secrets secure
in Azure and it can also be
used for local development.
Whether you’re configuring
dependencies for your local
environment or for a Publish
Profile, when dealing with
secrets, Visual Studio offers
to store them in Key Vault.

If the Key Vault instance
already exists, all you need
to do is change a radio button
option. If you need to
provision a new instance,
you can do so without
leaving the IDE.

67codemag.com Azure Tools for .NET in Visual Studio 2019

Table 1: List of Azure services you can configure using Service Dependencies

Azure service Local emulators/alternatives that are also supported
Azure Application Insights Application Insights SDK

Azure Storage Azure Storage Emulator

Azure SignalR

Azure Key Vault Secrets.json

Azure SQL Server SQL Server Express LocalDB, SQL Server On-Prem

Azure Cache for Redis

Azure CosmosDB

•	 It lets you provision new instances or search for exist-
ing ones without leaving the IDE.

•	 It suggests default settings/values based on what it
knows about your project.

•	 It detects missing components that are required to
make the deployment work and helps you acquire
them.

•	 It detects your app’s dependencies on Azure services
and helps you to configure them correctly.

•	 It recommends supplementary Azure services to en-
sure that your app is secure and performs optimally
in Azure.

Get Started with Visual Studio Publish
To get started, just right-click on your project in Solution
Explorer and select Publish from the context menu. A dialog
pops-up asking you to choose where to deploy to, with Azure
listed at the top in alphabetical order. Clicking Next gives
you a list of Azure hosting services to pick from, as shown in
Figure 4. If you’re interested in the complete listing of all
hosting Azure services supported, check out Table 2.

If you look closely at the contents of serviceDendencies.local.
json, you’ll notice that some values are parameterized. Visual
Studio also creates a file called serviceDependencies.local.json.
user that isn’t visible in Solution Explorer by default. This file
contains the value for all the parameters because some of
them could be considered a secret (e.g., Azure subscription ID)
and we don’t recommend that you check it in unless you have
fully understood the information that’s being recorded in this
file. Here’s an example of serviceDependencies.local.json.user:

{
 "dependencies": {
 "storage1": {
 "restored": true,
 "restoreTime": "2020-08-21T16:48:10.47941Z"
 },
 "secrets1": {
 "restored": true,
 "restoreTime": "2020-08-21T16:47:56.93638Z"
 }
 },
 "parameters": {
 "storage1.resourceGroupName": {
 "Name": "storage1.resourceGroupName",
 "Type": "resourceGroup",
 "Value": "aapt821group"
 },
 "storage1.subscriptionId": {
 "Name": "storage1.subscriptionId",
 "Type": "subscription",
 "Value": "0000000-0000-0000-000-0000000000"
 }
 }
}

It’s Never Too Late to Start Using It
If you’ve already configured your application to consume an
Azure service without using Service Dependencies, it isn’t
too late to benefit from all the additional features that come
with it. If you navigate to the Connected Services page, the
Service Dependencies section automatically detects and
lists Azure dependencies that already exist in your app. If
you want to manage these existing dependencies through
the Service Dependencies experience, all you have to do is
click the “Configure” button next to each one of them. Give
it a try; if you change your mind, you can always just delete
the dependency afterward.

Deploy Your App to Azure Using
Visual Studio Publish
Using Publish in Visual Studio is one of the easiest ways to
deploy your application to Azure:

•	 It helps you navigate the hosting options available to
you in Azure.

Table 2: List of Azure hosting services you can deploy to using Visual Studio Publish

Azure hosting service Details
Azure App Service (Web Apps) Linux and Windows are both supported

Azure Functions Linux and Windows are both supported

Azure Container Registry Deployment of the container image to App Service is also supported

Azure VMs Requires Web Deploy to be already enabled on the VM

Figure 4: The Publish dialog after selecting Azure as the target

Visual Studio’s Generated
ARM Templates Can Be
a Great Starting Point
for CICD

You can integrate templates
into your continuous
integration and continuous
deployment (CI/CD) tools,
which can automate your
release pipelines for fast
and reliable updates. Using
Azure DevOps and Resource
Manager template task, you
can use Azure Pipelines to
continuously build and deploy
ARM templates.

With Visual Studio’s generated
ARM templates, you don’t
have to start from scratch!

68 codemag.com

each Azure service. If you don’t want Visual Studio to man-
age one of the dependencies and stop warning you about
it, you can select the Delete Dependency option from the
… menu.

It’s also worth noting that you’re not required to use the
Service Dependencies section in Connected Services before
you can use the Service Dependencies section in a Publish
Profile. Naturally, they’re designed to integrate with each
other to give you the best possible end-to-end experience,
but they also work great independently, giving you com-
plete freedom.

Get Specific Recommendations
The Service Dependencies section recommends additional
Azure services based on the security and performance needs
of your app. Visual Studio has a deep understanding of your
app and uses this information to give you specific recom-
mendations. A good example is the recommendation to use
the Azure SignalR Service with specific ASP.NET apps when
performance is important.

Check Out All of These ARM Templates
Azure Resource Manager (ARM) is the deployment and man-
agement service for Azure. It provides a management layer
that enables you to create, update, and delete resources in
your Azure account. ARM templates are basically JSON files
with a declarative syntax that let you deploy entire envi-
ronments. They’re the way Azure recommends that you im-
plement infrastructure as code for your Azure apps, as you
can simply include them in your repo and version them.
Listing 1 includes the first 20 lines of such a file to give you
an idea:

Visual Studio uses ARM to manage your app’s dependencies
and you can find the ARM templates that it uses in Solution
Explorer under Properties > Service Dependencies followed
by either local for your local environment or the name of the
Publish Profile.

Final Thoughts
Give these Azure tools a try and let us know what you think. If
you wish that we supported a feature or Azure service that we
don’t already, please let us know! You can submit your sug-
gestions at https://developercommunity.visualstudio.com/.

After you pick the Azure hosting service you want, you’ll get
the opportunity to either create a new instance or search
for an existing one without leaving the IDE. Completing all
the steps creates a new Publish Profile file (*.pubxml) and
displays the Publish Profile summary page, as seen in Figure
5 At this point, all that’s left to do is hit the Publish but-
ton on the top right corner and the deployment begins. But
what about those yellow warning icons? I’ll address those
in a moment.

Configure Your App’s Dependencies
When deploying to Azure, you can think of each Publish
Profile as a different environment in Azure. During the cre-
ation of the Publish Profile, you picked the Azure hosting
service to deploy to, but you didn’t configure any of the
other dependencies your app may have on Azure services. To
do that, you can use what should be a familiar experience
by now, the Service Dependencies section (bottom section
on Figure 5.

Visual Studio will do its best to automatically detect de-
pendencies and ask you to configure them for each Publish
Profile. If it has detected unconfigured dependencies, it will
warn you to not start the deployment until you’ve addressed
them. That’s what those yellow warning icons are in Fig-
ure 5. The detection logic looks for NuGet packages, source
code, and configuration values—whatever’s appropriate for

Figure 5: The Publish Profile summary page

� Angelos Petropoulos
�

SPONSORED SIDEBAR:

Interested in Moving
to the Azure Cloud?
CODE Can Help!

Take advantage of
a FREE hour-long
CODE Consulting session
(Yes, FREE!) to jumpstart
your organization’s plans
to develop solutions on
the Microsoft Azure cloud
platform. No strings.
No commitment.
Nothing to buy.
For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

 {
 "$schema": "https://schema.management.azure.com/
 schemas/2018-05-01/
 subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "resourceGroupName": {
 "type": "string",
 "defaultValue": "aapt821group",
 "metadata": {
 "_parameterType": "resourceGroup",
 "description": "Name of the resource group
 for the resource. It is recommended to put
 resources under same resource group for better

 tracking."
 }
 },
 "resourceGroupLocation": {
 "type": "string",
 "defaultValue": "centralus",
 "metadata": {
 "_parameterType": "location",
 "description": "Location of the resource
 group. Resource groups could have different
 location than resources."
 }
 },

Lsiting 1: Implementing infrastructure in the repo

Azure Tools for .NET in Visual Studio 2019

Sign up today for a free trial subscription at www.codemag.com/subscribe/DNC3SPECIAL

codemag.com/magazine
832-717-4445 ext. 8 • info@codemag.com

KNOWLEDGE
IS POWER!

70 codemag.com

ONLINE QUICK ID 2010121

Windows Desktop Apps and .NET 5

Why .NET 5 for Desktop Applications?
Let’s start with “what is .NET 5?” Over the last few years,
.NET developers have had a variety of .NET platforms on
which to build their applications:

•	 .NET Framework: The oldest platform which, since its
inception in 2002, evolved into a large codebase that
worked only on Windows and had a support for various
.NET technologies from desktop to Web. It was a great
platform for developing .NET applications for many
years. Since .NET Framework was first released, the
tech world has changed a lot. What was once state-of-
the-art became a limitation. Things like open source,
cross-platform, improved performance, etc., became
new “must-haves,” which .NET Framework couldn’t
provide due to the way it was designed. That’s why we
released .NET Core.

•	 .NET Core: Created in 2016 as a new open source and
cross-platform .NET. Initially, .NET Core supported
only Web and microservice stacks until 2019, when all
other technologies were brought to .NET Core as well.

•	 Mono: Initially started as a third-party implementa-
tion of the .NET Framework for Linux.

•	 .NET Standard: Isn’t a platform but a specification,
which has a common denominator for APIs of all
platforms. It’s another option for developers when it
comes to target frameworks for libraries.

A variety of options isn’t always a blessing but is sometimes
a curse. Many people were confused and not sure what they
should choose for their applications. Moving forward, there will
be just one .NET, called .NET 5, that aggregates the best of all
.NET platforms and supports all .NET technologies (Figure 1).

The preview version of .NET 5 is already available and in No-
vember 2020, the full .NET 5 version will be released! You can
get it at https://dotnet.microsoft.com/download/dotnet/5.0.

Benefits of .NET 5 Compared to .NET Framework
There are many benefits in .NET 5 compared to .NET Frame-
work. First, .NET 5 will be the future of .NET, which means that

all new improvements, .NET APIs, runtime capabilities, and
language features will go exclusively to .NET 5. .NET Frame-
work will remain where it is at the highest version of 4.8 and
receive only Windows essential (Windows and security) up-
dates. All new feature development will happen in .NET 5.

Another very important feature of .NET 5 is that, like .NET
Core, it allows “side-by-side” deployment of multiple versions
of .NET 5 on the same computer. In your applications, you can
specify which version of .NET you want to target. That means
your application will never be broken by a random runtime
update beyond your control. You can also package a specific
version of .NET 5 with your application and be completely in-
dependent of your user’s computer set up.

Because of this major improvement, you’re able to innovate
at much higher pace (without fear of breaking existing ap-
plications) and introduce many new features and improve-
ments such as:

•	 Smaller applications sizes with Assembly Trimming
feature

•	 Single-file executables
•	 Significant BCL performance improvements
•	 More choice on runtime experiences
•	 Better project files (SDK-style .csproj)
•	 New features in Windows Forms, WPF, C#, etc.
•	 Stable release schedule

You can read more about each area on Microsoft’s .NET blog
site at: https://devblogs.microsoft.com/dotnet/, where we
post all the updates we make in .NET. As for the last point,
from now on, .NET will be released once a year and every
even version number will be a long-term support version.
The schedule is shown in Figure 2.

Differences Between .NET 5 and .NET Core 3.x
.NET 5 is based on .NET Core 3.1, which means that all APIs,
runtime, and performance improvemens that are in .NET
Core 3.1 are also included in .NET 5. Plus, there are some
additional features such as:

•	 New updates in Windows Forms, which will be covered
later in this article

•	 Many improvements in WPF XAML tooling; also de-
scribed below.

•	 Performance improvements that you can read about at
https://devblogs.microsoft.com/dotnet/performance-
improvements-in-net-5/.

•	 Many runtime improvements, like usability features to the
new JSON APIs, Garbage Collection improvements, better
performance for assembly code generation RyuJIT, improve-
ments to single-file deployment, and others can be read
about at .NET Blog: https://devblogs.microsoft.com/dotnet.

There were some breaking changes in Windows Forms be-
tween .NET Core 3.0, .NET Core 3.1, and .NET 5 but most of

Windows Desktop Apps and .NET 5
This November, Microsoft is releasing .NET 5—the unified .NET platform that will be the only .NET platform moving forward. It has
support for all kinds of .NET applications, including the Windows desktop platforms such as WPF, Windows Forms, and WinUI 3.0.
In this article, I’ll talk about what .NET 5 means for desktop developers and how to migrate your existing applications to .NET 5.

Figure 1: Structure of .NET 5

Olia Gavrysh
oliag@microsoft.com
devblogs.microsoft.com/dotnet/
@oliagavrysh

Olia Gavrysh is a program
manager on the .NET team
at Microsoft. She focuses
on desktop developer tools.
With the latest version of
.NET Core and .NET 5 coming
soon, a big part of her work
centers around porting to
.NET Core experience.

Olia has a background in
software development and
machine learning. Before
becoming a PM, she spent
10 years writing .NET ap-
plications. When she joined
Microsoft, she worked on
the .NET Framework for
machine learning called
ML.NET. She’s a frequent
speaker at international
developer conferences and
a contributor to .NET Blog.

71codemag.com Windows Desktop Apps and .NET 5

targets applicable projects to .NET 5. You can install the
tool from here: https://github.com/dotnet/try-convert/
releases. Once installed, in CLI, run the command:

try-convert -p "<path to your project file>"

Or:

try-convert -w "<path to your solution>"

After the tool completes the conversion, reload your files
in Visual Studio. There’s a possibility that Try Convert won’t
be able to perform the conversion due to specifics of your
project. In that case, refer to our documentation here:
https://docs.microsoft.com/dotnet/core/porting/ and on
the last step, set TargetFramework to net5.0-windows.

them are very easy to fix by upgrading to a newer and better
APIs. You can learn about all those changes here:

•	 Breaking changes between .NET Core 3.1 and .NET
5: https://docs.microsoft.com/en-us/dotnet/core/
compatibility/3.1-5.0#windows-forms

•	 Breaking changes between .NET Core 3.0 and .NET Core
3.1: https://docs.microsoft.com/en-us/dotnet/core/
compatibility/3.0-3.1#windows-forms

If you’re creating new WPF or Windows Forms applications,
build them on top of .NET 5! If your application was already
created on .NET Core or .NET Framework, you can port it to
the new platform. In the next section, I’ll talk about porting.

Porting Existing WinForms and
WPF Applications to .NET 5
Now’s the time to port your Windows Forms and WPF appli-
cations to .NET 5. There are a few cases when staying on the
.NET Framework is reasonable. For example, if your appli-
cation is released, the development is completed, and you
have no intention to touch the code (except maybe for bug
fixes or servicing), in such a case, it’s totally fine to leave
your application targeting .NET Framework. But if you’re do-
ing any active development, I strongly recommend porting
your application to .NET 5 so you’ll be able to benefit from a
huge amount of improvements introduced in the new plat-
form. Let’s see how to port your application from .NET Core
and .NET Framework.

Porting from .NET Core
If your application targets .NET Core 3.0 or 3.1, porting it to .NET
5 should be easy. Right-click on the project file that you want to
port in the Solution Explorer from the context menu select “Prop-
erties…”. You‘ll see the Properties window shown in Figure 3.

The combo-box Target framework contains the name and
version of the .NET platform you’re targeting right now. In
this case, it’s .NET Core 3.0. Choose .NET 5.0 and save the
project. You have ported to .NET 5.0!

There were some minor breaking changes between .NET Core
3.0, 3.1 and .NET 5. You can read about them at https://
docs.microsoft.com/en-us/dotnet/core/compatibility/3.0-
3.1#windows-forms and https://docs.microsoft.com/en-us/
dotnet/core/compatibility/3.1-5.0#windows-forms. So if your
application was using any of the old APIs that got changed in
.NET 5, you’ll need to do a minor refactoring to your code to
update it with the latest APIs. Usually, it’s straightforward.

Porting from .NET Framework
Unlike porting from .NET Core, which was the foundation for
.NET 5, the difference between .NET Framework and .NET 5 is
significant. So, in the case of porting from .NET Framework
to .NET 5, you can’t just change the target framework in the
Project Properties window. We have a tool that can help you
with the migration, called Try Convert.

Try Convert is a global tool that attempts to upgrade your
project file from the old style to the new SDK style and re-

Figure 3: The Project Properties window where you can choose a target framework.

Figure 4: The WebView2 control in Windows Forms application.

Figure 2: Schedule of .NET releases.

Figure 5: Using Design-time Data for different control properties.

72 codemag.com

WebView 2 is supported for the following platforms: Win32
C/C++, .NET Framework 4.6.2 or later, .NET Core 3.0 or lat-
er, and WinUI 3.0. And on the following Windows versions:
Windows 10, Windows 8.1, Windows 8, Windows 7, Windows
Server 2016, Windows Server 2012, Windows Server 2012 R2,
and Windows Server 2008 R2.

Updates in XAML Designer
This year, we’ve been working on many new features for
XAML Designer. Here are the most important ones.

Design-time Data. Very often, controls in WPF application
are populated with data via data binding. This means that
you don’t see how your controls look with data in the de-
signer before you run your application. In the early stages
of the development, you might not even have the data
source or your ViewModel yet. Thanks to the Design-time
Data feature, your controls can be populated with “dummy”
data visible only in the designer. This data won’t be com-
piled into your binaries, so you don’t have to worry about
accidently shipping your applications with the test values.

For each XAML property for built-in controls, you can set a
value using d: prefix, as shown in the Figure 5.

This way, you’ll see values assigned to the properties with
d: prefix in the design time, and without d: in the runtime (in
your binaries).

Suggested Actions. Now when developing your UI for WPF
(on .NET 5 and .NET Core) and UWP applications, you can
quickly access the most commonly used properties and ac-
tions of a selected control in the designer by expanding the
icon with a lightbulb next to it, as shown in Figure 6.

To use this feature, enable it in Visual Studio navigate to
Tools > Options > Preview Features and check “XAML Sug-
gested Actions”. Currently, it works for standard built-in
controls. We will keep working on improving this feature.

Binding Failures Troubleshooting Tools. We’ve heard your
feedback about difficulties with troubleshooting binding fail-
ures. That’s why we added a few things to improve your experi-
ence. First, you’ll see right away if your application encountered
any binding failures in the in-app toolbar. The binding failures
icon will turn red and have a number of failures next to a red
cross. In Figure 7, you can see 32 binding failures. Clicking the
icon takes you to the new XAML Binding Failures window that
has sorting, searching, grouping, and other useful features.

This feature is also in the Preview, so to enable it, in Visual
Studio navigate to Tools > Options > Preview Features and
check XAML Binding Failure Window.

XAML code editor improvements. We added a few improve-
ments in the code editor, such as:

•	 The ability to drag an image from Solution Explorer
into the XAML editor, which generates a proper Image
tag with the full path to the dragged image.

•	 An inline color preview right in your XAML code next to
the color name or code (Figure 8).

New XAML Designer for .NET Framework applications.
We’re bringing all the new features and extensibility sup-
port of XAML .NET Core designer for .NET Framework appli-

<TargetFramework>
net5.0-windows

</TargetFramework>

Over time, some pieces of .NET Framework became obsolete and
have been replaced with newer substitutions. We didn’t port those
old parts to .NET Core and .NET 5; some of them because they were
no longer relevant, and some because they didn’t fit into the new
architecture of the platform. You can read more about it in the ar-
ticle from last year: https://www.codemag.com/Article/1911032/
Upgrading-Windows-Desktop-Applications-with-.NET-Core-3, in
the section “What Doesn’t Work in .NET Core Out of the Box?”

What’s New in .NET Desktop?
Once you’ve upgraded your application to the .NET 5 plat-
form, you have access to all the latest improvements and
updates. There are really a lot, and I want to highlight just a
few of them related to desktop development.

Bring the Web to Your Desktop with WebView2
Microsoft is happy to announce a release of WebView2, the new
browser control that allows you to render Web content (HTML/
CSS/JavaScript) with the new Chromium-based Microsoft Edge
in your desktop applications (shown on Figure 4). In November
2020, it becomes available for Windows Forms and WPF appli-
cations targeting .NET 5, .NET Core 3.x, and .NET Framework.

You’re probably familiar with the predecessor of WebView2, the
WebBrowser control that’s been around for quite some time
and is based on Internet Explorer. Then we built an Edge-based
version of it called WebView. The new control was a big step
forward but still had its limitations; it couldn’t be embedded in
your WPF and Windows Forms application and worked only on
Windows 10. With the upgraded version of it, WebView2, we’re
removing those limitations. Now it’s consistent across all Win-
dows versions starting from Windows 7, has the latest improve-
ments of the browser, and will receive updates every six weeks,
allowing you to always stay on top of the most recent tech. For
more details, check out the documentation and getting started
guides at http://aka.ms/webview2.

Figure 6: Suggested Actions for Image, Button, and TextBlock in XAML designer

Windows Desktop Apps and .NET 5

73codemag.com

Because accessibility was our top priority, WinUI 3 has very
good integration with the Narrator tool. It also has good
performance, and you can blend DirectX and XAML content
to get even better performance.

WinUI 3 is still in development, but you can use the Preview
version that’s already available. Visit https://aka.ms/winui3
for more information and the Getting Started tutorial. Once
you install the VSIX package with the project templates,
you’ll see the Blank App, Packaged (WinUI in Desktop)
option in the Visual Studio New Project dialog (Figure 11).

On selecting this template, Visual Studio creates a default
WinUI 3 project that’s shown in Figure 12.

cations as well. Although the experience working with the
designer will remain very similar, you’ll notice faster load
performance, 64-bit configuration support (custom controls
will load normally just like they do in x86 configuration),
bug fixes, and the new features described above.

To upgrade to the new designer for .NET Framework applica-
tions, in Visual Studio navigate to Tools > Options > Pre-
view Features and check New WPF XAML Designer for .NET
Framework and restart Visual Studio.

XAML Designer Refresh Button. If you face a rendering issue,
there’s no need to close and re-open the designer view. Now
you can just click the Refresh button, as shown in Figure 9.

Updates in Windows Forms
By enabling Windows Forms on .NET Core and .NET 5, we manifest
our commitment to innovate in Windows Forms! Even though
most of the team’s effort this year was focused around enabling
Widows Forms designer for .NET 5 projects, we had a chance to
add a few new features. And for that we owe a big “thank you” to
our OSS community! One of the most exciting features was sub-
mitted by our open source contributor Konstantin Preisser. This
was a Task Dialog that allows you to add customizable dialogs to
your Windows Forms applications as shown in Figure 10.

We’d like to thank Tobias Käs, Hugh Bellamy, and many oth-
ers who have been improving Windows Forms with us!

Explore New .NET desktop: WinUI 3
In addition to Windows Forms and WPF, .NET 5 includes sup-
port for WinUI 3—the evolution of UWP’s XAML technology. It
includes the entire presentation layer (XAML, composition, and
input) decoupled from the Windows 10 OS, an extensive con-
trols library (including WebView2), and allows you to use the
desktop application model in addition to the UWP app model.

Because WinUI 3 evolves from UWP, it supports various in-
put types such as touch, mouse, keyboard, gamepad, and
others, and allows different types of form factors and DPIs.

Figure 7: Binding Failures indicator and window

Figure 8: Binding Failures indicator and window

Figure 10: Windows Forms task Dialog

Figure 9: XAML Designer
Refresh button

Windows Desktop Apps and .NET 5

74 codemag.com

 v

Nov 2019
Volume 20 Issue 7 (CODE Focus)

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bri Achtman	 Cesar de la Torre
Ed Charbeneau	 Ryan Davis
Benjamin Day	 Mika Dumont
Olia Gavrysh	 Kendra Havens
Julie Lerman	 Dominic Nahous
Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $49.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

 v

Nov 2019
Volume 20 Issue 7 (CODE Focus)

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bri Achtman	 Cesar de la Torre
Ed Charbeneau	 Ryan Davis
Benjamin Day	 Mika Dumont
Olia Gavrysh	 Kendra Havens
Julie Lerman	 Dominic Nahous
Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $49.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

 v

CODE Focus Nov 2020
Volume 17 Issue 1

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bri Achtman	 Shayne Boyer
Phillip Carter	 Olia Gavrysh
Richard Lander	 Immo Landwerth
Julie Lerman	 Jeremy Likness
Beth Massi	 David Ortinau
Angelos Petropoulos	 Daniel Roth
Bill Wagner

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $49.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

� Olia Gavrysh
�

Figure 11: The WinUI template in the New Project dialog

Figure 12: WinUI 3 default project in Solution Explorer

Looking at the default project, you can notice that it has simi-
lar structure to WPF project; it includes the App.xaml file that
contains the application markup and MainWindow.xaml file
with XAML markup of the MainWindow object that derives from
the Window object. This way, WPF developers can take advan-
tage of their existing skillset while working with WinUI 3.

Currently WinUI 3 has a temporary limitation: In order to deploy
the application like a MISX package, the default solution in-
cludes a Windows Application Packaging project. This is a work-
around that we’ll remove in subsequent previews of WinUI 3.

Get Started
As you’ve seen there are a lot of improvements to the Win-
dows desktop support in .NET 5. If you’re looking for archi-
tecture guidance on moving your existing Windows desktop
applications forward, see https://docs.microsoft.com/en-us/
dotnet/architecture/modernize-desktop/. To get started with
.NET 5, install the latest version of Visual Studio 2019 or head
to https://dot.net/get-dotnet5.

Windows Desktop Apps and .NET 5

 v v v

