
J U L
AUG
2021

Title
Text Title

Title
Text Title

Title
Text Title

MS Graph, Power BI, Insomnia, Python, C#
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Title

DevIntersection

DevIntersection

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $50.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill Me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �Let’s Talk About Microsoft Graph

It seems like everyone’s talking about Microsoft Graph these days.
Sahil shows you why.
Sahil Malik

16 	 �How to Use the Fetch API
(Correctly)
Paul continues looking at the XMLHttpRequest object in this exploration
of the Fetch API. It’s not all sunshine and unicorns, but it’s pretty useful
nonetheless.
Paul Sheriff

29 	 �Eliminate Secrets from
Your Applications with
Azure Managed Identity
When it’s time to deploy your app, and you’re using Axure SQL and Azure,
you’re going to want to use Azure Managed Identity to authenticate and
access the database. Julie shows you that it’s not even a little bit scary.
Julie Lerman

36 	 �Test Your REST APIs Using
Insomnia REST Client
APIs are everywhere! Joydip shows you how to take advantage of
them using a new, free, cross-platform desktop framework, Insomnia,
with its user-friendly interface and sophisticated features.
Joydip Kanjilal

44 	 �Building Command Line Utilities
in C# and Python
Rod whips up a quick app to help a friend and ends up discovering some
pretty cool multi-platform features that are part of command line utilities.
Rod Paddock

52 	 �Building a VS Code Extension
Using Vue.js
Most of the core functionalities in VS Code are extensions, and
you can extend almost any feature, from color themes, to activity bars,
to displaying data. Bilal gives an overview of how extensions work
and some cool ideas for what to do with them.
Bilal Haidar

67 	 �Power BI and R: A Visual Power
Punch
Data Visualization can be the best way to get your message across.
Helen shows you how, using Power BI and R.
Helen Wall

Columns
74 	 �CODA: On Commitment…

John looks at the nature of commitment in terms of getting
things done at work.
John V. Petersen

Departments
6 	 Editorial

25 	 �Advertisers Index

73 	 Code Compilers

LEAD Tools

6 codemag.comEditorial

Don’t Go Down with Sunk Costs
It all started with a comment from a client, “I can definitely help work on these reports when we go live.”
That single statement caused me to throw away a significant amount of work on a current project that
we’re planning on shipping this summer. This comment made a huge amount of sense, as reports are

EDITORIAL

6

� Rod Paddock
�

Instrumentation is Key
A few years back, my team was responsible for re-
writing a website for a credit card company. When we
deployed the website, we had several stability issues
that were tough to batten down. Luckily for us—and
I mean LUCKY—we discovered a set of telemetry tools
that we could “bolt on” to our application to pinpoint
bottlenecks and other stability issues. This deploy-
ment taught me the importance of having logging
and telemetry built into our applications from the
beginning. It’s amazing how useful a logging system
can be when operating an application. Thanks to my
bud JVP for reminding me of this important aspect.

No Code Remains Test Code
Sometimes I begin code with the word Test (or Hack or
Junk or Spike) in the name of the program, class, or
application and often the name sticks with it through-
out production. Take a look at this list of function
names: getDailyReportFormTest(), getGaugeChecklist-
FormTest(), getMasonryFormTest(). There are around
30 of these with the word Test() in a code base that’s
now in its eighth year. Although this is a small techni-
cal debt, it’s still a debt. Remember: Code lives forever.

I hope that some of these life lessons help you pay
down technical debt early or not take the debt on
in the first place. These types of decisions may be
costly or difficult and or just tough to implement.
Be bold and make the call as soon as you can.
When it comes to my reporting issue, I’ve seldom
felt better about a development decision. Make the
call: You’ll feel better when you do.

PS: A big thanks to my brain trust for helping add
good ideas to this editorial.

the lifeblood of many companies (including this
one) and we don’t want to be in the way of that
company progressing.

When I heard this comment for the first time, I
thought to myself “No problem. We can show the
client how to create new reports and compile them
into our code base.” That was fine, until yesterday!
Yesterday I was fighting the report writer component
we’d chosen for our application and after an hour of
battling this tool, I threw in the towel. I thought to
myself, “If I’m fighting this, our client has zero hope
of success. It’s time to rethink this idea.”

Yesterday I made the decision to throw away the
reporting work we’d done to date and moved
our reports into SQL Server Reporting Services
(SSRS). I proceeded to install SSRS and the req-
uisite Visual Studio tooling so I could begin the
migration for the first report we targeted. By the
end of the day, I‘d migrated the bones of the re-
port over and I finished wiring this report into
our application in the early hours of today. I felt
a huge burden lifted from my shoulders.

As you may have come to expect, there’s an im-
portant lesson in this brief tale of changing out
reporting solutions. The important lesson here is
that we’re avoiding the sunk-cost fallacy.

Individuals commit the sunk cost fallacy when they
continue a behavior or endeavor as a result of previ-
ously invested resources (time, money, or effort)
(Arkes & Blumer, 1985). This fallacy, which is related to
loss aversion and status quo bias, can also be viewed
as bias resulting from an ongoing commitment. Cita-
tion: https://www.behavioraleconomics.com/resourc-
es/mini-encyclopedia-of-be/sunk-cost-fallacy/

The world seems hell-bent on fully implementing
the sunk-cost fallacy and this axiom is what leads to
costly project overruns. In the case of software de-
velopment, the sunk-cost fallacy has the tendency to
cause serious long-term technical debt. In the words
of the legendary basketball player Dikembe Mutom-
bo, “Not in my house.” At this stage of development,
we decided that the short term sunk-cost we’ve in-
curred vastly outweighs the long-term stability and
maintainability of our project. After thinking about
this a bit more, I decided to think about what types
of decisions developers make daily that have the po-
tential for either savings or loss. Here are a few…

In the Interest of Time
Sometimes developers take shortcuts in order to
“just get something out the door.” This is known
as In the Interest of Time coding. See, that
phrase has an accurate acronym--ITIOT. I pinged
my “brain trust” to give me ideas and my senior
developer Greg said this:

In software development,
I often have to make the
decision to “just make it
work” or make it “work for
the next guy.” I’ve completely
changed everything to make
the code “make sense” to the
next developer that might
have to look at the code.
That dev might just be me!

There are no quick fixes and that code that you
“spiked” will live on much longer than you can
ever anticipate. If you ever find yourself doing
ITIOT coding, make sure you go back and make
the proper fix as soon as possible. Pay off that
quick loan ASAP.

Getting Stuck on Features is a
Smell
Over 30+ years of writing code, I’ve learned to
recognize a smell when I get stuck on a imple-
menting a feature. This smell tells me that the
feature is poorly defined, it’s an incorrect solu-
tion, or it just can’t be implemented as requested.
Ignoring this type of smell is a common source
of long-term technical debt. If it was difficult to
implement, it will likely be difficult to maintain.

In nearly all cases when I encountered this smell,
I returned to the client or stakeholder with the
issue and, more often than not, a better solution
was derived, and we were able to get past the
“stuck-ness.” Sometimes a 15-minute phone call
can save countless hours of development.

Errata

An error was found after our May/June publication
in Joydip Kanjilal’s article on JWT authentication
in ASP.NET Core 5 (https://www.codemag.com/
Article/2105051/Implementing-JWT-Authentication-
in-ASP.NET-Core-5) and has been corrected in
the online version of this article and in GitHub
(https://github.com/joydipkanjilal/jwt-aspnetcore).

codemag.com

Does your team lack the technical knowledge or the resources to start new software development projects,

or keep existing projects moving forward? CODE Consulting has top-tier developers available to fill in

the technical skills and manpower gaps to make your projects successful. With in-depth experience

in .NET, .NET Core, web development, Blazor, Azure, custom apps for iOS and Android and more,

CODE Consulting can get your software project back on track.

Contact us today for a free 1-hour consultation to see how we can help you succeed.

codemag.com/OneHourConsulting
832-717-4445 ext. 9 • info@codemag.com

TAKE
AN HOUR
ON US!

GET YOUR

FREE HOUR

8 codemag.comLet’s Talk About Microsoft Graph

ONLINE QUICK ID 2107021

Let’s Talk About Microsoft Graph
If you work in the Microsoft ecosystem, it’s hard to ignore something as big as Microsoft Graph. Imagine that you’re new
to the Microsoft ecosystem and your boss just attended a Microsoft conference, and everyone’s talking about Microsoft
Graph, as they often are. Your boss feels that your product must integrate with Microsoft Graph because apparently, it’ll help

people and organizations get more done. That can’t be a bad
thing, right? It’s your job now, as a developer/architect, to
figure out this amazing technology called Microsoft Graph.
This is where you start hitting the search engines trying to
educate yourself.

I tried to find a definition for Microsoft Graph. Wikipedia
(https://en.wikipedia.org/wiki/Microsoft_Graph) likes to
define it like this: “Microsoft Graph is a Microsoft developer
platform that connects multiple services and devices.”

I guess that’s nice. It’s a developer platform, I’m a devel-
oper, I’m on some kind of platform, like maybe Java or C#.
I’m not 100% sure yet what this means, but I’m intrigued. I
narrow my search to Microsoft docs.

I found the following definition in Microsoft’s official docs
(https://docs.microsoft.com/en-us/graph/overview):

“Microsoft Graph is the gateway to data and intelligence in Mi-
crosoft 365. It provides a unified programmability model that
you can use to access the tremendous amount of data in Micro-
soft 365, Windows 10, and Enterprise Mobility + Security. Use
the wealth of data in Microsoft Graph to build apps for orga-
nizations and consumers that interact with millions of users.”

Wow, so this is a developer platform, and a gateway to data
and intelligence. As a developer, the line about the unified
programmability model makes some sense. But I’m not sure
if I want to interact with millions of users. I think I’ll need
to read up on what this Microsoft 365 thing is that they’re
talking about. I’ve heard of Office 365. Did they rename it?
More search bingeing is in order.

I land on this definition of Microsoft 365: “A productivity
cloud that delivers innovative and intelligent experiences,
rich organizational insights, and a trusted platform to help
people and organizations get more done.”

Well, I’m glad it’s a trusted platform to help people and
organizations get more done. I certainly wouldn’t want an
untrusted platform that would help people and organiza-
tions get less done.

Gosh! We seem to have a department of confusing docu-
mentation at work here. Just tell me already what Graph
is and how I integrate with it. I figure that you’re just as
frustrated, so I wrote this article. If you’ve never heard of
Microsoft Graph, and your boss has the sudden urge to use
it, what does it mean to you, the developer?

What is Microsoft Graph?
Before I go much further, I have no doubt that no matter
what words I pick to describe Microsoft Graph, someone
is going to poke holes into my wordsmithing capabilities.
That’s okay, this is how I understand Graph. But wait a sec-

ond! Before I explain what Microsoft Graph is, you need to
know what Azure AD and the Microsoft identity platform are.
Let’s take a short detour into Azure Active Directory and the
Microsoft identity platform first.

Azure Active Directory (Azure AD) is a cloud-based iden-
tity and access management service. The Microsoft iden-
tity platform is an ecosystem that’s a superset of Azure
AD. When you log into Office 365, you’re logging into Azure
AD. When you log into Microsoft Teams, you’re logging into
Azure AD. Given how flexible and extensible Azure AD is,
there are many variants of the user experience that the end
user may see. Some may be on iOS. Some are in the browser.
Some are federated to ADFS (Active Directory Federation
Services). Some use SAML, some use OpenID Connect. Mod-
ern authentication, which is another ill-defined umbrella
term, is quite flexible. Azure AD is Microsoft’s flavor of mod-
ern authentication and so much more.

Now back to Microsoft Graph. Microsoft Graph is a bunch of
programmable features that are protected by the Microsoft
identity platform and are accessible from any platform. And
when I say a bunch of programmable features, it’s mainly
three: APIs, connectors, and Data Connect.

APIs
APIs are simple REST APIs available at https://graph.mi-
crosoft.com. To be fair, there are a LOT of APIs here. A lot
of stuff in the Microsoft cloud is available through various
endpoints under this URL. You can really go to town with
what you can do with these APIs. For example, you can ac-
cess your mail. You can access your colleague’s mail pro-
tected by permissions, of course. You can access calendars.
You can invite users. You can… I really should stop. You can
do a lot and I really mean a lot. Here’s the currently released
functionality https://docs.microsoft.com/en-us/graph/
api/overview?view=graph-rest-1.0 and here’s the function-
ality currently in beta https://docs.microsoft.com/en-us/
graph/api/overview?view=graph-rest-beta. Take a moment
to glance through the possibilities. You can really program
the heck out of the Microsoft ecosystem with MS Graph.

You can really program
the heck out of the Microsoft
ecosystem with MS Graph.

These APIs are all protected by the Microsoft identity plat-
form. Let me really simplify this for you: If you’ve ever called
an OpenID Connect-protected API, calling a Microsoft Graph
API is exactly the same. In fact, with the SDKs that Microsoft
provides, it’s even easier. And by SDKs, I mean not just the
SDKs that allow you to authenticate to any Azure AD-pro-

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting with
fellow geeks in real time.
His talks and trainings are
full of humor and practical
nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

9codemag.com Let’s Talk About Microsoft Graph

you must have a basic understanding of how APIs work in
the Microsoft identity platform.

These APIs are accessible using standard OpenID Connect
mechanisms. This means that in order to access this API,
you have to pass in an access token. The access token is a
string you pass into the Authorization header in your HTTP
request to the API. It typically has a whole bunch of infor-
mation, such as the validity, who it was issued to, a signa-
ture, and much more.

A key but optional part of that access token is the user’s
identity. Pay special attention to this: The user’s identity
is optional.

Why would the user’s identity in an access token be op-
tional?

Think about the various kinds of APIs that Microsoft Graph
can expose. I’ll give you two examples: I want to read all us-
ers’ emails versus I want to read the logged-in users’ emails.

Reading all users’ emails is something that a background
process, such as a daemon or a CRON job, would do. Here,
the user’s identity isn’t important, but the application’s
identity is important. However, if I say that I wish to read
the logged-in users’ emails, I must know who the logged in
users are.

In this example, when I wish to call an API from an applica-
tion without a signed in user present, such as background
services or daemons, I’d use an application permission.

In contrast, when I wish to call an API from an application
where the signed-in user is present, I’d use a delegated per-
mission. Microsoft Graph leverages another capability of the
Microsoft identity platform called “administrator consent.”
Put simply, certain delegated permissions are low risk and
can therefore be consented by non-administrator users.
Certain permissions are higher risk and they require admin-
istrator consent. All application permissions require admin
consent, but some delegated permissions don’t require ad-
min consent.

There’s another feature of the Microsoft identity platform
called consent policies. Consent policies allow you to con-
trol this behavior for your organization to a large extent.

Effective Permissions
Before I move off the topic of permissions, there’s one more
important thing for you to know, and that’s the concept
of effective permissions. As the name suggests, effective
permissions are the permissions that your app has when it
makes a request to an API. But there’s a key difference in
how effective permissions work in delegated permissions
and application permissions.

For delegated permissions, the effective permissions of your
app are the least privileged intersection of the delegated
permissions that the app has been granted by consent and
of the privileges of the currently signed in user. In other
words, your app when using delegated permissions will nev-
er have more privileges than the signed in user.

Application permissions, on the other hand, are simply the
permissions that have been consented to for the application.

tected endpoint, such as MSAL, but there are also MS Graph
SDKs that really eliminate the friction for you.

As a developer, here’s what you need to know. MS Graph has
a bunch of REST APIs that you can call from any platform,
and Microsoft SDKs make it very easy to use the APIs.

Connectors
Microsoft Graph connectors are how your non-Microsoft sys-
tems provide data to the Microsoft cloud. There are a lot
of connectors available for Microsoft Graph, as can be seen
here https://docs.microsoft.com/en-us/microsoftsearch/
connectors-gallery. These connectors make it possible for
all those data sources to input data into the Microsoft
cloud, and make it available for services such as Microsoft
Search. As an example, there’s a connector available for MS-
SQL. This means that Microsoft search can now make MSSQL
searchable. How neat is that?

Data Connect
These APIs and connectors are great. But as an organiza-
tion invested in the Microsoft ecosystem, your lifeline—your
data—is sitting in the cloud. You can call a bunch of APIs,
but sometimes you need lots of data to do further insightful
work. Maybe you’re trying to write an AI model that analyzes
your user’s emails, for instance.

You can imagine that calling API after API under the users’ del-
egated permission can get cumbersome very quickly. In fact,
it’s not going to scale at all. It’s precisely to get around this
problem that Microsoft Graph Data Connect exists. It allows
you to work with the data in popular Azure datastores, such as
Azure Data Lake or Azure Blob storage. You can then analyze
that data using Azure Data Lake analytics or Azure SQL data-
base, and really your imagination is the limit at that point.

I used a particular phrase here: “users’ delegated permis-
sion.” This simply means that you’re trying to call the API on
the user’s behalf. I’ll talk more about this shortly. For now,
just imagine that if I want to read your email, I must do
it on your behalf. That’s exactly what the users’ delegated
permission allows me to do. It allows me to perform an ac-
tion, such as reading your email, on your behalf. And yes,
there‘s a permission model built around this, which requires
something called “consent” from the user. Afterall, if I’m
reading your email, you must consent to it, right? Or an
administrator can consent on your behalf. But I’m getting
ahead of myself here. I’ll explain consent shortly.

My point is that in the back of your mind, you might be
thinking that for bulk data processing, there must be some
kind of controls built inside of Microsoft Graph Data Con-
nect. After all, you don’t want anybody reading just any-
body’s email; you want some controls on this ecosystem.
Random access would entirely defeat the purpose of con-
sent. You’ll be glad to know that Microsoft Graph Data Con-
nect has a lot of controls built in so an administrator can
set up various rules, and exceptions that define exactly what
data is exposed when using Microsoft Graph Data Connect.

Application Permissions vs.
Delegated Permissions
A very large and key part of Microsoft Graph are the APIs
that it exposes. These APIs are protected by the Microsoft
identity platform. To understand how you call these APIs,

10 codemag.com

left-hand side. On this page, under the Manage section,
look for App registrations and click New registration, as
shown in Figure 1.

Clicking that button shows you a form where Azure Active
Directory asks you for the basic information it needs to cre-
ate this app registration. Specifically, you’ll be asked for
three bits of information.

First, you’ll be asked for the name of this application. This
is a name that should make sense to the administrators and
the users. For example, this could be “fancy email applica-
tion”. Go ahead and provide the name “MSGraphClient”.

Second, it asks you what kind of accounts can sign into this
application. There are four choices here.

•	 A single tenant application allows an account from
the current Azure Active Directory to sign in. This is
the simplest choice, and this is what I will pick in this
scenario. I’ll briefly describe what the other choices
do as well.

•	 The second choice is to make the application multi-
tenant. This means that users from other Azure ac-
tive directories can also sign into my application. Of
course, this is controlled by consent.

•	 The third choice is that you can allow either multiten-
ant users, or Microsoft accounts to use your applica-
tion. It’s worth noting that there may be significant
API differences when you’re signing in using a Micro-
soft account versus an Azure Active Directory account.
For example, not every feature is exposed to personal
Microsoft accounts.

•	 Finally, you can choose to target your application to
only personal Microsoft accounts.

The third question that Azure Active Directory asks you dur-
ing an app registration is an optional question. It asks you
for one or more redirect URLs. This is a whitelisted list of
URLs to which Azure Active Directory can send the tokens.
Note that these tokens wield a lot of power and responsibil-
ity. An access token is like cash: If you find it lying on the
ground and you pick it up, it’s yours. Therefore, Azure Active
Directory must be very careful where to send these access
tokens. Depending upon the specific OpenID Connect grant
you use, this may be sent either as the result of a post re-
quest or posted by Azure Active Directory to a whitelisted
URL. Therefore, Active Directory must ask you for redirect
URLs so it knows which URLs are safe. Additionally, it ties
down what you can specify in that redirect URL, such as that
it must be HTTPS and it can’t use wildcards. I’ll configure
this later, so just leave this blank for now and click the reg-
ister button.

I just mentioned that an access token is like cash. It belongs
to whoever discovers it. There is, however, another standard
called proof of possession, that proves that the requestor
who requested the access token is the one sending the ac-
cess token. This effectively makes the access tokens a little
more secure because it gives the called API confidence that
this access token wasn’t stolen. Further discussion about
this is out of scope for this article.

Once the app is registered, you’re shown a bunch of infor-
mation. A key information here is a GUID called the Client
ID, sometimes also referred to as the Application ID. Note

How Do You Call Microsoft Graph?
I think you already know the answer to this. You call a REST
API. If only things were this simple! Because the APIs are
authenticated, you first need to get an access token. As you
can imagine, the access token has permissions to do some-
thing versus not being allowed to do something else. Also,
the access token may or may not have user identity. Then
there is the whole idea of throttling, and Graph SDKs, that I
won’t get into in this article.

There are a few distinct patterns emerging here. I think I’ll need
an access token. To get an access token, I’ll also need to some-
how specify what permissions the access token will have. These
are specified in an app registration, which is a concept unique
to the Microsoft identity platform, although other OpenID Con-
nect platforms have similar equivalent concepts as well.

This means that there are three distinct steps:

•	 Set up an app registration.
•	 Set up permissions.
•	 Get an access token.

With the access token, I can call Microsoft Graph.

Set Up an App Registration
To call Microsoft Graph, or, for that matter, any API, your
application must be granted permissions to call that certain
API. In other words, Azure Active Directory needs to know
about your application. This process of informing Azure Ac-
tive Directory everything about your application that Azure
Active Directory needs to care about so it can provide au-
thentication services to it is called app registration.

As you can imagine, an app registration contains a lot more
information than just permissions. For example, in an appli-
cation that users are signing into, you need to know a reply
URL. This reply URL is the whitelisted URL to which Azure
Active Directory will send the tokens. Perhaps your applica-
tion logic depends on certain claims. Your app registration
contains information about the claims your app expects.

For my purposes here, let’s go ahead and set up an Azure
Active Directory app registration. Because I intend to target
both delegated permissions, which run on the user’s behalf,
and applications permissions, which run on the applica-
tion’s behalf, I’ll configure the app registration accordingly.
In other words, the app registration must allow for an ap-
plication to sign in and for a user to sign in.

It’s possible to set up an application registration through
the Azure portal, Azure CLI, or through PowerShell. For the
purposes of this article, I’ll stick with the portal.

To register an application, go ahead and visit portal.azure.
com, and navigate to the Azure Active Directory link on the

Figure 1: Create a new app registration.

Let’s Talk About Microsoft Graph

11codemag.com

admin consent required. Now this is interesting because not
all permissions are equal. Some of them are a little more
sensitive than others. For permissions that are deemed
slightly more sensitive in nature, the logged-in user con-
senting must be an administrator. And finally, there’s the
status column. The status column displays consent grants.
That’s best explained with an example, when you add a new
permission.

At the top of Figure 3, you should see an Add a permission
button. Go ahead and click on it. This should open a pane
on the right-hand side and Microsoft Graph should appear
prominently on the top. Additionally, there are a number
of other APIs that Microsoft exposes that should also be
visible in that same pane. If you’ve authored custom APIs,
there should be a tab called My APIs available over there
as well. For now, go ahead and click on Microsoft Graph,
and you should be prompted to pick between delegated
permissions and application permissions. For the purposes
of this article, I’ll work with both Delegated and Applica-
tion permissions. This is a great way to see both in action.
You already have a delegated permission called User.Read
added, so you need to add an additional application permis-
sion. How about a permission that lets me read all users’
profiles? Go ahead and click on application permissions tab,
and under the user category, look for a permission called
User.Read.All. Select it and click on the Add Permissions
button. Your app registration’s permissions should now look
like Figure 4.

Notice anything strange in Figure 4? Under the status col-
umn, there’s a “not granted for” status written for the newly
added permission. When you clicked on the add permissions
button, you didn’t actually add the permission. You merely
requested for the permission to be added. In order to actu-
ally add the permission and make it usable, you need to
grant consent. There are two ways to grant consent. One
way is to click on the grant admin consent button at the top
of Figure 4. This is necessary for application permissions
because application permissions, when called from a head-
less process, don’t have the ability to show an interactive
user interface in order to grant consent. The other option is
that the user during the log-in process can grant consent.
For the purposes of this article, while you are in the Azure

that this is different from the Object ID. Note down the Ten-
ant ID and Client ID shown on this screen. The Tenant ID
is a GUID that represents your Azure Active Directory and
is shared by all app registrations registered in your Azure
Active Directory.

Set Up Permissions
With my app registration in place, let’s add some permis-
sions to it. Specifically, I wish to inform Azure Active Direc-
tory that my app or the user using my app has the ability to
call certain APIs. To do so, visit the Azure portal again, and
under Azure Active Directory, look for App registrations and
locate your MSGraphClient app again. Go ahead and click on
it. You’ll note that there’s a menu on the left-hand side, as
shown in Figure 2.

Here, click on API permissions. You’ll notice, as shown in
Figure 3, that there’s already a permission called User.Read
added for your app. This allows the app to read the absolute
basic profile of the user. To be precise, you don’t need this
permission in an app registration. You could go ahead and
remove it, and the app registration is still valid. However,
this permission lets you read the absolute basic profile in-
formation of the user that signs in. It’s innocuous, so leave
it alone.

There are several other interesting things going on in Fig-
ure 3. For example, notice that permissions are grouped un-
der Microsoft Graph. Microsoft Graph is just one of the APIs,
incidentally, authored by Microsoft, that’s available for you
to use. There are several other APIs available for you as well.
In fact, you can author your own APIs, and then allow your
own applications to be able to call those APIs. This is out of
scope for this article.

Also notice that under the type column, it’s clearly specified
which permissions are application permissions and which
are delegated permissions. In this case, the out-of-the-
box permission of User.Read is a delegated permission. Can
you guess why that’s a delegated permission? Well, you’re
reading the profile of the logged-in user. This requires you
to have the user’s identity. Therefore, it’s a delegated per-
mission. Additionally, there’s a simple description for the
permission, and there’s another interesting column called

Figure 2: The management
menu of an App Registration

Figure 3: The permissions of an app

Figure 4: A newly added permission

Let’s Talk About Microsoft Graph

12 codemag.com

of requesting the access token between these two is dif-
ferent. OpenID Connect has various flows that allow you to
request access tokens. Some of them work with application
identities, and some of them work with application and user
identity. Describing each flow is out of scope for this article,
but I assure you that it’s a very interesting topic and I hope
to cover it in a future article.

For the purposes of this article, I’ll show you a simple trick
to get an access token. I’ll show this in two parts. First,
I’ll call the API under application permissions and therefore
request an access token on behalf of the application. Sec-
ond, I’ll call the delegated permission and request an access
token on behalf of the user.

Call the Application Permission API
To call an API using an access token with application per-
mission, you’ll need to first ask Azure Active Directory for
such a token. One way to get this token is using a standard
OpenID Connect grant, called the client credential grant.
Client credential grant is a simple POST request to the Azure
Active Directory token endpoint with the following information:

•	 Who are you?
•	 What do you need this token for?
•	 Prove your identity with a credential.

In this scenario, the question of who you are is answered
by the identity of the application. In your app registration,
you’ll see something called the application ID. Sometimes
we also refer to this as client ID. Go ahead and copy this
information from your app registration.

In this scenario, the question of what you need this token
for is answered with Microsoft Graph. In the case of Azure
Active Directory, there’s a special scope called .default.
That’s what you need to use with client credential flow. So
the scope you’re requesting an access token for is https://
graph.microsoft.com/.default. Specifying this scope causes
Azure Active Directory to return an access token that’s valid
for all previously consented permissions.

Finally, you can prove your identity by either providing a
secret or using a certificate. Although the secret is a simpler
choice, a certificate is a safer choice. This is because when
you use a secret, you’re required to send the secret over
the wire. When you use a certificate, you send a string that
merely proves your possession of the accurate certificate.
It’s worth mentioning that Azure Active Directory, when
using client credential flow, won’t validate expired certifi-
cates, or certificates from a certificate authority, or certifi-
cate revocation lists. The certificate is merely a credential.
To provide a secret, go to your app registration area, and
under Certificates and Secrets, go ahead and add a secret.
This secret is shown to you only once and you should treat

portal, go ahead and click on the grant admin consent but-
ton that you see on top of Figure 4. Verify that the consent
is granted. This can be seen in Figure 5.

At this point, the application has the necessary permissions.
But before I go much further, I think it’s worth mentioning
another animal called the Azure AD Graph. The permission
you added, for instance User.Read, is shorthand for https://
graph.microsoft.com/User.Read. Although that reads like a
URL, it’s merely a unique string that allows you to iden-
tify a permission. It’s mere co-incidence, and perhaps some
planning on Microsoft’s part, that Microsoft Graph is also
exposed at https://graph.microsoft.com. There exists an-
other User.Read in the Microsoft ecosystem, and that’s
https://graph.windows.net/user.read. Pay close attention:
One ends in .com and the other ends in .net. Again, these
are just unique strings. Graph.windows.net represents AAD
Graph, which is on its way to deprecation. You shouldn’t use
it. Unfortunately, you’ll find a lot of parallel permissions
between Microsoft Graph and AAD graph, and that could get
confusing. But as AAD graph is on its way to deprecation,
pay close attention and make sure that you’re using Micro-
soft Graph and not AAD graph.

With that out of the way, it is time to call Microsoft Graph.

Get an Access Token
To call Microsoft Graph, or for that matter any OpenID Con-
nect-protected API, you’re going to need an access token.
The access token is put in the authorization header in the
following format:

Bearer <access token>

The obvious question is: How do you get an access token
that will work with Azure Active Directory? The access to-
ken is intended for Microsoft Graph, but it’s issued to the
application, or the application and user pair. The process

Figure 5: Consent granted

curl --location --request POST
 'https://login.microsoftonline.com/<tenantid>/oauth2/v2.0/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'client_id=<guid>' \
--data-urlencode 'scope=https://graph.microsoft.com/.default' \
--data-urlencode 'client_secret=secret' \
--data-urlencode 'grant_type=client_credentials'

Listing 1: Requesting an access token

curl --location --request GET 'https://graph.microsoft.com/v1.0/users' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer '

Listing 2: Call the API

Let’s Talk About Microsoft Graph

13codemag.com

it like a password. In fact, production applications prefer to
use managed identity. Where you can’t use managed iden-
tity, put this secret in a key vault and use managed identity
to read from the key vault.

Now that you have a client ID, a scope, and a secret, you can
make a simple POST request to get an access token using
application permissions, as shown in Listing 1.

Sending the request shown in Listing 1 should return you a
JSON object, one of the nodes of which is the access token.
Copy and paste that access token, which you’ll use to call
the API. You can see how to call the API in Listing 2.

You can verify that this call returns the users in your orga-
nization.

Call the Delegated Permission API
To call Microsoft Graph, or, for that matter, any API under
the delegated permission, you first need to obtain an ac-
cess token that uses delegated permissions. Again, there
are many ways to do so, but I’ll use something called the
auth code flow using PKCE. I’ll leave the description of all
these deep identity related topics or a future article. For
now, just follow along.

At a high level, this flow requires you to request a code.
Using that code, you can request an access token. There’s
some protection involved using something called the code
challenge, so Azure AD has some confidence that the party
requesting the access token is the party that originally re-
quested the code.

First let’s request the code. Because there’s a user involved
here, you’ll have to perform this operation in a browser.
This allows the user to sign in, and therefore the token will
be issued on behalf of the user. This token will be sent back
to a whitelisted URL, so in your app registration, under au-
thentication, choose to add a Web application with http://
localhost as a reply URL for a Web application. Also choose
to enable ID tokens for hybrid flows. This can be seen in
Figure 6.

Now you need to create a URL for the user to sign in. The
URL can be seen in Listing 3. There’s a lot going on in List-
ing 3 and frankly, in most cases, SDKs such as MSAL will
abstract it for you. Wherever you have an SDK such as MSAL
available, you should use it. But because I’m doing this by
hand here, I need to craft up a URL.

In Listing 3, you may see a lot of things that may be unfa-
miliar. I’ll leave all those details for a future article where I
get to talk about authentication in depth. For now, replace
the strings in various place holders, such as the GUID for
the Client ID and the Tenant ID, and then open a browser
window in private mode and visit the URL from Listing 3.
That URL should ask you to log in. After you provide your
credentials, you’re shown an ugly window, like Figure 7.

It may look like a request failed from Figure 7, but the real-
ity is that the request worked. In a real-world application,
you’d have something listening on localhost, or whatever
redirect URL you specified in your Web application authen-
tication settings. Because I don’t have anything listening
there, I’ll have to perform this step manually. Copy and
paste the entire URL from your browser window that should Figure 6: The app’s authentication configuration

https://login.microsoftonline.com/<tenantid>/oauth2/v2.0/authorize?
 client_id=<guid>&
 response_type=code%20id_token&
 redirect_uri=http://localhost&
 response_mode=fragment&
 scope=openid&
 state=1245&
 nonce=abcde&
 code_challenge=n4bQgYhMfWWaL-qgxVrQFaO_TxsrC4Is0V1sFbDwCgg&
 code_challenge_method=S256

Listing 3: The login URL

curl --location --request POST
 'https://login.microsoftonline.com/<tenantid>/oauth2/v2.0/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'redirect_uri=http://localhost' \
--data-urlencode 'client_id=<guid>' \
--data-urlencode 'grant_type=authorization_code' \
--data-urlencode 'code=<code>' \
--data-urlencode 'code_verifier=thisisasecret' \
--data-urlencode 'scope=https://graph.microsoft.com/.default' \
--data-urlencode 'client_secret=<secret>'

Listing 4: Requesting an access token

curl --location --request GET
 'https://graph.microsoft.com/v1.0/me\
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer '

Listing 5: Call the API

Let’s Talk About Microsoft Graph

14 codemag.com

This makes sense, because the logged-in user doesn’t have
the ability to read all users’ profiles, because you didn’t give
such a permission consent. If you’re curious, there is a del-
egated permission concern that does allow you to do this.
And that’s User.Read.All under delegated permissions.

Similarly, you can try the reverse—try calling the me end-
point from Listing 5 with the access token you obtained for
application permissions. Because there’s no me, no logged
in user, the request won’t work.

Summary
The word “graph” is annoyingly overused in the Microsoft
ecosystem and, perhaps the entire tech industry. Graph fa-
tigue aside, let me assure you that Microsoft Graph is a very
key part of the Microsoft ecosystem. It will serve you well,
so get familiar with it.

Of course, there’s a lot more I can say about Microsoft
Graph. There are some interesting APIs. There’s the whole
DevOps aspect. And then there are various tips and tricks
you can use—they help you discover new APIs, the right
permissions, and just make you more productive in general.

And then there’s the authentication bit that you should
know about.

More on such topics in future articles. Happy coding.

look like Figure 7. That entire URL should have a bunch of
query parameters, and the one you’re interested in is code.
Copy and paste its value. Another interesting parameter
here is the id_token, which proves the user’s identity. If
you’re interested, go ahead, and visit https://jwt.ms to de-
code that token. You should see some interesting claims,
including the user’s identity.

Next, you’ll redeem this code for an access token. The re-
quest for an access token can be seen in Listing 4.

Sending this request should send you back, among other
things, an access token. This is a short-lived token that you
can now use to make requests to Microsoft Graph. Feel free
to decode this token at jwt.ms and verify that it contains
the user’s identity.

To call MS Graph now under delegated permission, use the
code shown in Listing 5.

Verify that the request shown in Listing 5 shows the current
user’s data. There’s a very subtle difference between Listing
2 and Listing 5. The only difference is the URL you are call-
ing. Now let’s try and be a little naughty. The access token
that I have can call the granted delegated permissions. Let’s
try to use this access token to call the API from Listing 2.

You should see an error, as shown in Figure 8.

Figure 7: You got a code.

Figure 8: You can’t call application permission with a delegated permission token.

� Sahil Malik
�

Let’s Talk About Microsoft Graph

15Title articlecodemag.com

Are you being held back by a legacy application that needs to be modernized? We can help.

We specialize in converting legacy applications to modern technologies. Whether your application

is currently written in Visual Basic, FoxPro, Access, ASP Classic, .NET 1.0, PHP, Delphi…

or something else, we can help.

codemag.com/legacy
832-717-4445 ext. 9 • info@codemag.com

OLD
TECH HOLDING
YOU BACK?

16 codemag.comHow to Use the Fetch API (Correctly)

ONLINE QUICK ID 2107031

How to Use the Fetch API (Correctly)
In my last two articles, “Using Ajax and REST APIs in .NET 5” (https://bit.ly/3bRzfJ6) and “Build a CRUD Page Using JavaScript and
the XMLHttpRequest Object” (https://codemag.com/Article/2105031/Building-a-CRUD-Page-Using-JavaScript-and-the-XML-
HttpRequest-Object), I introduced you to using the XMLHttpRequest object to make Web API calls to a .NET 5 Web server.

Whether you use jQuery, Angular, React, Vue, or almost any
other JavaScript framework to make Web API calls, most
likely, they use the XMLHttpRequest object under the hood.
The XMLHttpRequest object has been around as long as Ja-
vaScript has been making Web API calls. This is the reason
it still uses callbacks instead of Promises, which are a much
better method of asynchronous programming.

In this article, you’ll learn to use the Fetch API, which is a
promise-based wrapper around the XMLHttpRequest object.
As you’ll see, the Fetch API makes using the XMLHttpRe-
quest object easier to use in some ways but does have some
drawbacks where error handling is concerned. To make
working with the Fetch API a little easier, a set of IIFEs (clo-
sures) are created in this article. Using a closure makes your
code easier to read, debug, and reuse. You don’t need to
have read the previous articles to follow this one. However,
the .NET 5 Web API project is created from scratch in the
first article, so reference that article if you want to learn to
build a CRUD Web API using .NET 5.

Download Starting Projects
The best way to learn to use the technologies presented in
this article is to follow along and type in the samples. I’ve
created a download with two starting applications, a .NET
5 Web API project, and a Web Server project (either MVC
or node). Download these projects at www.pdsa.com/down-
loads and click on the link entitled “CODE Magazine - How
to Use the Fetch API (Correctly)”. After downloading the
ZIP file, unzip it into a folder where you’ll then find three
folders. The \Samples folder contains the finished samples
for both MVC and node. The \Samples-WebAPI is the .NET
5 Web API project. The \Samples-Start folder contains an
MVC and a node project, one of which you’ll use to follow
along with this article.

In addition to the source code, you also need the Microsoft
AdventureWorksLT sample database. I’ve placed a version of
it on my GitHub account that you can download at https://
github.com/PaulDSheriff/AdventureWorksLT. Install this
database into your SQL Server.

Navigate into the folder Samples-WebAPI and load that
folder in Visual Studio Code or Visual Studio 2019. Open the
appsettings.json file and modify the connection string to
point to your SQL Server where you installed the Adventure-
WorksLT database. Run this project and when the browser
appears, type in http://localhost:5000/api/product. If you
have everything installed correctly, you should get an array
of JSON product objects displayed in the browser. Leave the
Web API project running as you make your way through this
article.

If you’re most familiar with MVC, navigate into the folder
\Samples-Start\AjaxSample-MVC. Load this folder into an-
other instance of Visual Studio Code or Visual Studio 2019.

Click on the Run > Start Debugging menu item to ensure
that your browser launches and displays a Product Informa-
tion page.

If you’re most familiar with node, navigate into the \Sam-
ples-Start\AjaxSample-Node. Load this folder into another
instance of Visual Studio Code. Open a terminal window and
type in npm install to load all dependencies on your com-
puter. Next, type in npm run dev to start the lite-server and
display a browser with a blank Product Information page.
One thing to note when using the node version is that if
you open the index.html page in VS Code, you see that it
reports four errors. They’re not really errors; it’s just that VS
Code doesn’t understand the templating engine you’re us-
ing. The templating engine is explained later in this article.

Application Architecture
As you read this article, you’re going to learn how to put
together a CRUD application using the Fetch API. I prefer
to show you a more robust, real-world example rather than
just a simple sample. To that end, I highly recommend that
you create separate .js files as I’m doing in this article, so
you have reusable code for any additional pages, and for
future applications.

Figure 1 shows you the overall architecture for the applica-
tion you’re going to build. The site.js file is used on almost
all pages in your site and contains a global appSettings
object. The appSettings object contains properties to hold
information that you’re going to need for your entire appli-
cation. I’ve already placed a few properties in here for you.
The most important one is the apiUrl property that contains
the URL for where your Web API server is located.

var appSettings = {
 "apiUrl": "http://localhost:5000/api/",
 "msgTimeout": 2000,
 "networkErrorMsg":
 "A network error has occurred.
 Check the apiUrl property to
 ensure it is set correctly."
}

The ajax-common.js file contains an Immediately Invoked
Function Expression (IIFE) assigned to a global variable
named ajaxCommon. You put methods into this closure to
handle generic Ajax calls and error handling. This file is ref-
erenced on any page where you make Ajax calls. The prod-
uct.js file is where you write methods to work specifically
with the product page (in this case, the index page). The
index page is going to display a table of products, and allow
you to add, edit, and delete product information by calling
the Web API. If you have more pages, like a customer page
or an employee page, create customer.js and employee.
js files, respectively, for the functionality of each of those
pages.

Paul D. Sheriff
http://www.pdsa.com

Paul has been in the IT
industry over 34 years. In
that time, he has success-
fully assisted hundreds
of company’s architect
software applications to
solve their toughest busi-
ness problems. Paul has
been a teacher and mentor
through various mediums
such as video courses,
blogs, articles and speak-
ing engagements at user
groups and conferences
around the world. Paul has
28 courses in the www.
pluralsight.com library
(http://www.pluralsight.
com/author/paul-sheriff)
on topics ranging from
LINQ, JavaScript, Angular,
MVC, WPF, ADO.NET, jQuery,
and Bootstrap. Contact
Paul at psheriff@pdsa.com.

17codemag.com How to Use the Fetch API (Correctly)

productController.setOptions({
 "apiUrl": "http://localhost:5000/api/",
 "urlEndpoint": "product"
});

The apiUrl property is self-explanatory, as it represents the
Web API server name where all your controllers are located.
The urlEndpoint property is what’s added on to the end of
the apiUrl to provide the specific controller within your serv-
er to call for this page. If you put these two together, you
end up with the URL http://localhost:5000/api/product.
Within the productController, add one more method called
get() that looks like the following code snippet.

function get() {
 let msg = vm.options.apiUrl +
 vm.options.urlEndpoint;
 msg += " - ";
 msg += JSON.stringify(vm.options);

 displayMessage(msg);
}

The code above is going to allow you to display the data
within the vm.options object so you can ensure that your
setOptions() method is working as you expect it to. Add the
get() method to the return object to expose this as a public
method from the productController variable.

return {
 "setOptions": function (options) {
 if (options) {
 Object.assign(vm.options, options);
 }
 },
 "get": get
};

Display Messages
Near the top of the index page, you’ll find two <div> ele-
ments defined with bootstrap row and column classes, as
shown in the following code snippet. Within the <div> ele-

Set Options in the productController
The appSettings object can be used everywhere in your ap-
plication because it’s declared outside of any closure. How-
ever, a better approach is to pass values from the appSet-
tings object into each closure that needs the settings. This
allows you to modify the settings for each page if needed.
Open the product.js file, located in the \scripts folder in
the node project and in the \wwwroot\js folder in the MVC
project, and just below the comment that reads // Private
Variables, add the following literal object.

let vm = {
 "options": {
 "apiUrl": "",
 "urlEndpoint": "product",
 "msgTimeout": 0
 }
};

Instead of having multiple variables with a closure, I prefer
to create a literal object called vm, which stands for “View
Model”. Within the vm object is where you add as many
properties as needed for your page. Throughout this article,
you’re going to add quite a few, but this first one is for the
options you wish to pass in from outside of the closure. To
set the values in the vm object, add a public function within
the return literal object located at the end of the closure.

return {
 "setOptions": function (options) {
 if (options) {
 Object.assign(vm.options, options);
 }
 }
};

Adding the setOptions property in the return object defines
the method setOptions() as a public method that can be
called by referencing the productController variable. Don’t
type this in anywhere, but the code snippet below is an ex-
ample of how you can call this setOptions() method and set
one or more of the properties in the vm.options property.

Figure 1: A good application architecture separates functionality into different closures.

18 codemag.com

Getting Started with the Fetch API
The fetch API is similar to using the jQuery’s $.ajax() meth-
od. You make a request to a Web API endpoint and a promise
object is returned in either a fulfilled or a rejected state. In
the get() method in your productController, modify the get()
method to look like the following.

function get() {
 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint)
 .then(response => response.json())
 .then(data =>
 displayMessage(JSON.stringify(data)))
 .catch(error => {
 displayError("*** in the catch()
 method *** " + error);
 });
}

This code uses the fetch() function to make a call to the
Web API Product controller class. When the Ajax call is ful-
filled, the response parameter is passed to the first .then()
method. Extract the body of the response object using the
.json() method. The result from calling the .json() method is
an array of product objects retrieved from the Web API. This
array is passed to the second .then() method as the data
parameter. Within the second .then() method is where you
do something with the data, such as display it in an HTML
table, or fill in a drop-down list. For now, you’re just putting
that data into the informational message label.

The .catch() method from the fetch() function is called when
a network error occurs while attempting to make the Web API
call. In the .catch() method, call a method named displayEr-
ror() that can display an error message in the error label. In
the productController closure, type in the code shown below.

function displayError(msg) {
 if (msg) {
 $("#error").text(msg);
 $("#error").removeClass("d-none");
 }
 else {
 $("#error").addClass("d-none");
 }
}

As shown previously, there’s a label with an ID of error. When
you receive an error, display that error in this label, as it’s
styled with a red background and white lettering, so it stands
out to the user. If an error message is passed in, the message
is set into the label’s text area, and the label is made vis-
ible by removing the class “d-none”. If an empty message is
passed in, the label is hidden by adding the “d-none” class
to the label.

Try It Out
Save the changes and run your project. You should see an
array of product objects displayed in the message label.

The Fetch API Exception Handling
is Erratic
The Promise object returned by fetch() doesn’t reject an er-
ror when an HTTP error status is returned (400 or greater)

ments are two labels; one to display informational messages
and one to display error messages. Both labels are styled
using a style from the site.css file in the project. They’re
both also styled with “d-none”, which is a bootstrap class
to make each of these labels invisible.

<div class="row">
 <div class="col">
 <label id="message"
 class="infoMessage d-none">
 </label>
 <label id="error"
 class="errorMessage d-none">
 </label>
 </div>
</div>

Create a new method named displayMessage() in the pro-
ductController closure to write text into the message label
when you want to display an informational message to the
user. If a message is passed in, the message is set into the
label’s text area, and the label is made visible by remov-
ing the class “d-none”. If an empty message is passed in,
the label is hidden by adding the “d-none” class to the
label.

function displayMessage(msg) {
 if (msg) {
 $("#message").text(msg);
 $("#message").removeClass("d-none");
 }
 else {
 $("#message").addClass("d-none");
 }
}

Open the index.cshtml or the index.html file and at the
bottom of the page, modify the window.onload function to
look like the following code snippet. You’re building a literal
object with only that set of properties you want to update
in the vm.options property within the productController clo-
sure.

window.onload = function () {
 productController.setOptions({
 "apiUrl": appSettings.apiUrl,
 "msgTimeout": appSettings.msgTimeout
 });
 productController.get();
}

Try It Out
Save all your changes and run the project to display the
index page. You should see the full URL to the product con-
troller being displayed in the <label> on the index page.
You also see the options property with its properties dis-
played. This proves that the setOptions() method did set
the options property correctly when called from the index
page.

http://localhost:5000/api/product -
{
 "apiUrl":"http://localhost:5000/api/",
 "urlEndpoint":"product",
 "msgTimeout":2000
}

How to Use the Fetch API (Correctly)

19codemag.com

What happens in the case of a bad request (400) or an inter-
nal server error (500), or any of the many other HTTP error
status codes? The answer is that you won’t know until you
try each one. I’m going to show you how to create a method
to handle the most common errors and display what it’s ap-
propriate. Let’s take a look at a 400 status code. Add a “/a”
to the end of your URL in the get() method as shown below:

fetch(vm.options.apiUrl +
 vm.options.urlEndpoint + “/a”)

Save your changes and run the project. Open your browser
tools to get to the console window and you should see the
400 error message reported by your browser.

Failed to load resource: the server
responded with a status of 400 (Bad Request)

In the error message label on your page, you should see a
JSON object that looks like the following.

{
 "type":"https://tools...",
 "title":"One or more validation
 errors occurred.",
 "status":400,
 "traceId":"00-…",
 "errors": {
 "id": ["The value 'a' is not valid."]}
}

Notice that you did not go into the .catch() method, but
instead ended up with the literal object reported by the sec-
ond .then() method. As you can see, trying to handle errors
using the Fetch API can be very confusing because it seems
very random what type of error calls the catch, and which
ones try to process the response object passed back.

Exploring the Response Object
To help with handling exceptions while using the Fetch API,
you need to learn more about the response object that you
see in the first .then() method. When you get the response
object in the first .then() method, there are a few proper-
ties that are important to you; ok, status, and statusText. If
the call is successful, the ok property is set to a true value,
the status property is set to the HTTP status code, and the
statusText property is set to the corresponding message of
the status code. For example, if the status property is set to
200, the statusText property is set to “OK”.

If the ok property is set to false, this means the call failed
for some reason other than a network error. The status and
statusText properties are still set with the corresponding
HTTP status code and message. Depending on the HTTP
status code, you’re going to use two different methods to
retrieve the data associated with that status code. For ex-
ample, if you receive a 404 status code, use the response.
text() method to retrieve the actual text message sent back
from your Web API controller. If you receive a 400 status
code, use the response.json() method to retrieve a JSON
object filled with additional properties about what went
wrong. For a 500 status code, use the response.json(), how-
ever, you’ll then find the actual message returned from the
Web API method within the message property on the object
returned.

like most normal APIs do. For example, 400 and 500 status
codes don’t cause a rejection, but a 404 may or may not
cause a rejection of the promise. A network failure, a CORS
error, and a few other types also cause a rejection. This sec-
tion of the article illustrates each of these scenarios. To
force the get() method to go into the .catch() method, re-
move one of the zeros (0) from the port number 5000 in
the apiUrl property in the appSettings object located in the
site.js file.

http://localhost:500/api/

Save your changes and run the project. Open your browser
tools (F12) to get to the console window and you should
see an error message that looks like the following, if you’re
using the Chrome browser.

Failed to load resource: net:
 :ERR_CONNECTION_REFUSED

In the error message label on the index page, you should
see something that looks like the following message.

*** in the catch() method ***
TypeError: Failed to fetch

Because the port number doesn’t exist, a network error is
detected by the Fetch API. Because the fetch() function is
unable to reach the Web API server, the .catch() method is
called.

Another way to cause a rejection of the promise is to get
a 404 (not found) status code returned from the Web API
server. Put the apiUrl property back to the normal port num-
ber of 5000. In the get() function, add on a “/9999” to the
fetch() call.

fetch(vm.options.apiUrl +
 vm.options.urlEndpoint + "/9999")

Save your changes and run the project. Open your browser
tools to get to the console window and you should see the
following error message reported:

Failed to load resource: the server responded
 with a status of 404 (Not Found)

In the error message label on your page, you should see the
following message:

*** in the catch() method ***
SyntaxError: Unexpected token C in JSON at position 0

The product ID of 9999 doesn’t exist in the database, so
the Web API server returns a 404 status code with the text
“Can’t find Product with ID=9999”. So, why did you end up
in the .catch() block? After all, you did get to the Web API
server, so it wasn’t a network error. If you look at the er-
ror message returned by the Fetch API, it says there was
a SyntaxError. The problem is that what’s returned by the
404 isn’t JSON data, but a simple text string. When you call
the response.json() method on a text string, an exception is
thrown because trying to perform a JSON.parse() on a text
string causes control to go to the .catch() method. Don’t
worry, you’re going to learn how to solve this problem in the
next section of this article.

How to Use the Fetch API (Correctly)

20 codemag.com

400. Change the call to the fetch() function to look like the
following.

fetch(vm.options.apiUrl +
 vm.options.urlEndpoint + “/a”)

Save the changes, run the project, and you should see text
that looks like the following in the message label. The re-
turn value is a JSON object, but it’s being reported as text.

{
 "type":"https://tools...",
 "title":"One or more validation
 errors occurred.",
 "status":400,
 "traceId":"00-…",
 "errors": {
 "id": ["The value 'a' is not valid."]}
}

From just the few status codes you tried here, you can see
that the code in Listing 1 handles only the 200 and 404
calls correctly. Of course, these two status codes are about
95% of use cases for a typical business application. Howev-
er, to be complete, you should also handle 404 for non-exis-
tent API endpoints, 400 for bad requests, and 500 for other
exceptions that might be thrown by the Web API server.

Create Helper Functions
To handle the various status codes returned by the Fetch
API, it’s important to preserve a few properties from the re-
sponse object so you can check them when you get into the
second .then() method. To accomplish this, add a new lit-
eral object to the vm object in the productController. Create
a property called lastStatus just below the options property
you added earlier in this article.

let vm = {
 "options": {
 "apiUrl": "",
 "urlEndpoint": "product"
 },
 "lastStatus": {
 "ok": false,
 "status": 0,
 "statusText": "",
 "response": null
 }
};

The ok property is set to either a true or false value. The sta-
tus property is set to the HTTP status code (200, 404, etc.)
from the last request. The statusText property is set to the text
that goes along with the HTTP status code such as “OK” or
“Not Found”. The response property is populated in the second
.then() method as you’re going to see in the next code listing.

Add the processResponse() method shown below to the pro-
ductController. In this method, copy the properties from the
response object into the properties of the lastStatus object. Be-
cause the lastStatus object is created outside of any methods
within productController, this object is available to all methods.
Once you have the properties set, check the ok property to de-
termine if you should return the results from response.json() or
response.text() back to the first .then() method.

So with this in mind, re-write your get() function (Listing 1)
to return response.json() if the ok property is true, and re-
turn response.text() if the ok property is false. It’s better to
get the text version of the data when ok is false so you don’t
cause an error attempting to convert the response to JSON
when it could be text. If you return text data to the second
.then() method, you can always parse it to JSON depend-
ing on the number in the status property. Let’s test getting
each of the various successful and error codes you looked
at previously.

Get a 200 Status
Change the apiUrl property back to “http://localhost:5000/
api/”. Modify the get() function to look like the code shown
in Listing 1 and save your changes. Run the project and
you can see the array of product objects displayed in the
message label.

Get a 404 Status from Your Web API Method
Change the fetch() call in the get() method to add to the
URL a “/9999”. The value “9999” is an invalid product ID so
the Web API server returns a 404 (Not Found) status code.

fetch(vm.options.apiUrl +
 vm.options.urlEndpoint + “/9999”)

Save the change, run the project, and you should see the
text “Can’t find product with ID=9999.” displayed in the
message label. This message is being returned from the Web
API Get(int id) method.

Get a 404 Status from a Non-Existent API Endpoint
The other kind of 404 status code is when you call an API
that doesn’t exist. Change the fetch() call in the get() meth-
od to look like the following code snippet.

fetch(vm.options.apiUrl + “prod/9999”)

Save the changes and run the project. Running this fetch()
function produces an empty string in the message label.
You’re going to learn how to take care of this in the next
section of this article.

Get a 400 Status
The next status code to test is a 400 (Bad Request). You
can force this error to occur by passing in a letter to the
Get(int id) method. Because the Web API method doesn’t
accept a letter, submitting this on your URL line causes the

function get() {
 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint)
 .then(response => {
 if (response.ok) {
 return response.json();
 }
 else {
 return response.text();
 }
 })
 .then(data =>
 displayMessage(JSON.stringify(data)))
 .catch(error => {
 displayError("*** in the catch()
 method *** " + error);
 });
}

Listing 1: Check the response.ok property to determine if the Ajax call was successful or not.

How to Use the Fetch API (Correctly)

21codemag.com

lastStatus.response property. It’s this data that could either
be text or a JSON object based on the status code. To expose
the two methods publicly from the ajaxCommon closure,
modify the return literal object to look like the following:

return {
 "handleAjaxError": handleAjaxError,
 "handleError": handleError
};

Try It Out
Make sure you set the apiUrl property in the appSettings
object back to the valid endpoint “http://localhost:5000/
api/”. Save your changes and run the project. If you typed
everything in correctly, you should still see the array of

function processResponse(resp) {
 // Copy response to lastStatus properties
 vm.lastStatus.ok = resp.ok;
 vm.lastStatus.status = resp.status;
 vm.lastStatus.statusText = resp.statusText;
 vm.lastStatus.url = resp.url;

 if (vm.lastStatus.ok) {
 return resp.json();
 }
 else {
 return resp.text();
 }
}

When working with the Fetch API response object, you need
to be aware that once you’ve processed the body of the re-
sponse object using the .json() or the .text() methods, you
can’t read the body again. This is a one-time operation.
Modify the get() function to look like Listing 2. In the first
.then() method, you pass the response object to the process-
Response() method you just created. In the second .then()
method, either the JSON or the text data is passed into the
data parameter. The first thing you should do is to assign the
data parameter into the response property of the lastStatus
property. This preserves the original data in case it’s needed.

If the lastStatus.ok property is true, you do something with
the data returned from the Web API. For now, you’re just
going to display it into the message label. Later in this
article, you’re going display that product data in an HTML
table. If the lastStatus.ok property is false, call an ajaxCom-
mon.handleError() method passing in the lastStatus object.
You’re going to write the handleError() method shortly. If
the .catch() method is called because of a network error,
pass the error object to an ajaxCommon.handleAjaxError()
method that you’re going to write soon.

It’s now time to add the two methods handleAjaxError()
and handleError() into the ajaxCommon closure. Open the
ajax-common.js file and just below the // Private Func-
tions comment block in the ajaxCommon closure, create
the handleAjaxError() method as shown below. Because the
.catch() method is only called when something catastrophic
happens, this code is going to assign the generic error mes-
sage from the appSettings object to the variable msg. It then
logs the error parameter and the msg variable to the con-
sole. The msg variable is returned from this method so you
can display it in the error label if you wish.

function handleAjaxError(error) {
 let msg = appSettings.networkErrorMsg;

 console.error(error + " - " + msg);

 return msg;
}

Add the handleError() method, as shown in Listing 3, just
below the handleAjaxError() method you just created. This
method checks the HTTP status code to determine how to
handle the data returned from the Web API server. Remem-
ber, depending on the HTTP status code, you may retrieve
just a simple piece of text, or a JSON object. Looking back
at Listing 2, you can see in the second .then() method that
the data passed into that .then() method is stored into the

function get() {
 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint)
 .then(response =>
 processResponse(response))
 .then(data => {
 // Fill lastStatus.response
 // with the data returned
 vm.lastStatus.response = data;

 // Check if response was successful
 if (vm.lastStatus.ok) {
 displayMessage(JSON.stringify(data));
 }
 else {
 displayError(ajaxCommon
 .handleError(vm.lastStatus));
 }
 })
 .catch(error => displayError(
 ajaxCommon.handleAjaxError(error)));
}

Listing 2: Create separate functions to handle processing the response, and handling errors.

function handleError(lastStatus) {
 let msg = "";

 switch (lastStatus.status) {
 case 400:
 msg = JSON.stringify(lastStatus.response);
 break;
 case 404:
 if (lastStatus.response) {
 msg = lastStatus.response;
 }
 else {
 msg = `${lastStatus.statusText}
 - ${lastStatus.url}`;
 }
 break;
 case 500:
 msg = JSON.parse(
 lastStatus.response).message;
 break;
 default:
 msg = JSON.stringify(lastStatus);
 break;
 }

 if (msg) {
 console.error(msg);
 }

 return msg;
}

Listing 3: Based on the HTTP status code you need to handle the error response differently.

How to Use the Fetch API (Correctly)

22 codemag.com

let vm = {
 "list": [],
 "mode": "list",
 // REST OF THE PROPERTIES HERE
}

Change the get() function by adding code to set the
vm.mode property to “list” immediately after the function
declaration. Within the second .then() method, remove the
line of code displayMessage(JSON.stringify(data)); that’s
located in the if (vm.lastStatus.ok) block. Replace the
lines of code within the if statement, as shown in the fol-
lowing code snippet:

function get() {
 vm.mode = "list";

 // REST OF THE CODE
 if (vm.lastStatus.ok) {
 // Assign data to view model's
 // list property
 vm.list = data;
 // Use template to build HTML table
 buildList(vm);
 }
 // REST OF THE CODE
}

Open the index page and locate the <table> shown in List-
ing 4. Notice that the <thead> element is filled in with the
appropriate headers needed to describe the product data.
However, the <tbody> element is blank. It’s into the blank
<tbody> element where you create the appropriate <tr> and
<td> elements to match the <th> elements in the header
with the individual property values from each row in the
array of product data.

If you scroll down more in the index page, you’ll find a
<script> tag with a type of “text/html” (Listing 5). Inside
this <script> tag, you can see a combination of HTML and

product objects displayed in the message label. Now, try
each of the error conditions outlined in the previous section
of this article to ensure that you’re getting the same errors
reported as before.

Display All Products in an HTML Table
Instead of displaying all the products in the message la-
bel, let’s put the array of product data into an HTML table,
as shown in Figure 2. There are many different methods
you can use to create an HTML table. I’m going to use a
templating engine called mustache.js, which you can find at
https://github.com/janl/mustache.js. A templating engine
allows you to create some HTML in a <script id=”dataTmpl”
type=”text/html”> tag, add some replaceable tokens in
the format of {{property_name}}, then combine the HTML
from this tag with data in an array of a literal object. The
mustache templating engine iterates over the array of data
and replaces the tokens with the data from each element of
the array and places the resulting HTML into the DOM at the
location you specify.

To make this work, add two new properties to the vm object
literal, as shown in the following code snippet:

Figure 2: Create an HTML table using a templating engine such as mustache.js.

<table id="products"
 class="table table-bordered
 table-striped table-collapsed">
 <thead>
 <tr>
 <th>Action</th>
 <th>Product ID</th>
 <th>Product Name</th>
 <th>Product Number</th>
 <th>Color</th>
 <th class="text-right">Cost</th>
 <th class="text-right">Price</th>
 </tr>
 </thead>
 <tbody></tbody>
</table>

Listing 4: Create the HTML table, but leave the <tbody> blank for the templating engine to fill in.

How to Use the Fetch API (Correctly)

23codemag.com

In the index page, there’s a <div id=”list”> wrapped around
the products table. The <form> tag on the page has an ID
of detail. Both elements are hidden by default because they
are set with the attribute of class=”d-none”. Either the <ta-
ble> or the <form> is displayed at any one time, so you need
a function named displayList() to remove the “d-none”
class from the list and add the “d-none” class to the detail.

function displayList() {
 $("#list").removeClass("d-none");
 $("#detail").addClass("d-none");
}

Try It Out
Save all the changes you made and run the project. All
the products should now appear in the HTML table in your
browser, as shown in Figure 2.

Get a Single Product
The only difference in the Fetch API code between fetching
all rows from the product table and a single row is to include
a forward-slash and the product ID to retrieve on the URL,
for example, http://localhost:5000/api/product/710. Open
the product.js file and add a getEntity() function to look
like Listing 6.

There are a few more methods you need to add to the pro-
ductController to support displaying the product detail. Add
a setInput() method that takes a product object and places
each property’s value into the appropriate <input> tag with-
in the <form> element.

function setInput(entity) {
 $("#productID").val(entity.productID);
 $("#name").val(entity.name);
 $("#productNumber").val(entity.productNumber);
 $("#color").val(entity.color);
 $("#standardCost").val(entity.standardCost);
 $("#listPrice").val(entity.listPrice);
 $("#sellStartDate").val(entity.sellStartDate);
}

The Save and Cancel buttons aren’t hidden currently, but
you’re going to be making them disappear later in this ar-
ticle. When you get a product and are displaying the de-
tail area with the <form> element, call a displayButtons()
method to ensure that those two buttons are visible using
the following code.

replaceable tokens {{property_name}} that mustache uses
to generate each row of the table. The token {{#list}} refers
to the list property you just added to the vm literal object. The
pound sign (#) informs mustache that this variable is the ar-
ray to iterate over. Think of the two tokens {{#list}} and {{/
list}} as the beginning and the ending of the loop respective-
ly. As mustache loops through each item, it starts creating
each row of the table. When it finds a {{property_name}}
token, it looks into the current array item and extracts the
property_name, such as productID or productNumber from the
current product object and replaces the value of those prop-
erties into the location of the {{property_name}} token.
Mustache continues building each row of HTML as it loops
through each item in the product array. What’s nice about
placing the HTML into a <script> tag like this is that it’s much
more readable than if you used a normal JavaScript loop and
had to build the HTML using normal strings.

So how do you use the mustache templating engine to use
the code in the <script> tag and combine that with the data
you put into the vm.list property? In the code you just added
to the get() function, you set the vm.list property with the
array of products, and you then call a method named build-
List(). Add this buildList() method in the productController
using the code presented below.

function buildList(vm) {
 // Get HTML template from <script> tag
 let template = $("#dataTmpl").html();

 // Call Mustache passing in the template and
 // the object with the collection of data
 let html = Mustache.render(template, vm);

 // Insert the rendered HTML into the DOM
 $("#products tbody").html(html);

 // Display HTML table and hide <form> area
 displayList();
}

The buildList() function first reads the HTML from the script tag
using the jQuery html() method and puts that HTML into the
variable named template. Next, the Mustache.render() method
is called passing in the template variable and the vm object that
contains the list property. The render() method passes back the
HTML it generated into a variable named html. Use the jQuery
html() method to set the HTML generated by mustache into the
<tbody> element in the products table.

<script id="dataTmpl" type="text/html">
 {{#list}}
 <tr>
 <td>
 <button type="button"
 class="btn btn-primary"
 onclick="productController
 .getEntity({{productID}});">
 Edit
 </button>

 <button type="button"
 class="btn btn-danger"
 onclick="productController
 .deleteEntity({{productID}});">
 Delete

 </button>
 </td>
 <td>{{productID}}</td>
 <td>{{name}}</td>
 <td>{{productNumber}}</td>
 <td>{{color}}</td>
 <td class="text-right">
 {{standardCost}}
 </td>
 <td class="text-right">
 {{listPrice}}
 </td>
 </tr>
 {{/list}}
</script>

Listing 5: Create a template to generate an HTML table within a <script> tag.

How to Use the Fetch API (Correctly)

24 codemag.com

 "getEntity": getEntity,
 "cancel": cancel
};

Try It Out
Save all your changes and run the project. Click on one of
the Edit buttons next to a product to see the detail page
appear with the product information filled into each input
field. Click on the Cancel button to return to the HTML table
of products.

Display a Blank Product for Adding
When you want the user to add a new product, you need to
present a blank detail page to them. Use the same <form>
and <input> elements you use for editing, just create an
empty product object to load into those <input> elements.
Create a new method named clearInput() in the productCon-
troller as shown in the code below. Once the new product
object is created with any default values, pass this object to
the setInput() method.

function clearInput() {
 let entity = {
 "productID": 0,
 "name": "",
 "productNumber": "",
 "color": "",
 "standardCost": 0,
 "listPrice": 0,
 "sellStartDate": new Date()
 .toLocaleDateString()
 };

 setInput(entity);
}

On the index page, there’s an Add button that, when clicked
calls, a method named productController.add(). Create the
add() method in the product controller, as shown in the
code below. Notice that the mode property is set to “add”
whereas in the getEntity() method you set the mode prop-
erty to “edit”. This will be used in the save() method.

function add() {
 vm.mode = "add";

 // Display empty entity
 clearInput();

function displayButtons() {
 $("#saveButton").removeClass("d-none");
 $("#cancelButton").removeClass("d-none");
}

As mentioned previously, only the table or the detail area
can be displayed at a time. Add a method named dis-
playDetail() to hide the HTML table and display the detail
area within the <form> element.

function displayDetail() {
 $("#list").addClass("d-none");
 $("#detail").removeClass("d-none");
}

If the user clicks on the wrong Edit button next to a product,
they may wish to go back to the HTML table. This functional-
ity is what the Cancel button is for. Add a new method called
cancel() into the productController. This method first hides
the <form> detail area by adding the “d-none” class back
to the form. It then clears any messages within the message
label. Finally, it calls the get() method which refreshes the
data from the Web API and displays the HTML table. You
don’t necessarily need to call the get() method if you don’t
want to, you could simply call the displayList() method and
have it redisplay the table of product data.

function cancel() {
 // Hide detail area
 $("#detail").addClass("d-none");
 // Clear any messages
 displayMessage("");
 // Display all data
 get();
}

The last thing to do to display the single product in the form
element is to expose two of these methods publicly from
the productController closure by modifying the return object.
Both of these functions are called from buttons on the in-
dex page and thus need to be exposed publicly.

return {
 "setOptions": function (options) {
 if (options) {
 Object.assign(vm.options, options);
 }
 },
 "get": get,

function getEntity(id) {
 vm.mode = "edit";

 // Retrieve a single entity
 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint + "/" + id)
 .then(response =>
 processResponse(response))
 .then(data => {
 if (vm.lastStatus.ok) {
 // Fill lastStatus.response
 // with the data returned
 vm.lastStatus.response = data;

 // Display entity
 setInput(data);

 // Unhide Save/Cancel buttons
 displayButtons();

 // Unhide detail area
 displayDetail();
 }
 else {
 displayError(ajaxCommon
 .handleError(vm.lastStatus));
 }
 })
 .catch(error => displayError(
 ajaxCommon.handleAjaxError(error)));
}

Listing 6: Retrieve a single product using Fetch.

How to Use the Fetch API (Correctly)

25codemag.com

Getting the Sample Code

You can download the sample
code for this article by visiting
www.CODEMag.com under
the issue and article, or by
visiting www.pdsa.com/
downloads. Select “Articles”
from the Category drop-
down. Then select “How to
Use the Fetch API (Correctly)”
from the Item drop-down.

 displayMessage("Data Inserted.");

 setTimeout(() => {
 // Redisplay all data
 get();

 // Clear message
 displayMessage("");
 }, vm.options.msgTimeout);
}

The updateEntity() method follows the same design pattern
as the insertEntity() method. If the update is successful, hide
the Save and Cancel buttons and display a success message.
This message is displayed for a couple of seconds and then
the HTML table is redisplayed, and the message is cleared.

function insertEntity() {
 // Hide Save/Cancel buttons
 hideButtons();

 displayMessage("Data Inserted.");

 setTimeout(() => {
 // Redisplay all data
 get();

 // Clear message
 displayMessage("");
 }, vm.options.msgTimeout);
}

 // Display buttons
 displayButtons();

 // Unhide detail area
 displayDetail();
}

Because this method needs to be called from outside the
productController, modify the return object to include this
new add() method.

return {
 // REST OF THE CODE HERE
 "getEntity": getEntity,
 "cancel": cancel,
 "add": add
};

Try It Out
Save all your changes and run the project. Click on the Add
Product button just above the HTML table and you should
see a blank set of input fields appear.

Create a Save Method
After the user adds or edits a product, they need to click on
the Save button to send that information to the Web API
for storage into the Product table. The Save button calls
a method named productController.save(). Add this save()
method to the productController as shown below. The code
checks the vm.mode property to see if it’s “add” or “edit”. If
the mode is set to “add”, a method named insertEntity() is
called. If the mode is set to “edit”, a method named upda-
teEntity() is called.

function save() {
 // Determine method to call
 // based on the mode property
 if (vm.mode === "add") {
 insertEntity();
 } else if (vm.mode === "edit") {
 updateEntity();
 }
}

You’re not going to write the code to send the data to the
Web API when they insert a new product yet. Instead, write
some code to illustrate the sequence of events that are go-
ing to happen after the insert or update is successful. In the
insertEntity() method shown below, you’re going to hide
the Save and Cancel buttons after successfully inserting a
record. You then display a message to the user that the data
was inserted. You want this message to be displayed for a
couple of seconds, so you use the setTimeout() function to
wait the amount of milliseconds you created in the appSet-
tings object and passed into the productController using the
setOptions() method. Once the message has been displayed
for that amount of time, call get() to retrieve all of the data
again and redisplay the HTML table of products. Finally,
clear the message that was displayed.

function insertEntity() {
 // Hide Save/Cancel buttons
 hideButtons();

Advertisers Index

CODE Consulting
	 www.codemag.com/consulting� 7

CODE Legacy
	 www.codemag.com/legacy� 15

CODE Magazine
	 www.codemag.com/subscribe� 75

CODE Mobile
	 www.codemag.com/mobile� 43

Commercial UAV Expo – Americas
	 www.Expouav.com� 76

DevIntersection
	 www.devintersection.com� 2

dtSearch
	 www.dtSearch.com� 35

LEAD Technologies
	 www.leadtools.com� 5

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

How to Use the Fetch API (Correctly)

26 codemag.com

return {
 // REST OF THE CODE HERE
 "cancel": cancel,
 "add": add,
 "save": save
};

Try It Out
Save all your changes and run the project. Click on the Add
Product button just above the HTML table and you should
see a blank set of input fields appear. Click the Save button
and you’ll see a message appear above the input fields and
the Save and Cancel buttons should disappear. After about
two seconds, the message goes away, and the HTML table is
redisplayed. Next, try clicking on an Edit button and click
the Save button. Again, you should see a message appear
and the Save and Cancel buttons disappear. After about two
seconds, the message goes away and the HTML table is re-
displayed.

Add a method named hideButtons() to make the Save and
Cancel buttons invisible. Using jQuery, select each button
and add the bootstrap class “d-none” to each button to
make them invisible. The reason you’re making these but-
tons invisible is that after you’ve successfully sent the
product information to be inserted or updated, you want to
display any data sent back by the Web API in the detail area
for a couple of seconds. You don’t want the user to be able
to click on the buttons again, so by making them invisible,
they’re unable to click on them again.

function hideButtons() {
 $("#saveButton").addClass("d-none");
 $("#cancelButton").addClass("d-none");
}

The save() method is called from the Save button on in the
index page, so you need modify the return literal object in
the productController to expose this method.

function insertEntity() {
 let entity = getFromInput();

 let options = {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(entity)
 };

 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint, options)
 .then(response =>
 processResponse(response))
 .then(data => {
 if (vm.lastStatus.ok) {
 // Fill lastStatus.response
 // with the data returned
 vm.lastStatus.response = data;

 // Hide buttons while
 // 'success message' is displayed
 hideButtons();

 // Display a success message
 displayMessage(
 "Product inserted successfully");

 // Redisplay entity returned
 setInput(data);

 setTimeout(() => {
 // After a few seconds,
 // redisplay all data
 get();

 // Clear message
 displayMessage("");
 }, vm.options.msgTimeout);
 }
 else {
 displayError(ajaxCommon
 .handleError(vm.lastStatus));
 }
 })
 .catch(error => displayError(
 ajaxCommon.handleAjaxError(error)));
}

Listing 7: Insert a product object by setting the method property to ‘POST’.

function updateEntity() {
 let entity = getFromInput();

 let options = {
 method: 'PUT',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify(entity)
 };

 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint + "/" +
 entity.productID, options)
 .then(response =>
 processResponse(response))
 .then(data => {
 if (vm.lastStatus.ok) {
 // Fill lastStatus.response
 // with the data returned
 vm.lastStatus.response = data;

 // Hide buttons while
 // 'success message' is displayed
 hideButtons();

 // Display a success message
 displayMessage(
 "Product updated successfully");

 // Redisplay entity returned
 setInput(data);

 setTimeout(() => {
 // After a few seconds,
 // redisplay all data
 get();

 // Clear message
 displayMessage("");
 }, vm.options.msgTimeout);
 }
 else {
 displayError(ajaxCommon
 .handleError(vm.lastStatus));
 }
 })
 .catch(error => displayError(
 ajaxCommon.handleAjaxError(error)));
}

Listing 8: Add an updateProduct() function to be able to modify a product using the Fetch API.

How to Use the Fetch API (Correctly)

27codemag.com

value to the user. After a specified number of seconds, the
HTML table is redisplayed, and the informational message
is cleared.

In order to submit the product data, the user fills in to the in-
put fields, so you need a method named getInput(), as shown
in the code below. This method uses jQuery to gather the val-
ues from each input field and build a literal product object.

function getFromInput() {
 return {
 "productID": $("#productID").val(),
 "name": $("#name").val(),
 "productNumber": $("#productNumber").val(),
 "color": $("#color").val(),
 "standardCost": $("#standardCost").val(),
 "listPrice": $("#listPrice").val(),
 "sellStartDate":
 new Date($("#sellStartDate").val())
 };
}

Try It Out
Save all your changes and run the project. Click on the Add
Product button and enter the data shown in Table 1 into the
input fields.

Click on the Save button and, if you’ve done everything cor-
rectly, you should see the message Product inserted suc-
cessfully appear in the message label. After a couple of sec-
onds, the HTML table will reappear, and you should see your
new product appear as the first row in the table.

Inserting a Product
All you’ve done so far is to pass a single parameter, the URL,
to the fetch() function. There’s a second parameter you can
pass to the fetch() function, which is a literal JSON object
called the options object. You’re going to need to use this
options object when inserting, updating, or deleting data.
The options object has many properties and a few are illus-
trated in the following code snippet. For a complete list of
the options object properties visit https://mzl.la/3v5g32n.

fetch(URL, {
 // *GET,POST,PUT,DELETE
 method: 'GET',
 // cors, no-cors, *cors, same-origin
 mode: 'cors',
 // *default, no-cache, reload,
 // force-cache, only-if-cached
 cache: 'no-cache',
 // include, *same-origin, omit
 headers: {
 'Content-Type': 'application/json'
 }
})

Modify the insertEntity() method you created in the last
section of this article to look like Listing 7. This method
gathers the product data from the user input fields on the
index page using a method named getFromInput() and puts
them into a variable named entity. An options object is cre-
ated and sets the method, headers, and body properties
with the appropriate data. The method property is set to
POST to tell the Web API server which method to invoke. The
Content-Type header is set to application/json to inform the
server to expect JSON data. The body property is set to the
stringified version of the entity literal object.

The fetch() function is invoked using the full URL and the
options object. The processResponse() method converts the
body property in the response object and passes it to the
second .then() method. If the lastStatus.ok property is set
to true, use the code you learned about in the last section to
hide the Save and Cancel buttons, display a success method,
and display the product data sent back from the server. The
reason to redisplay the product data sent back from the
server is that sometimes you might have a field that’s gen-
erated by SQL Server and you might want to display that new Table 1: Enter some valid values to insert into the Product table

Field Value
Product ID 0

Product Name A New Product

Product Number NEW-000

Color Red

Cost 20

Price 40

Sell Start Date <Today’s Date>

function deleteEntity(id) {
 if (confirm(`Delete Product ${id}?`)) {
 let options = {
 method: 'DELETE'
 };

 fetch(vm.options.apiUrl +
 vm.options.urlEndpoint +
 "/" + id, options)
 .then(response =>
 processResponse(response))
 .then(data => {
 if (vm.lastStatus.ok) {
 // Fill lastStatus.response
 // with the data returned
 vm.lastStatus.response = data;

 // Display success message
 displayMessage(

 "Product deleted successfully");

 // Redisplay all data
 get();

 setTimeout(() => {
 // Clear message
 displayMessage("");
 }, vm.options.msgTimeout);
 }
 else {
 displayError(ajaxCommon
 .handleError(vm.lastStatus));
 }
 })
 .catch(error => displayError(
 ajaxCommon.handleAjaxError(error)));
 }
}

Listing 9: Add a deleteProduct() function to be able to delete a product using the Fetch API.

How to Use the Fetch API (Correctly)

28 codemag.com

 "deleteEntity": deleteEntity
};

Try It Out
Save all the changes you made and run the project. Not all
of the products in the Product table can be deleted because
of relationships set up in the database. You should add a
new product, then delete that new product to test the de-
lete functionality.

Summary
The Fetch API is different from the XMLHttpRequest object
and the jQuery $.ajax() method call. The fetch() function
is a straight-forward API to use, but as you learned, the
exception handling can be a little challenging. Hopefully,
you now have a good design pattern to use if you wish to
use this API. If you’re already using the jQuery $.ajax()
method, I recommend that you keep using it and not switch
to the Fetch API. You definitely have more options using
the $.ajax() method. For more information on a comparison
between XMLHttpRequest and the Fetch API, check out the
post at https://bit.ly/3xpir6n.

Updating a Product
When you click on the Edit button on one of the rows in
the table, the product data is displayed in the detail area.
You then modify any of the fields and click the Save but-
ton to update the data into the Product table. Modify the
updateEntity() method you wrote earlier to make the Web
API to accomplish this. Locate the updateEntity() method
in the productController and change it to look like the code
shown in Listing 8.

In the updateEntity() method, you retrieve the product data
input by calling the getFromInput() method. Create an op-
tions variable and set the method property to PUT to in-
form the Web API to call the method to update the data.
The fetch() function is called using the URL endpoint and
passing the product ID to update on the URL. In addition,
the options object is passed as the second parameter to the
fetch() function. The rest of the code is similar to what you
just wrote for the insertEntity(). If the lastStatus.ok prop-
erty is set to a true value, hide the Save and Cancel buttons
and display a message to inform the user that the data was
successfully updated. Display the product data sent back
from the server in the input fields just in case any of the
values have been updated by the server during the update
process. Finally, after a couple of seconds, the HTML table
is redisplayed, and the informational message is cleared.

Try It Out
Save all the changes you made and run the project. Click
on one of the products and modify a couple of fields like
the Cost and Price. Click the Save button and ensure that
everything works correctly.

Deleting a Product
The final functionality to add to the index page is the abil-
ity for the user to delete a product. If the user clicks on the
Delete button in one of the rows in the product table, you
should prompt the user whether they really wish to delete
that product. If they answer that they wish to perform the
delete, call a deleteEntity() method in the productController.
Add the code for the deleteEntity() method as shown in
Listing 9 to the productController closure.

The first line of code in the deleteEntity() method calls the
confirm() function to display a confirmation dialog to the
user to which they must respond with either OK or Cancel. If
they answer OK, the code within the if() block is executed.
Create an options object with the method property set to
DELETE. Pass the product ID passed into this method on the
URL line as the first parameter to the fetch() function and
the options object as the second parameter. In the second
.then() method, if the vm.lastStatus.ok is set to true, a suc-
cess message is displayed in the message label. The get()
method is called to reload the HTML table. After a couple
of seconds, the message in the label is cleared. Because the
deleteEntity() method needs to be accessed from the index
page, you need to modify the return literal object and add
this method to the list of methods to be made public, as
shown in the code below:

return {
 // REST OF THE CODE HERE
 "add": add,
 "save": save,

� Paul D. Sheriff
�

How to Use the Fetch API (Correctly)

29codemag.com

ONLINE QUICK ID 2107041

Eliminate Secrets from Your Applications with Azure Managed Identity

Eliminate Secrets from Your
Applications with
Azure Managed Identity
In the May/June 2021 issue of CODE Magazine, I wrote an article called “Can You Keep a Secret? Azure Can!” showing you how
to store a connection string with its secrets in Azure Key Vault and then use Azure Managed Identities with .NET Core to let your
application access that while debugging locally in Visual Studio or Visual Studio Code. The best part is that you don’t

have to be a security or SysOps guru to do this. The clear
evidence is that I was able to pull it off!

That’s all well and good for debugging applications in your
IDE, but when it’s time to deploy your app, you can take this
secret sharing even further. If you’re using Azure SQL for your
database and your application is running in Azure, it’s pos-
sible (and easy) to have an Azure Managed Identity to au-
thenticate and access your database. The services are all part
of the same ecosystem and they know how to share among
themselves.

In this article, I’ll begin with the application as I left off in
the earlier article, and walk you through deploying it and
removing all secrets from the connection string. In the end,
it’s simply a matter of a leveraging a new feature of the
SQLClient API to use Managed Identity for authentication.

I think this option is much easier than how we had to lever-
age Managed Identity authentication with EF Core prior to
this new feature, which was by using EF Core Interceptors.
Interceptors are a great feature, but in this particular case,
the new workflow is much simpler.

As a non-security person, going directly to the new work-
flow continued to confuse me. However, walking pragmati-

cally through the steps truly helped me understand what
I was doing, why I was doing it, and eased me into having
a much deeper comprehension of Azure Managed Identity
than I originally thought I wanted to be bothered with.
I can no longer claim ignorance, which was, honestly,
more a matter of fear of failure than anything else. I want
to help my fellow “OMG please don’t make me learn se-
curity stuff” developers adopt this new area of expertise
as well.

Even as we remove the need for storing the secrets of the
connection string, there are plenty of other secrets that you
may want to continue storing in the Key Vault. Here, I’ll
consider the rest of the details of the connection string im-
portant enough to keep it in the Key Vault and not embed it
in the application code.

A Quick Overview
of Where We’re Starting
The application I built in the previous article was to main-
tain a list of episodes of “The 425 Show,” a Twitch stream
run by the Identity Developer Advocacy team.

The ASP.NET Core Razor Pages application (Figure 1) uses EF
Core to interact with its data.

Julie Lerman
@julielerman
thedatafarm.com/contact

Julie Lerman is a Microsoft
Regional director, Docker
Captain, and a long-time
Microsoft MVP who now
counts her years as a coder
in decades. She makes
her living as a coach and
consultant to software
teams around the world.
You can find Julie presenting
on Entity Framework,
Domain-Driven Design and
other topics at user groups
and conferences around
the world. Julie blogs at
thedatafarm.com/blog,
is the author of the highly
acclaimed “Programming
Entity Framework” books,
and many popular videos
on Pluralsight.com.

Figure 1: The sample app as displayed when debugging locally

ONLINE QUICK ID 00

30 codemag.comEliminate Secrets from Your Applications with Azure Managed Identity

And at the end of that article, I could debug my app in Visu-
al studio and have it seamlessly read the connection string
from Azure Key Vault (thanks to the Azure.Identity SDK)
and then use that connection string to access the database.
Figure 2 shows the interaction between the app being de-
bugged in Visual Studio and the Azure resources.

I still have secrets stored in the Key Vault. The connection
to the database is not so precious, but the user ID and
password certainly are. As I publish the app, I can lever-
age Managed Identity to remove even those secrets from
the connection string and double-down on the security of
my database.

How to Wire Up the App and
the Database
To be clear, Azure Key Vault won’t be responsible for allow-
ing the deployed app to access the database. I’ll still use
a Managed Identity to read the connection string from the
key vault (Steps 1-3 in Figure 3) and then I’ll also be using
managed identity to provide permissions for the app to talk
to the database (Steps 4 and 5 in Figure 3).

First, you’ll need to publish the Web app to an Azure Appli-
cation Service. You can right-click on a project in Visual Stu-
dio, choose Publish, and walk-through publishing to Azure.
I’m choosing a Linux app service because my application
is .NET Core. If you want a more detailed walkthrough on
publishing ASP.NET Core apps to Azure, check out the Micro-
soft doc’s QuickStart document at https://docs.microsoft.
com/en-us/azure/app-service/quickstart-dotnetcore. Note
that if you’re using a free subscription, Azure App Service
is always free and a small single Azure SQL database is free.
Key Vault is not free. But for testing in a tiny scenario like
this demo, it’s nominal. My US East-based subscription is
$0.03USD per 10,000 transactions.

If you’re not familiar with publishing ASP.NET Core apps to
Azure, you might find it interesting that the publish wiz-
ard discovers and notes the connection string name in the
startup configuration.

My code for setting up the EpisodesContext in the startup
class specifies “EpisodesContext” as the connection string
name.

services.AddDbContext<EpisodesContext>
(options =>options.UseSqlServer
 (Configuration.GetConnectionString
 ("EpisodesContext")));

As I left the application in the earlier article, the value of
that connection string (which points to my Azure SQL data-
base and contains the user ID and password) is in the Azure
Key Vault and nowhere to be found in the application code.

Two Critical Changes You Need
to Start with for SQL Server
Before embarking on wiring up the published application to
use Managed Identity for accessing the Key Vault and the data-
base, there are two important changes you’ll need to make. Of
course, I didn’t make them in advance and ended up scratching
my head for a while until I realized that I needed to perform
these tasks, so let’s get them out of the way up front.

I started out with a SQL Server LocalDB on my computer and
its connection string tucked into appsettings.json. Then I
moved the connection string into Azure Key Vault and us-
ing the Azure.Identity SDK for accessing secrets (a combi-
nation of Azure.Identity and Azure.Extensions.AspNetCore.
Configuration.Secrets NuGet packages) I told my application
to look for the connection string in Azure Key Vault. One
of the critical characteristics was that these APIs are able
to read the credentials with which I had signed into Visual
Studio. Those are the same credentials tied to the account
I use to sign into my Azure Subscription. I also told my Key
Vault that those same credentials could be used to read the
secrets in Key Vault. While debugging, the API was able to
quietly read and then pass those credentials to Azure, ac-
cess the key Vault, read the stored connection string, and
then pass it back to the application, which then used the
connection string to read my local database.

It may seem pretty silly to store this in Azure—the con-
nection string to my local database, and a LocalDb at that
doesn’t even require a user ID or password—so that Visual
Studio could locally debug my application. But that was just
Step 1. I then changed that connection string to point to
an Azure SQL Server and added in the user ID and password
required to access the SQL Server.

Figure 2: Accessing the connection string stored in Key Vault while debugging in Visual Studio

Figure 3: Accessing and using a credential-less connection string stored in Key Vault from an
app in Azure App Service

31codemag.com Eliminate Secrets from Your Applications with Azure Managed Identity

First, note that as I’m writing this in early May 2021, the
Managed Identity support in the SqlClient API is very new.
It was introduced in Microsoft.Data.SqlClient 2.1.0. But
it’s still so new that the current version of EF Core (5.0.5)
doesn’t yet have a dependency on it. EF Core will bring in
version 2.0.1, which doesn’t have the Managed Identity sup-
port. Perhaps by the time you are reading this, EF Core will
depend on the relevant version.

If not, you’ll need to add a package reference into your app
for the new version of SqlCLient. Again, as I write this article,
that happens to be 2.1.2. I’ve added this to my csproj file:

<PackageReference
 Include="Microsoft.Data.SqlClient"
 Version="2.1.2" />

The second critical change is a setting in the Azure SQL
Server that hosts your database. Because I was only debug-
ging the application from my local computer, I’d added a
firewall rule for my own IP address to be allowed through
to the database. But now I’ll have an application within the
Azure ecosystem accessing it. By default, all Azure SQL Serv-
ers are locked down, so you need to explicitly tell the server
to allow other Azure services to be able to access the server.
Then further authentication is used to access the database.

vTo enable this, I returned to the firewall settings of the
SQL Server and “flipped” the switch to Yes to allow Azure
services and resources to access the server, as you can see
in Figure 4.

Allowing the App Service’s Managed
Identity to Access Other Services
The app won’t work right away after it’s deployed. That’s
because it was depending on the account I used to sign in

to Visual Studio. It was this account that was configured to
access Key Vault.

Instead, I need to tune the security and lock things down so
that the Key Vault and database are very clearly tied to an
Azure Managed Identity tied to the Episodes Azure WebApp.

I’ll begin that tuning by checking in on the Identity for the
App Service itself. Managed identities are accounts that are
provisioned and managed by Azure AD automatically. When
the App Service was created for the published application,
Azure assigned it an identity. That’s referred to as a “system
assigned” identity, as opposed to a user assigned identity.
The portal displays a handy description of a system assigned
identity.

“A system assigned managed identity is restricted to one
per resource and is tied to the lifecycle of this resource.

Figure 4: Allowing Azure services to access the Azure SQL Server

Figure 5: Inspecting the system-assigned identity of the EsisodeApp

32 codemag.com

one will work because if you set a principal that’s an app
service identity, it’ll recognize that it’s an application and
categorize it as such. I chose to set the principal, clicking on
None selected, which shows a list of the top five accounts/
identities in your Azure AD. You can filter down to the name
of your identity; mine is EpisodeApp (Figure 6). Select it
and then click the Select button. Then, back in the Add
access policy form, click the Add button. When the portal
returns to the list of access policies, you still need to save
your changes. There’s a save icon, harking back to the days
of 3.5-inch floppy disks, at the top of the page.

Once the access policy is set up for the key vault, my app
will run because it will succeed when the app’s startup code
attempts to hook into the key vault, which happens before
the connection string is even needed. However, it wasn’t
instantaneous in my case. I don’t know if it was a matter of
time and patience—which I don’t have—or the app restart
I forced. Figure 7 shows the default home page created by
the template I used to build the website.

Providing the App’s Managed
Identity Access to the Database
If you click on the Episodes link at this point, it will still
fail. Even though I now have access to Key Vault and there-
fore the connection string for the database, remember that
there’s no user ID or password in the connection string for
authenticating to the database. I need to let the database
know that this Azure Web App is allowed to communicate
with it by using its Managed Identity.

There are two steps to achieving this:

1.	 Add the app service identity as a user on the database.
2.	 Specify read and write permissions for that user.

Both of these steps can be performed in TSQL through any
application where you can connect to the database and ex-
ecute commands. Because I already have the solution open
in Visual Studio, I may as well use the SQL Server Data Tools
(SSDT) in Visual Studio.

There was a wrinkle in my setup. My database had origi-
nally been created with SQL Server authentication, i.e., a
user ID and password. In order to add a managed identity
(the EspisodeApp identity) as a user, I have to control the
database with an Active Directory account—in other words,
the identity that I use to log into my Azure subscription. By
default, Active Directory accounts are not given administra-
tive privileges on Azure SQL databases. To fix this, I had to
return to the database’s server in the portal and under Set-
tings, choose Active Directory admin.

There, I could see that I wasn’t set up to admin the server
with an Active Directory account (Figure 8). To remedy this,
I chose Set admin and then selected my main Azure sub-
scription identity (and saved that!) as an administrator of
that server.

Then I was able to connect to the database from SQL Server
Object Explorer using Active Directory Integrated Authenti-
cation. (Figure 9).

Once I have a connection to the database and a query win-
dow open, I’ll execute three commands.

Figure 6: Finding the EpisodeApp identity when creating an access policy

Figure 7: The home page of the Web app now running on Azure

You can grant permissions to the managed identity by using
Azure role-based access control (Azure RBAC). The managed
identity is authenticated with Azure AD, so you don’t have
to store any credentials in code. “

You can see the identity in the portal by opening the App
Service and choosing Identity from its menu bar (Figure 5).
You can also access identity information via the Azure CLI or
PowerShell commands.

Next, you’ll need to create an Access policy in Key Vault for
that Managed Identity and also let the Azure SQL database
know about it. If you’re using the portal to set up the ac-
cess, then you’ll be able to search for and choose the Epi-
sodeApp identity. That’s the path I’ll be following. If you’re
using the Azure CLI or PowerShell, then you’ll need to copy
that Object ID (I’ve covered mine in the screenshot) to in-
clude in commands.

Create an Access Policy
to Read Key Vault Secrets
Hopefully, you read the earlier article and remember how
to create access policies for Azure Key Vault. Here are the
“Cliff Notes.” Find Key Vault, choose the specific vault from
the list of key vaults, and then click the Access Policies link
under Settings in its menu. Finally, choose Add Access Pol-
icy. You’ll only need two permissions: Get and List from the
Secret permissions. Select those. The next two options are
to either choose a principal or Application access. Either

Eliminate Secrets from Your Applications with Azure Managed Identity

33codemag.com

CREATE USER EpisodeApp FROM EXTERNAL PROVIDER
ALTER ROLE db_datareader ADD MEMBER EpisodeApp
ALTER ROLE db_datawriter ADD MEMBER EpisodeApp

This combination associates the EpisodeApp identity as a user of
the database and then allows that user to read and write data.

Signaling the Connection String
to Use Managed Identity
In the last twist of this transformation, I can inform the
database to use Managed Identity to authenticate the user,

in this case, the Episodes Application, and grant access to
the database.

This is done with an attribute in the SQL Server connection
string—Authentication. Specifying Azure Active Directory
with the Authentication attribute has been possible for a
while, and, in fact, other APIs already supported the use of
Managed Identity. It’s only recently that the Microsoft.Data.
SqlClient API also supported Managed Identity.

For the curious, there are now six possible values you can
set in the Authentication property:

Figure 9: Accessing the Azure SQL database from Visual Studio using Active Directory Integrated Authentication

Figure 8: Enabling the SQL Server to be administered with an Active Directory identity

Eliminate Secrets from Your Applications with Azure Managed Identity

34 codemag.com

See more details about this attribute in the docs at http://
bit.ly/ADMIAuthentication.

Remember that the connection string is stored in the Azure
Key Vault. The values of secrets in the key vault are immu-
table, so rather than editing them, the Portal gives you a
way to add a new version. That path is to return to the Se-
crets list in your Azure Key Vault, select the secret and in the
Details tab, and choose the New Version option. I typically
set up the string in Notepad to make sure it’s correct and
then copy from there and paste into the Value text box. By
default, the new (latest) version will be the only active ver-
sion of the key.

With this, I can return to the Azure hosted Episodes app and
browse to the Episodes list as well as edit or add episodes as
I see fit (Figure 10).

Debug Against a Local Database
What about continuing to develop and debug from Visual
Studio? Currently, the code always reads from key vault and
always comes up with the new authentication mode, which
will fail from Visual Studio. Even if I also put the connection
string into appsettings.development.json, the Key Vault
configuration will take precedence.

One approach to solving this is to conditionally read from
the Key Vault only when you’re not in development mode.
This is controlled by the ASPNETCORE_ENVIRONMENT en-
vironment variable, which is, by default, Development on
your development computer and, also by default, Produc-
tion in your deployed application. If your deployed applica-
tion were also in Development mode, users would see all
of the detailed error and tracing information when the app
fails. That’s definitely not desirable.

Let’s take advantage of ASPNETCORE_ENVIRONMENT to solve
this problem.

•	 Active Directory Password: You also supply UserId and
Password and the database will seek them out in Azure AD.

•	 Active Directory Integrated: This combines using an
on-premises AD with Azure AD.

•	 Active Directory Interactive: This mode triggers multi-
factor authentication.

•	 Active Directory Service Principal: This involves regis-
tering the application directly with the database (non-
user interactive).

•	 Active Directory Device Code Flow: This method is most
commonly used for apps on IoT devices.

•	 Active Directory Managed Identity: This is what I’ll use
to allow Managed Identities to authenticate.

The attribute is written as

Authentication=Active Directory Managed Identity

That means my connection string will now look like this:

Server=
tcp:codemagsqlserver.database.windows.net,1433;
Authentication=
 Active Directory Managed Identity;
Database= Episodes

Keep in mind that the line wrapping is solely for the sake of
this article’s formatting rules.

A few points to note about this. The method used to be
known as Active Directory MSI, and the API will recognize if
you use “Active Directory MSI” as the value instead.

Specifying this attribute on its own in the connection string
works if, like the example in this article, the identity was
defined by the service. However, if you’re using a user-as-
signed Managed Identity for authentication (created by you
or another admin perhaps) then you’ll need to provide the
object ID of that Managed Identity in a User ID attribute.

Figure 10: The Episodes page of the app running on Azure

Eliminate Secrets from Your Applications with Azure Managed Identity

35codemag.com

Instantly Search
Terabytes

 The Smart Choice for Text
Retrieval® since 1991

1-800-IT-FINDS
www.dtSearch.com

dtSearch’s document filters
support:
• popular file types
• emails with multilevel

attachments
• a wide variety of databases
• web data

Over 25 search options
including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit

card search

Developers:
• SDKs for Windows, Linux,

macOS
• Cross-platform APIs for

C++, Java and .NET with .NET Standard / .NET Core
• FAQs on faceted search,

granular data classification,
Azure, AWS and more

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise

and developer evaluations

I’ve added the localdb connection string into appsettings.
development.json. Then I’ll return to program.cs in the ap-
plication and modify the code where, in the previous ar-
ticle, I instructed the app to read configurations from the
Key Vault. Now I’ll have it read from the key vault only if
that environment variable is Production. That information is
exposed through ASP.NET Core APIs as HostBuilderContext.
HostingEnvironment.IsProduction().

What was formerly:

.ConfigureAppConfiguration((context, config) =>
{
 var builtConfig = config.Build();
 config.AddAzureKeyVault(
 new Uri(
“https://lermancodemagvault.vault.azure.net”),
 new DefaultAzureCredential());
})

Should now be:

.ConfigureAppConfiguration((context, config) =>
{
 if (context.HostingEnvironment.IsProduction())
 {
 var builtConfig = config.Build();
 config.AddAzureKeyVault(
 new Uri(
“https://lermancodemagvault.vault.azure.net”),
 new DefaultAzureCredential());
 }
})

I re-published the app to verify that it works both in debug
mode in Visual Studio and on the Azure App Service.

Bask in the Glory of Your Totally
Secure, Secret-less ASP.NET Core
App Thanks to Managed Identity
That’s it! I started out this process knowing nothing about
Managed Identities and bringing to the table my many de-
cades of fear of anything to do with security. Being more of
a back-end person, I’d never published an ASP.NET Core app
as an Azure App Service. Now I have a pretty decent under-
standing of Azure Active Directory, Managed Identity, and
how to hook up various services in Azure to work with each
other and share security information without me having to
provide it in my application. I hope that I’ve been able to
share the same confidence with you.

Although the database is secure in that it can only be used
by my application, and my key vault is secure for the same
reason, the application itself isn’t secure because it’s just
a simple demo. I will definitely be locking it down prior to
this article’s publication, because I have seen what hap-
pens when I leave sample applications running on the In-
ternet with anyone having the ability to enter and edit the
data. You can download the code that goes with the article
on the CODE Magazine website or grab it from GitHub at
https://github.com/julielerman/CodeMagEpisodeApp.

SPONSORED SIDEBAR:

The Dreaded Azure
Three Cs

Microsoft Azure is a robust
and full-featured cloud
platform. That robustness can
lead to the dreaded Three
Cs: Confusion, Complexity,
and Cost. Take advantage
of a FREE hour-long CODE
Consulting session (yes,
FREE!) to minimize the impact
of the Three Cs and help
your organization develop
solutions on the Microsoft
Azure platform. No strings.
No commitment. Just CODE.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

� Julie Lerman
�

Eliminate Secrets from Your Applications with Azure Managed Identity

36 codemag.comTest Your REST APIs Using Insomnia REST Client

ONLINE QUICK ID 2107051

Test Your REST APIs Using
Insomnia REST Client
Over the past few years, APIs evolved to become the center of software development. You can take advantage of APIs to enable
communication between systems and the data exchange between them. Today’s applications thrive a lot on APIs—most of
today’s applications are API-based. You must test your APIs before releasing them for the clients or end-users to consume.

It would help if you had API testing as part of your test-
ing strategy to test your application’s core business rules
and help deliver better software faster. There are plenty of
API testing tools around. Postman is the de facto industry-
standard tool for testing and developing APIs.

Insomnia is yet another popular, fast REST client that’s avail-
able for Mac, Windows, and Linux. You can use Insomnia for
testing RESTful as well as GraphQL APIs. It’s a free cross-
platform desktop framework that incorporates a user-friendly
user interface and sophisticated features, such as security
helpers, code creation, and environment variables. You can
take advantage of Insomnia to test HTTP-based RESTful APIs
or even GraphQL APIs. This article talks about how you can
fast-track API development with Insomnia REST Client.

Prerequisites
If you’re to work with the code examples discussed in this ar-
ticle, you should have the following installed in your system:

•	 Visual Studio 2019 (an earlier version will also work
but Visual Studio 2019 is preferred)

•	 .NET 5.0
•	 ASP.NET 5.0 Runtime
•	 Insomnia REST Client

You can download Visual Studio 2019 from here: https://
visualstudio.microsoft.com/downloads/. You can download
.NET 5.0 and ASP.NET 5.0 runtime from here: https://dotnet.
microsoft.com/download/dotnet/5.0. You can download
and install the Insomnia REST Client from here: https://
insomnia.rest.

What’s API Testing?
API testing determines whether the application program-
ming interfaces (APIs) meet functionality, consistency, ef-
ficiency, usability, performance, and security specifications.
In addition, it helps uncover bugs, anomalies, or discrepan-
cies from an API’s expected behavior.

Typically, any application has three distinct layers: the
presentation layer, the business layer, and the data access
layer. API testing is performed at the business layer because
it’s the most critical of all layers in an application where the
heart of the application or the business rules is stored. An
API client is used to evaluate APIs for accessibility, usability,
stability, reliability, and correctness.

Benefits of API Testing
Some of the benefits of API testing are:

•	 Early testing: Using API testing, you can validate your
business logic even before the application is built in
its entirety. API testing can also help you to find more
bugs in much less time (API tests are much faster that
UI tests).

•	 GUI-independent: API testing allows testing the core
functionality of an application even without the need
of a user interface.

•	 Language-independent: Because data is exchanged
in XML or JSON format, you can use any language for
test automation.

•	 Improved test coverage: Most APIs allow creating au-
tomated tests (both positive and negative tests) with
high test coverage.

•	 Faster releases: API testing enables you to detect er-
rors early in the software development life cycle, al-
lowing for faster product releases.

Popular API Testing Tools
Some of the popular API testing tools include the following:

•	 Postman
•	 Soap UI
•	 Apigee
•	 JMeter

What Is Insomnia?
A REST client is a tool used for interacting with a RESTful API
that’s exposed for communication. An Insomnia REST Client is
an open-source, powerful REST API client used to store, orga-
nize, and execute REST API requests elegantly. The Insomnia
REST Client is an excellent alternative to Postman for sending
REST and GraphQL requests with support for cookie manage-
ment, environment variables, code generation, and authen-
tication. It’s available for Windows, Mac, and Linux operating
systems. In addition, Insomnia incorporates a user-friendly
GUI with sophisticated features such as security helpers, code
creation, and environment variables.

API is an acronym for Application
Programming Interface and
acts as the middle layer between
the presentation layer and
the database layer.

Joydip Kanjilal
joydipkanjilal@yahoo.com

Joydip Kanjilal is an MVP
(2007-2012), software
architect, author, and
speaker with more than
20 years of experience.
He has more than 16 years
of experience in Microsoft
.NET and its related
technologies. Joydip has
authored eight books,
more than 500 articles,
and has reviewed more
than a dozen books.

37codemag.com Test Your REST APIs Using Insomnia REST Client

4.	 If you want the solution file and project to be cre-
ated in the same directory, you can optionally check
the “Place solution and project in the same directory”
checkbox. Click Next to move on.

5.	 In the next screen, specify the target framework and
authentication type as well. Ensure that the “Configure
for HTTPS,” “Enable Docker Support,” and the “Enable
OpenAPI support” checkboxes are unchecked because
you won’t use any of these in this example.

6.	 Click Create to complete the process.

This creates a new ASP.NET 5 Web application. I’ll use this
project throughout this article. A default controller named
WeatherForecastController will be created as well. Because
I won’t be using this controller in this example, delete this
file and update the profiles section of the launchSettings.
json file with the following text:

 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "launchUrl": "api/product",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }

Note that the launchUrl in the launchSettings.json file
points to a controller named ProductController. You’ve yet
to create this controller—you’ll create it shortly.

Create a Minimalistic ASP.NET Core
Web API
In this section you’ll create a minimalistic RESTful API. In
this example, you’ll be using the following classes and in-
terfaces:

•	 Product: This is the entity class you’ll use in this ap-
plication for storing Product data.

•	 IProductRepository : This interface contains the dec-
laration of the methods used to perform simple CRUD
operations using the Product entity.

•	 ProductRepository: The ProductRepository class ex-
tends the IProductRepository interface and imple-
ments its members.

•	 ProductController: This is the controller class that
contains all the action methods.

Create the Model
Create a file named Product.cs with the following code in
there:

public class Product
 {
 public int Id { get; set; }
 public string Code { get; set; }
 public string Name { get; set; }
 }

Create the Product Repository
Create an interface named IProductRepository in a file
named IProductRepository.cs with the following code in
there:

The following are some of the features of Insomnia REST
Client:

•	 Cross-platform support
•	 Ability to execute REST, SOAP, GraphQL, and GRPC requests
•	 Ability to store, organize, and execute REST API requests
•	 Ability to organize requests in workspaces and groups
•	 Support for query string param builder
•	 Ability to export and share workspaces
•	 Support for chained requests

Insomnia REST Client vs. Postman
Although both Postman and Insomnia have their unique
features, there are certain features that are common to
both, such as the following:

•	 Both have a free version of their software.
•	 Both are open-source projects.
•	 Both offer support for multiple workspaces.
•	 Both include support for GraphQL integration.
•	 Both have import and export of test data.
•	 Both use multiple ways to configure authorizations.

What’s Unique about Postman
Postman is a more mature tool and the market leader in API
testing tools. Some of the striking features of Postman are:

•	 API documentation: Postman is adept at generating
host browser-based API documentation in real-time.

•	 Monitoring: Postman is capable of running a collection
periodically to check for its performance and response.

What’s Unique about Insomnia
Insomnia provides certain features that aren’t supported by
Postman. These features include the following:

•	 Plug-ins: Insomnia provides support for creating new
plug-ins.

•	 Environment variables: Environment variables are
one of the most useful features of Insomnia that can
save a lot of time manually typing.

•	 Code snippet generation: Insomnia enables you to
generate code snippets in 12 different languages.

•	 Response format: You can take advantage of Insom-
nia to view response beyond JSON and XML, i.e., you
can see HTML pages, images, and even PDF documents.

Now, let’s put it through its paces so you can see for yourself.

Create an ASP.NET 5 Project
in Visual Studio 2019
First off, create a new ASP.NET 5 project in Visual Studio. You
can create a project in Visual Studio 2019 in several ways.
When you launch Visual Studio 2019, you’ll see the Start
window. You can choose “Continue without code” to launch
the main screen of the Visual Studio 2019 IDE.

To create a new ASP.NET 5 project in Visual Studio:

1.	 Start the Visual Studio 2019 Preview IDE.
2.	 In the “Create a new project” window, select “ASP.NET

Core Web API” and click Next to move on.
3.	 Specify the project name and the path where it should

be created in the “Configure your new project” window.

38 codemag.com

The ProductRepository class pertaining to the Produc-
tRepository.cs file extends the IProductRepository interface
and implements its methods as shown in Listing 1.

Add the Dependencies
The following code snippet illustrates how an instance of
the ProductRepository class is added as a scoped service in
the Startup class so it can be used in the controller using
dependency injection.

public void ConfigureServices
(IServiceCollection services)
{
 services.AddScoped<IProductRepository,
 ProductRepository>();
 services.AddControllers();
}

You can now leverage dependency injection in your con-
troller class to retrieve an instance of ProductRepository at
runtime.

 public class ProductRepository: IProductRepository
 {
 private readonly List<Product> products =
 new List<Product>();

 public ProductRepository()
 {
 products.Add(new Product
 {
 Id = 1,
 Code = "P0001",
 Name = "DELL Laptop"
 });

 products.Add(new Product
 {
 Id = 2,
 Code = "P0002",
 Name = "Logitech Wireless Mouse"
 });

 products.Add(new Product
 {
 Id = 3,
 Code = "P0003",

 Name = "HP Printer"
 });
 }

 public Task<List<Product>> GetProducts()
 {
 return Task.FromResult(products);
 }
 public Task<Product> GetProduct(int id)
 {
 return Task.FromResult(products.
 Where(x => x.Id == id).SingleOrDefault());
 }
 public Task<bool> AddProduct(Product product)
 {
 products.Add(product);
 return Task.FromResult(true);
 }
 public Task<bool> DeleteProduct(int id)
 {	
 products.Remove(products.
 Where(x => x.Id == id).SingleOrDefault());
 return Task.FromResult(true);
 }
 }

Listing 1: The ProductRepository Class

Figure 1: The RESTful API in action

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace InsomniaRESTClient.Controllers
{
 [Route("api/[controller]")]
 [ApiController]
 public class DefaultController : ControllerBase
 {
 private readonly IProductRepository _productRepository;

 public DefaultController(IProductRepository
 productRepository)
 {
 _productRepository = productRepository;
 }

 [HttpGet]
 public async Task<ActionResult<List<Product>>> Get()
 {
 return await _productRepository.GetProducts();

 }

 [HttpGet("{id}")]
 public async Task<ActionResult<Product>> Get(int id)
 {
 return await _productRepository.GetProduct(id);
 }

 [HttpPost]
 public async Task<ActionResult<bool>> Post([FromBody]
 Product product)
 {
 return await _productRepository.AddProduct(product);
 }

 [HttpDelete("{id}")]
 public async Task<ActionResult<bool>> Delete(int id)
 {
 return await _productRepository.DeleteProduct(id);
 }
 }
}

Listing 2: The DefaultController Class for the RESTful API

public interface IProductRepository
 {
 Task<List<Product>> GetProducts();
 Task<Product> GetProduct(int id);
 Task<bool> AddProduct(Product product);
 Task<bool> DeleteProduct(int id);
 }

Test Your REST APIs Using Insomnia REST Client

39codemag.com

click on Manage Environments to add or edit an environment.
Figure 3 shows how you can edit the Base environment.

Test RESTful API in Insomnia
In this section, I’ll examine how you can make GET and POST
requests using Insomnia.

Send a GET Request
To create a GET request, follow the steps outlined below:

1.	 Launch the Insomnia application.
2.	 Click on the “New Request” button.
3.	 In the “New Request” window that pops up, specify the

name of the request and select a request method.
4.	 Click Create.

Now follow the steps given below to test the API using In-
somnia REST Client:

1.	 Ensure that the Web API application is up and running.
2.	 Launch the Insomnia REST Client.
3.	 Ensure that the HTTP method GET is selected (it’s the

default).
4.	 Specify the URL in the address bar.
5.	 Click Send.

Create the API Controller
Create a new API controller named DefaultController and re-
place the default autogenerated code using the code shown
in Listing 2.

Run the Application
Now run the application by pressing Ctrl + F5 or just F5. The
application starts and the Web browser displays the data
shown in Figure 1:

Configuring Environment Variables
in Insomnia
While communicating with APIs, you often need to manu-
ally type certain data across multiple requests. Here’s ex-
actly where environment variables come to the rescue. An
environment here refers to a JSON object that contains data
represented as key-value pairs. You can take advantage of
environment variables to define a variable once and then
reference its value wherever it’s needed. You can access the
environment manager through the drop-down menu at the
top of the sidebar, as shown in Figure 2:

You can take advantage of the environment manager to edit
the base environment, create sub environments, etc. You can

Figure 2: Manage the environment in Insomnia.

Figure 3: Edit the Base environment.

Test Your REST APIs Using Insomnia REST Client

40 codemag.com

Create a Minimalistic GraphQL API
In this section, I’ll examine how you can test a GraphQL API us-
ing Insomnia. Follow the steps mentioned earlier in this article
to create another ASP.NET Core Web API project. Both of these
projects can be part of the same solution. There are certain
classes and interfaces you’ll reuse from the previous example.

Here’s the list of the classes and interfaces you’ll reuse from
the earlier example:

•	 Product: This is the entity class.
•	 IProductRepository: This is the interface for your reposi-

tory class that contains the declarations of the methods.

Figure 5 shows the output—the list of the products is dis-
played in the right-side panel.

Send a POST Request
Assuming that Insomnia is up and running, to send a POST
request, follow the steps outlined below:

1.	 Specify the URL in the address bar.
2.	 Specify the JSON data in the request body.
3.	 Click Send.

Return the response returned as true, indicating that the
POST request is successful, as shown in Figure 6.

Figure 4: Create a new request.

Figure 5: Displaying the list of products in Insomnia

Test Your REST APIs Using Insomnia REST Client

41codemag.com

•	 ProductRepository: This is your only repository class
that extends the IProductRepository interface and
implements its members.

Schemas and Types
The main building blocks of GraphQL are schemas and types.
A schema extends the GraphQL.Types.Schema class and rep-
resents the functionality exposed via an endpoint for the
clients of the API to consume. Note that there’s only one
endpoint in GraphQL.

A schema comprises Query, Mutation, and a Subscription. Que-
ries are used to consume data in an efficient manner. Mutations
are used to send data to the server for performing CRUD opera-
tions. Subscriptions enable data to be sent back to the client.

With this knowledge, you can proceed with creating your
minimalistic GraphQL API.

Configure the GraphQL Middleware
Support for GraphQL isn’t available in ASP.NET Core by de-
fault, i.e., it isn’t a built-in feature. Hence, you should in-
stall the following NuGet packages to work with GraphQL:

Install-Package GraphQL
Install-Package GraphiQL

Because support for GraphQL in ASP.NET Core is an opt-in
feature and isn’t enabled by default, write the following
code in the Configure method of the Startup class to enable
the graphql endpoint:

app.UseGraphiQl("/graphql");

Build the GraphQL Schema
To be able to query data using GraphQL, you should be able
to create a type that extends ObjectGraphType<T>, as shown
in Listing 3.

Create Your Query Type
You also need a class that retrieves data. To do this, create
a class named ProductQuery that extends the ObjectGraph-
Type class, as in Listing 4.

Note that when you’re working with GraphQL, the client always
makes an HTTP POST call and passes the query name, name of
the operation, and variables. You need a POCO class to manage
schema, variables, and the argument, as shown Listing 5.

public class ProductType : ObjectGraphType<Product>
 {
 public ProductType()
 {
 Name = "Product";
 Field(_ => _.Id).Description("Product ID.");
 Field(_ => _.Name).Description("Product Name");
 Field(_ => _.Description).Description
 ("Product Description");
 }
 }

Listing 3: The ProductType Class

public class ProductQuery : ObjectGraphType
 {
 public ProductQuery(ProductRepository
 productRepository)
 {
 Field<ListGraphType<ProductType>>(
 name:"products", resolve: context =>
 {
 return productRepository.GetProducts();
 });
 }
 }

Listing 4: The ProductQuery Class

 public class GraphQLQueryDTO
 {
 public string OperationName { get; set; }
 public string NamedQuery { get; set; }
 public string Query { get; set; }
 public string Variables { get; set; }
 }

Listing 5: The GraphQueryDTO Class

Figure 6: Execute a POST request in Insomnia.

public void ConfigureServices(IServiceCollection services)
 {
 services.AddScoped<IDependencyResolver>
 (_ => new FuncDependencyResolver
 (_.GetRequiredService));
 services.AddScoped<IDocumentExecuter,
 DocumentExecuter>();
 services.AddScoped<ISchema, GraphQLDemoSchema>();
 services.AddScoped<IDocumentWriter, DocumentWriter>();

 services.AddScoped<IProductRepository,
 ProductRepository>();
 services.AddScoped<ProductQuery>();
 services.AddScoped<ProductType>();
 services.AddControllers();
 }

Listing 6: The ConfigureServices method

Test Your REST APIs Using Insomnia REST Client

42 codemag.com

Source Code

The complete source code of
the demo application built
throughout this article is
available here: https://github.
com/joydipkanjilal/insomnia

the request or by modifying the body type of the request
using the body menu.

To execute the GraphQL endpoint using Insomnia, follow the
steps outlined below:

1.	 Launch Insomnia.
2.	 Create a new request and name it GraphQL (you can

provide any name).
3.	 Select HttpPOST as the HTTP method.
4.	 Select GraphQL request type.
5.	 Specify your GraphQL query in there.
6.	 Click Send.

Figure 7 shows how output looks in the Insomnia user interface.

Summary
GraphQL is technology and database agnostic, which means
that it can be used with most common technologies, frame-
works, or platforms. Insomnia provides support for testing
both RESTful as well as GraphQL APIs. You can learn more
about Insomnia here: https://support.insomnia.rest/.

Add Services to the Container
Write the code shown in Listing 6 in the ConfigureServices
method to add services to the built-in IoC container.

Create the Controller Class
So far, so good. You now need to create the GraphQL end-
point. Create a new API controller named DefaultController
with the code mentioned in Listing 7 in there.

Test GraphQL API in Insomnia
Here’s an example GraphQL query:

query {
 products {
 id
 name
 description
 }
}

Now execute the application and browse to the /graphql
endpoint. You can also execute this query here using the
GraphiQL tool but you’ll execute the GraphQL query using
Insomnia. You can easily create a GraphQL request in Insom-
nia either choosing the GraphQL request type while creating

Figure 7: Executing GraphQL API in Insomnia

 [Route("graphql")]
 public class DefaultController : ControllerBase
 {
 private readonly ISchema _schema;
 private readonly IDocumentExecuter _executer;
 public DefaultController(ISchema schema,
 IDocumentExecuter executer)
 {
 _schema = schema;
 _executer = executer;
 }

 [HttpPost]
 public async Task<IActionResult> Post([FromBody]
 GraphQLQueryDTO query)
 {

 var result = await _executer.ExecuteAsync(_ =>
 {
 _.Schema = _schema;
 _.Query = query.Query;
 _.Inputs = query.Variables?.ToInputs();

 });

 if (result.Errors?.Count > 0)
 {
 return BadRequest();
 }

 return Ok(result.Data);
 }
 }

Listing 7: The DefaultController Class for our GraphQL API

� Joydip Kanjilal
�

Test Your REST APIs Using Insomnia REST Client

43Title articlecodemag.com

codemag.com/mobile

READ
CODE MAGAZINE
ON MOBILE!

codemag.com44 Building Command Line Utilities in C# and Python

ONLINE QUICK ID 2107061

Rod Paddock
craigshoemaker.net
@craigshoemaker

Craig Shoemaker is a devel-
oper, author, speaker, and
Senior Content Developer
for Microsoft on the Azure
Functions team. From
building samples, internal
tools, and writing articles,
Craig helps developers
around the world learn
to build serverless
applications.

As a Pluralsight author,
Craig specializes in teaching
JavaScript, HTML5, and
IndexedDB.

In the future, Craig wants
to learn how to tell a joke.

Building Command Line Utilities
in C# and Python
A few months ago, I received an email from a friend requesting some technical help. The following text is a copy of the email he
sent me (names have been excluded to protect the innocent, LOL)

“I have a command line tool installed through Homebrew on
my laptop running High Sierra. The command is just ccextrac-
tor <filepath> and it runs fine in a standard bash terminal. I
was hoping to use Automator to be able to run it on batches
of files, but I’m struggling with the syntax for the Run Shell
Script command. It just keeps saying ccextractor command
not found. Also, the command line tool can only process one
file at a time, so I guess I need some way to loop the request
so it can process more than one file.”

My friend, like me, is a movie aficionado with an extensive
collection of movies, many of which are foreign titles with
subtitles. When copying files to systems like Plex, you need
this subtitle information so you can see it when you watch
the films. This is where CCExtractor comes in. CCExtractor
(https://www.ccextractor.org/) is an application used to
extract closed captions from video files.

The problem was that my friend couldn’t figure out how to use
Automator (a Mac tool) to run this command on a directory
of files. An attempt was also made to use Bash with no luck.

I told him that I could probably whip something up in Py-
thon, if that would work. “Are you sure that’s not too much
trouble?” my friend asked. “Nah, it should be pretty simple
to whip up,” I replied.

Here’s what I did.

1.	 I navigated to the https://www.ccextractor.org/ site
and downloaded the binaries and some 3.x GB sample
files to my drive.

2.	 I opened my trusty text editor (https://www.sublim-
etext.com/) and created a new Python program.

3.	 After a bit of Googling, I came up with this set of code:

import os
import subprocess

directory_to_import =
 ‘D:/Data/clients/RodPaddock/CCExtractor/’
extractor_exe_path =
 ‘D:/Data/clients/RodPaddock/CCExtractor
/ccextract orwin’
for file in os.listdir(directory_to_import):
 if file.endswith(“.mpg”):
 print(os.path.join(
 directory_to_import, file))
 subprocess.run(
 [extractor_exe_path,
 os.path.join(
 directory_to_import, file)])

This code was built, debugged, and run on my Windows
development box. The goal was to get it working as fast as

possible on my main development box before moving it
onto a Mac.

Here’s a link to the Gist of the code: https://gist.github.
com/rjpaddock/d53956767dd4a1fe267dee08c995c956.js.

Getting the code to run on the Mac was simple. Here’s the
Mac version:

import os
import subprocess
directory_to_import = ‘/Users/rodpaddock/ccextractor’
extractor_exe_path = ‘ccextractor’
for file in os.listdir(directory_to_import):
 if file.endswith(“.mpg”):
 print(os.path.join(directory_to_import, file))
 subprocess.run([extractor_exe_path,
 os.path.join(directory_to_import, file)])

As you can see, the changes were minimal, at best. I
changed the path to my user directory on the Mac and got
rid of the specific path to the executable. I used Homebew
to install the CCExtractor on my Mac so it was in the PATH
already. After installing a version of Python on my Mac, I
was able to run the application as-is. No operating system-
specific issues. After getting my program to work, I sent it
to my friend, who simply changed the path to the files he
wished to decode, and BOOM. It just worked.

Running on Windows
After marveling at how much could be accomplished with so
few lines of code, I became curious to see how complex it
would be to build the same application in C#. I’m using .NET
Core to do this, as I want to run it cross-platform, as well. The
code in Listing 1 represents the same functionality in C#.

I’d say this wasn’t too bad. Building the same application
was pretty simple as a C# console application. Here’s a
Gist to the C# code: https://gist.github.com/rjpaddock/
be601db3995082949071121d8aa992d7.

With a minimal set of code, I thought it would be fun to ex-
plore making it a bit more robust. Here’s the set of features
I planned to add:

•	 Accept an extension parameter. The original code had
the extension hard-coded.

•	 Accept a path to the files I wished to decode.
•	 Accept the path to the executable as a parameter.
•	 Parameters should be named vs. positional, if possible.
•	 Run this code on Windows, Mac, and Linux.

I started with the Python program and the first feature on
the list, specifying the extension as a parameter. My initial

Bio Text

is missing

codemag.com 45Building Command Line Utilities in C# and Python

and default it to (.) the current working directory. A sample
call would be as follows:

python run_cc.py
 --extension .mp4
 --directory “D:/Data/clients/RodPaddock/CCExtractor/”

Your Python code now looks like Listing 3.

choice was to process mpg files as the default extension. My
friend immediately changed it to mp4. With this knowledge,
I realized that this would be the first thing to parameterize.

There are multiple ways this could be implemented. One way
we could hack this together would be to use Python’s sys.
argv[] array, which provides positional arguments to Py-
thon programs. For instance, let’s say you called the pro-
gram with the following statement:

python copy run_cc.py .mp4

Then you could access the .mp4 with sys.arg[0]. Although this
works, it’ll cause problems in the long haul if you add or re-
move parameters. It’s also not very intuitive. It would be better
to call the program with a named parameter. For example:

run_cc.py --extension .mp4

Luckily for us, Python has a built-in library to do this exact
thing. This library is known as argparse. To implement the
first option, you need to do the following:

1.	 Add an import argparse to the imports section of the
program.

2.	 Create an argument parser object and add an argument
to it. Your code will look like this:

parser = argparse.ArgumentParser ()
parser.add_argument(“--extension”,
 help=”Extension of files to convert”,
 default=’.mpg’)
 args = parser.parse_args()

There’s a lot going on with just these few lines of code. What
this set of code does is:

•	 Creates an argument parser.
•	 Adds a parameter called --extension to the command

line.

This parameter will be added the args array as a property
with the name extension. Finally, this code specifies a help
description and a default parameter value. The program
code now looks like Listing 2.

The next step is to add a parameter to specify the directory
you wish to read files from. Call the parameter --directory

import os
import subprocess
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--extension",
help="Extension of files to convert",
default='.mpg')
args = parser.parse_args()

directory_to_import =
'D:/Data/clients/RodPaddock/CCExtractor/'
extractor_exe_path =
'D:/Data/clients/RodPaddock/CCExtractor/ccextractorwin'

for file in os.listdir(directory_to_import):
 if file.endswith(args.extension):
 print(os.path.join(directory_to_import, file))
 subprocess.run([extractor_exe_path,
 os.path.join(directory_to_import, file)])

Listing 2: The new code

import os
import subprocess
import argparse

parser = argparse.ArgumentParser()
 parser.add_argument("--extension",
 help="Extension of files to convert",
 default='.mpg')

parser.add_argument("--directory",
 help="Directory to process",
 default='.')

args = parser.parse_args()

extractor_exe_path =
'D:/Data/clients/RodPaddock/CCExtractor/ccextractorwin'
for file in os.listdir(args.directory):
 if file.endswith(args.extension):
 print(os.path.join(args.directory, file))
 subprocess.run([extractor_exe_path,
 os.path.join(args.directory, file)])

Listing 3: The Python code

using System;
using System.Diagnostics;
using System.IO;

namespace ExtractorRunner
{
 class Program
 {
 static void Main(string[] args)
 {
 var directory_to_import =
 "D:/Data/clients/RodPaddock/CCExtractor/";
 var extractor_exe_path =
 "D:/Data/clients/RodPaddock
 /CCExtractor/ccextractorwin";
 foreach (var fileName in
 Directory.GetFiles(directory_to_import,"*.mpg"))

 {
 Console.WriteLine(fileName);
 var process = new Process()
 {
 StartInfo = new ProcessStartInfo
 {
 FileName = $"{extractor_exe_path}",
 Arguments = $"{fileName}",
 UseShellExecute = true,
 }
 };
 process.Start();
 }
 }
 }
}

Listing 1: The .NET Core version of my app

codemag.com

Once you’ve installed this library, you need to build a class
that will hold your parsed command line parameters. This
class will be augmented with Attributes provided by the
command line parser. The first parameter to add is the dy-
namic extension. To do this, add the following class code to
the program:

public class Options
{
 [Option(longName:”extension”,
 HelpText = “Extension of files to convert”,
 Default = “.mpg”)]
 public string Extension { get; set; } = "";
}

This code has a string property called Extension. When you
pass in the –extension parameter to your application, it’s
stored on this property. The more interesting aspect of this
class is the [Option] attribute.

[Option(longName:”extension”,
 HelpText
= “Extension of files to convert”,Default =
 “.mpg”)]

The longName property tells the CommandLIneParser li-
brary to parse an argument with the name –extension onto
the Extension parameter. The HelpText and Default proper-
ties are self-explanatory.

Now that you’ve created this class, you can call the command
line parser to populate your arguments onto an instance of
the Options class. This code demonstrates how to do this:

var parsed=
 Parser.Default.ParseArguments<Options>(args);
var options=((Parsed<Options>) parsed).Value;

This code takes the args collection passed to your applica-
tion, parses them, and returns a parsed object. After pars-
ing the argument collection, you need to cast the Value
property of the parsed object into an instance that you can

Finally, let’s get rid of the EXE path. I’m going to cheat a
bit on this one. I’m simply going to add the directory where
the CCExtractor application is located to my system’s PATH
statement. This will take care of that issue much like Home-
brew did on the Mac.

To change your PATH statement in Windows, open the En-
vironmental Variables from the Windows Start menu. find
PATH in the System variables and add the path to wherever
you extracted the ccextractor application. The Figure 1
demonstrates how this should look.

Now the final Python program looks like Listing 4.

The next step is to implement the same functionality in the
C# application. Python has an argument parser built into
its native libraries, but the .NET platform doesn’t. Not to
fear, there’s a third-party library that you can install to add
this needed functionality. This library is called Command-
LineParser and can be installed via a NuGet package. You
can install this library via the NuGet console by issuing the
following command:

Install-Package CommandLineParser -Version 2.8.0

Figure 1: Changes to PATH statement in Environmental
Variables Screen

import os
import subprocess
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--extension",
 help="Extension of files to convert",
 default='.mpg')
parser.add_argument("--directory",
help="Directory to process",
default='.')

args = parser.parse_args()

should be added to the system PATH statement
extractor_name = 'ccextractorwin'
for file in os.listdir(args.directory):
 if file.endswith(args.extension):
 print(os.path.join(args.directory, file))
 subprocess.run([extractor_name,
 os.path.join(args.directory, file)])

Listing 4: The final Python program

var directory_to_import =
 "D:/Data/clients/RodPaddock/CCExtractor/";
var extractor_exe_path =
 "D:/Data/clients/RodPaddock/CCExtractor/ccextractorwin";
foreach (var fileName in
 Directory.GetFiles(options.Directory,
 $"*{options.Extension}"))
{
 Console.WriteLine(fileName);
 var process = new Process()
 {
 StartInfo = new ProcessStartInfo
 {
 FileName = $"{extractor_exe_path}",
 Arguments = $"{fileName}",
 UseShellExecute = true,
 }
 };
 process.Start();
 }

Listing 5: The new processing logic

46 Building Command Line Utilities in C# and Python

codemag.com

The running program will now spawn a new process that
looks like Figure 3.

At this point, we have a pair of programs written in Python
and C#. These programs are used to run the CCextractor pro-
gram with extension and path parameters. The next step in
the evolution is to run the code on other platforms, namely
macOS and Linux. I’ll demonstrate running code on both of
those platforms.

Running on macOS
Before you start working on the code, you’ll need to get
your Mac set up to install the CCExtractor application and
Python 3 code.

Installing the extractor is simple and is done via the Home-
brew infrastructure used by Mac developers. To install the
CCExtractor, do the following:

Install Homebrew if it isn’t already installed. Run this script
(copied from https://brew.sh/) from a terminal window.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com
/Homebrew/install/master/install.sh)"

1.	 Install the CCExtractor program by issuing the follow-
ing command:

brew install CCExtractor

2.	 Test it by typing CCExtractor from the terminal window.
You should see a screen of help information.

3.	 Now insure that Python3 is installed. From a terminal
window type: python3

If Python 3 is installed, you’ll see the Python’s interactive
window. If not, you may be promoted to install the Com-
mand Line tools for OSX. If so, run that installer. If the Com-
mand Line Tools installer doesn’t run, directions for install-
ing Python 3 can be found here: https://docs.python-guide.
org/starting/install3/osx/.

use in your programming code. Your processing logic now
looks like Listing 5.

Notice that the GetFiles() function now uses the Extension
property of your Options class.

The next step is to add the directory to your Options class.
To do this, simply add another property to your class with
the appropriate name and options. Your class code will now
look like this:

public class Options
{
 [Option(longName:"extension",
 HelpText = "Extension of files to convert",
 Default = ".mpg")]
 public string Extension { get; set; } = "";

 [Option(longName: "directory",
 HelpText = "Directory to process",
 Default = ".")]
 public string Directory { get; set; } = ".";
}

Notice that the DefaultValue property is a single period (.).
This tells the GET files routine to simply process the current
directory.

Now you can incorporate your new Directory option into
your application code. Listing 6 is what the final version
will look like.

One item of note is that the path to the EXE is just the name
of the application. This is because in the last post, I decided
to add the Ccexteactorwin.exe file to the system PATH via
the System Environment variables screen.

You can now run your code from Visual Studio. When testing
your code, you can call your application with arguments by
opening your Project Properties Window, selecting the De-
bug section, and specifying the command line parameters in
the Arguments section. Figure 2 shows that.

using System;
using System.Diagnostics;
using System.IO;
using CommandLine;

namespace ExtractorRunner
{
 class Program
 {
 static void Main(string[] args)
 {

 var parsed = Parser.Default.ParseArguments<Options>(args);
 var options = ((Parsed<Options>) parsed).Value;

 var extractor_exe_path =
	 "ccextractorwin";
 foreach (var fileName in
	 Directory.GetFiles(options.Directory,
	 $"*{options.Extension}"))
 {
 Console.WriteLine(fileName);
 var process = new Process()
 {
 StartInfo = new ProcessStartInfo

 {
 FileName = $"{extractor_exe_path}",
 Arguments = $"{fileName}",
 UseShellExecute = true,
 }
 };
 process.Start();
 }

 }
 public class Options
 {
 [Option(longName:"extension",
	 HelpText = "Extension of files to convert",
 Default = ".mpg")]
 public string Extension { get; set; } = "";

 [Option(longName: "directory",
 HelpText = "Directory to process",
 Default = ".")]
 public string Directory { get; set; } = ".";
 }
 }
}

Listing 6: The final version of the new Directory option

47Building Command Line Utilities in C# and Python

codemag.com

Now it’s time to test the code. Clone this repo:

https://github.com/rjpaddock/ExtractorRunner.git

From a terminal window, change into the folder where you
cloned that repo and run the following command:

python3 run_cc.py
--extension mpg --directory
[[INSERT YOUR DIRECTORY HERE]]

You’ll be presented with the error information in Listing 7.

This error is because the name of the CCExtractor applica-
tion is different in the Windows environment. Check out the
last line. What’s the fix for this?

To fix this, you need to call a different executable based on the
operating system. Luckily for us, Python has a built-in library for
just such a thing. To check which platform your code is running
on, import the platform library at the top of your python file:

import platform

Next, add the following code to your script:

extractorname = ''
if platform.system() == 'Windows':
 extractor_name = 'ccextractorwin'
elif platform.system() == 'Darwin':

Figure 2: Specifying parameters in the arguments section

Figure 3: The new process

48 Building Command Line Utilities in C# and Python

codemag.com

Now add the following block of code to your C# program:

 var extractor_exe_path = “”;
if (RuntimeInformation
 .IsOSPlatform(OSPlatform.Windo ws))
 {

 extractor_name = 'ccextractor'
elif platform.system() == "Linux":
 extractor_name = 'ccextractor'

Now run the application. Your script should start processing
files with no error. NOTE: The code in the Repository already
has this change applied. You’re welcome.

The next step is to get the C# code up and running on the
Mac. This process was much easier than I anticipated, as
Microsoft has created a Mac version of Visual Studio. The
first step is to install Visual Studio Mac from the Microsoft
website: https://visualstudio.microsoft.com/vs/mac/.

When installing the application, make sure to install it with
the .NET Core option selected, as shown in Figure 4.

Once the installer completes, open the ExtractorRunner so-
lution from the folder you pulled code into. Open the op-
tions dialog for the project and set the command line pa-
rameters you’ve been using to test, as shown in Figure 5.

Run your code now. You’ll now see an error in the console
window of your application, like that in Figure 6.

This is very similar to the Python error and requires the
same solution. .NET Core also included a set or libraries to
determine your operating system. Add the following snippet
to the top of your program:

using System.Runtime.InteropServices;

Traceback (most recent call last):
 File “run_cc.py”, line 15, in <module>
subprocess.run([extractor_name,
 os.path.join(args.directory, file)])
 File “/Library/Developer/CommandLineTools/
 Library/Frameworks/Python3.framework/
 Versions/3.8/lib/python3.8/subprocess.py”,
 line 489, in run with Popen(*popenargs, **kwargs)
 as process:
 File “/Library/Developer/CommandLineTools
 /Library/Frameworks/Python3.framework
 /Versions/3.8/lib/python3.8/subprocess.py”,
 line 854, in __init__
 self._execute_child(args, executable,
 preexec_fn, close_fds, File “/Library/Developer
 /CommandLineTools/Library
 /Frameworks/Python3.framework/Versions
 /3.8/lib/python3.8/subprocess.py”,
 line 1702, in _execute_child
 raise child_exception_type(
 errno_num, err_msg, err_filename)
 FileNotFoundError:
 [Errno 2]
 No such file or directory: ‘ccextractorwin’

Listing 7: The error information

Figure 4: Install the application with .NET Core option selected.

49Building Command Line Utilities in C# and Python

codemag.com

Running on Linux (Ubuntu)
Before modifying the runner programs, you need to install the
CCExtractor application on your Linux server. Directions for in-
stalling the CCExtractor on Linux can be found here: https://
github.com/CCExtractor/ccextractor/wiki/Installation.

Basically, you pull the code from GitHub, and run the typi-
cal process of building applications in the Linux world—i.e.
MAKE the application. Luckily for me, the code “just com-
piled” using the instructions provided. Once built, I had to
make one simple change to the script and was able to ex-
ecute the runner application. The branch of code to deter-
mine the proper program to run looks like this:

if platform.system() == 'Windows' :
 extractor_name = 'ccextractorwin'
elif platform.system() == 'Darwin':
 extractor_name = 'ccextractor'
elif platform.system() == "Linux":
 extractor_name =

 extractor_exe_path = “ccextractorwin”;
 }
else if (RuntimeInformation
 .IsOSPlatform(OSPlatform.OSX))
 {
 extractor_exe_path = “ccextractorwin”;
 }
else if (RuntimeInformation
 .IsOSPlatform(OSPlatform.Linux))
 {
 extractor_exe_path = “ccextractor”;
 }

Run your code and you should see proper output in the run-
ner window.

Now you have the same command line functionality for both
the Python and C# versions of this program and can run
the code on the Mac and Windows. Let’s take a look at the
process of running thus under Ubuntu.

Figure 5: Set the command line parameters.

Figure 6: The error shows in the console window.

50 Building Command Line Utilities in C# and Python

codemag.com

 {
 extractor_exe_path = "ccextractorwin";
 }
else if (RuntimeInformation
.IsOSPlatform(OSPlatform.OSX))
 {
 extractor_exe_path = "ccextractor";
 }
else if (RuntimeInformation
 .IsOSPlatform(OSPlatform.Linux))
 {
 extractor_exe_path =
 "/home/azureuser/data
 /projects/ccextractor/linux/ ccextractor";
 }

Run the dotnet build command again, change into that
folder, and run the following command:

./ExtractorRunner --extension mpg
--directory
 /home/azureuser/data/sampledata/

Figure 7 shows the runner application running on Ubuntu.

End Notes
This is how you create a totally cross-platform application in
Python and C#. I was pleasantly surprised at how simple it
was to build and run the C# code on Mac and Linux, which
is a testament to the work that the Microsoft team has done
over the last few years.

'/home/azureuser
/data/projects/ccextractor/linux/ ccextractor'

Now I was able to run the code using the same command
line options I used on the Mac.

python3 run_cc.py --extension mpg
 --directory /home/azureuser/data/sampledata/

Now that the Python code is up and running you can turn
your sites onto running the C# code. To do this, you need
to first install the .NET Core SDK on your Ubuntu instance.
This is done by following the directions from this page:
https://docs.microsoft.com/en-us/dotnet/core/install/
linux-ubuntu.

If you’re running a different flavor of Linux, you can find
directions on this page: https://docs.microsoft.com/en-us/
dotnet/core/install/linux.

Once you have the SDK installed, change into the folder
where you cloned the GitHub repository and run the follow-
ing command:

dotnet build

This builds an executable file and puts it in a sub-folder
(off the root of your code) in this location /bin/Debug/
netcoreapp3.1. There’s one more step. Before you can run
the code, you need to change your program.cs file to use the
following executable selection code:

var extractor_exe_path = "";
if (RuntimeInformation
.IsOSPlatform(OSPlatform.Windo ws))

Figure 7: Here’s the code on Ubuntu.

� Rod Paddock
�

51Building Command Line Utilities in C# and Python

52 codemag.comBuilding a VS Code Extension Using Vue.js

ONLINE QUICK ID 2107071

Building a VS Code Extension
Using Vue.js
Visual Studio (VS) Code is one of the most preferred code editors that developers use in their everyday tasks. It’s built with
extendibility in mind. To a certain extent, most of the core functionalities of VS Code are built as extensions. You can check the VS
Code extensions repository (https://github.com/microsoft/vscode/tree/main/extensions) to get an idea of what I’m talking about.

VS Code, under the hood, is an electron (https://www.elec-
tronjs.org/) cross-environment application that can run on
UNIX, Mac OSX, and Windows operating systems. Because
it’s an electron application, you can extend it by writing Ja-
vaScript plug-ins. In fact, any language that can transpile to
JavaScript can be used to build an extension. For instance,
the VS Code docs website prompts the use of TypeScript
(https://www.typescriptlang.org/) to write VS Code exten-
sions. All the code examples (https://github.com/micro-
soft/vscode-extension-samples), provided by the VS Code
team, are built using TypeScript.

VS Code supports a very extensive API that you can check and
read on VS Code API (https://code.visualstudio.com/api).

VS Code allows you to extend almost any feature that it sup-
ports. You can build custom commands, create a new color
theme, embed custom HTML inside a WebView, contribute to
the activity bar by adding new views, make use of a Tree View
to display hierarchical data on the sidebar, and many other
extendibility options. The Extensions Capabilities Overview
page (https://code.visualstudio.com/api/extension-capa-
bilities/overview) details all the VS Code extension capabili-
ties. In case you want to skip the overview and go directly
to the details on how to build real-world extensions with ca-
pabilities, check the Extensions Guides page (https://code.
visualstudio.com/api/extension-guides/overview).

Building extensions in VS Code is a huge topic that can be
detailed into many books and countless articles. In this ar-
ticle, I will focus on:

•	 Creating VS Code Commands
•	 Using the Webview API to embed a Vue.js app inside

Webview panels and views
•	 Adding a View Container to the Activity Bar

VS Code UI Architecture
Before I delve into building extensions, it’s important to un-
derstand the parts and sections that make up the VS Code UI.

I’ll borrow two diagrams from the VS Code website to help
illustrate the concepts. Figure 1 illustrates the major sec-
tions of the VS Code UI.

VS Code has the following main sections:

•	 Activity Bar: Every icon on the Activity Bar represents
a View Container. In turn, this container hosts one or
more views inside. In addition, you can extend the ex-
isting ones too. For example, you can add a new View
into the Explorer View.

•	 Sidebar: A Sidebar is a container to host Views. For
example, you can add a Tree View or Webview View to
the Sidebar.

•	 Editor: The Editor hosts the different types of editors
that VS Code uses. For instance, VS Code uses a text
editor to allow you to read/write a file. Another kind
of editor allows you to edit Workspace and User set-
tings. You can also contribute your own editor using a
Webview for instance.

•	 Panel: The Panel allows you to add View Containers
with Views.

•	 Status Bar: The Status Bar hosts Status Bar Items that
can use text and icons to display. You can also treat
them as commands to trigger an action when clicking
them.

Figure 2 illustrates what goes inside the major sections of
the VS Code UI.

•	 The Activity Bar hosts View Containers, which, in turn,
host Views.

•	 A View has a View Toolbar.
•	 The Sidebar has a Sidebar Toolbar.
•	 The Editor has an Editor Toolbar.
•	 The Panel hosts View Containers, which, in turn, host

Views.
•	 A Panel has a Panel Toolbar.

VS Code allows us to extend any of the major and minor sec-
tions using its API.

VS Code API is rich enough
to allow developers to extend
almost every feature it offers.

Your First VS Code Extension
To start building your own custom VS Code extensions, make
sure that you have Node.js (https://nodejs.org/en/) and Git
(https://git-scm.com/) both installed on your computer. It goes
without saying that you need to have VS Code (https://code.
visualstudio.com/download) installed on your computer too.

I’ll be using the Yeoman (https://yeoman.io/) CLI to gener-
ate a new VS Code extension project. Microsoft offers and
supports the Yo Code (https://www.npmjs.com/package/
generator-code) Yeoman generator to scaffold a complete
VS Code extension in either TypeScript or JavaScript.

Bilal Haidar
bhaidar@gmail.com
https://www.bhaidar.dev
@bhaidar

Bilal Haidar is an
accomplished author,
Microsoft MVP of 10 years,
ASP.NET Insider, and has
been writing for CODE
Magazine since 2007.

With 15 years of extensive
experience in Web develop-
ment, Bilal is an expert in
providing enterprise Web
solutions.

He works at Consolidated
Contractors Company in
Athens, Greece as a full-
stack senior developer.

Bilal offers technical
consultancy for a variety
of technologies including
Nest JS, Angular, Vue JS,
JavaScript and TypeScript.

53codemag.com Building a VS Code Extension Using Vue.js

Figure 2: VS Code section details

Figure 1: VS Code Main sections

54 codemag.com

Step 2
Run the following command to scaffold a TypeScript or Ja-
vaScript project ready for development.

yo code

During the process of creating the new VS Code extension
project, the code-generator asks some questions. I’ll go
through them to create the app.

Figure 3 shows the starting point of the generator.

You can either pick TypeScript or JavaScript. Most of the
examples you find online are written in TypeScript. It would
be smart to go with TypeScript to make your life easier when
writing and authoring your extension.

Next, you need to provide the name of your extension, as
shown in Figure 4.

Now, you specify an identifier (ID) of your extension. You
can leave the default or provide your own. I tend to use no
spaces or dashes (-) to separate the identifier name.

Then, you can provide a description of your extension.

The next three questions are shown in Figure 5.

•	 Initialize a Git repository? Yes
•	 Use Webpack to bundle the extension? Yes
•	 Which package manager to use? npm

The generator takes all your answers and scaffolds your app.
Once done, move inside the new extension folder and open
VS Code by running this command:

cd vscodeexample && code .

Step 3
Let’s quickly explore the extension project.

Figure 6 lists all the files that the Yo Code generated for
you.

The /.vscode/ directory contains configuration files to help
us test our extension easily.

The /dist/ directory contains the compiled version of the
extension.

The /src/ directory contains the source code you write to
build the extension.

Microsoft offers the Yo Code
Yeoman generator to help
you scaffold a VS Code extension
project quickly and easily.

The package.json file is the default NPM configuration file.
You use this file to define your custom command, views,
menus, and much more.

Let’s start!

Step 1
Install the Yeoman CLI and Yo Code generator by running
the following command:

npm install -g yo generator-code

Figure 3: Start extension project scaffolding

Figure 4: Naming the VS Code extension

Figure 5: Finalize the code-generator scaffolding

Building a VS Code Extension Using Vue.js

55codemag.com

import * as vscode from ‘vscode’;

export function activate(
 context: vscode.ExtensionContext) {
 context.subscriptions.push(...);
}

export function deactivate() {}

VS Code calls the activate() function when it wants to activate
the extension. Similarly, when it calls the deactivate() function,
it wants to deactivate it. Remember, the extension is activated
only when one of your declared Activation Events happens.

If you instantiate objects inside the command handler and want
VS Code to release them for you later, push the new command
registration into the context.subscriptions array. VS Code main-
tains this array and will do garbage collection on your behalf.

Let’s register the Hello World command as follows:

context.subscriptions.push(
vscode.commands.registerCommand(
 ‘vscodeexample.helloWorld’,
 () => {
 vscode.window.showInformationMessage(‘…’);
 }
)
);

The vscode object is the key to access the entire VS Code
API. You register a command handler similarly to how you
register DOM events in JavaScript. The code binds the same
command identifier, the one that you previously declared
inside the package.json file under the commands and acti-
vationEvents sections, to a command handler.

VS Code shows an information message when the user trig-
gers the command.

Let’s test the extension by clicking F5. VS Code opens a new
instance loaded with the new extension. To trigger the com-
mand, open the Command Palette and start typing “hello”.

Figure 7 shows how VS Code filters the available commands
to the one you are after.

Now click the command, and Figure 8 shows how the informa-
tion message appears on the bottom right side of the editor.

Congratulations! You’ve just completed your first VS Code
extension!

The vsc-extension-quickstart.md file contains an introduc-
tion to the extension project and documentation on how to
get started building a VS Code extension.

Step 4
Open the package.json file and let’s explore the important
sections you need for building this extension.

“contributes”: {
 “commands”: [
 {
 “command”: “vscodeexample.helloWorld”,
 “title”: “Hello World”
 }
]
},

You define your custom commands inside the contributes
section. You provide command and title, as a minimum,
when you define a new command. The command should
uniquely identify your command. By default, the command
used is a concatenation of the extension identifier that
you’ve specified at the time of scaffolding the extension to-
gether with an arbitrary string that represents the command
you’re providing. The new command automatically shows up
now in the Command Palette.

VS Code defines a lot of built-in commands that you can
even consume programmatically. For instance, you can ex-
ecute the workbench.action.newWindow command to open
a new VS Code instance.

Here’s a complete list of Built-in Commands (https://code.
visualstudio.com/api/references/commands) in VS Code.

The command does nothing for now. You still need to bind
this command to a command handler that I’ll define shortly.
VS Code provides the registerCommand() function to do the
association for you.

You should define an Activation Event that will activate the
extension when the user triggers the command. It’s the Ac-
tivation Event that lets VS Code locate and bind a command
to a command handler. Remember, extensions aren’t always
activated by default. For example, an extension might be
activated when you open a file with a specific file exten-
sion. That’s why it’s needed to make sure the extension is
activated before running any command.

The package.json file defines an activationEvents section:

“activationEvents”: [
 “onCommand:vscodeexample.helloWorld”
],

When the user invokes the command from the Com-
mand Palette or through a keybinding, the extension will
be activated and registerCommand() function will bind
the (vscodeexample.helloWorld) to the proper command
handler.

Step 5
It’s time to explore the extension source code and register
the command together with a command handler. The exten-
sion source code lies inside the /src/extension.ts file. I’ve
cleaned up this file as follows:

Figure 6: Project files

Figure 7: Command Palette filtered

Figure 8: Showing information message

Building a VS Code Extension Using Vue.js

56 codemag.com

Step 3
Switch to the extension.js file and inside the activate()
function register the command handler.

context.subscriptions.push(
 vscode.commands.registerCommand(
 ‘vscodevuecli:openVueApp’, () => {
 WebAppPanel.createOrShow(context.extensionUri);
 })
);

Inside the command handler, you’re instantiating a new in-
stance of WebAppPanel class. It’s just a wrapper around a
WebviewPanel.

Step 4
In this step, you’ll generate a new Vue.js app using the Vue
CLI. Follow this guide (https://cli.vuejs.org/guide/creating-
a-project.html#vue-create) to scaffold a new Vue.js app in-
side the /web/ directory at the root of the extension project.

Make sure to place any image you use inside the /web/img/
directory. Later on, you’ll copy this directory to the dist di-
rectory when you compile the app.

Usually, the HTML page, hosting the Vue.js app, requests im-
ages to render from the local file system on the server. How-
ever, when the Webview loads the app, it can’t just request and
access the local file system. For security reasons, the Webview
should be limited to a few directories inside the project itself.

Also, VS Code uses special URIs to load any resource inside
the Webview including JavaScript, CSS, and image files.
Therefore, you need a way to base all the images, so you use
the URI that VS Code uses to access the local resources. The
extension, as you’ll see in Step 5, injects the VS Code base
URI, into the body of the HTML of the Webview, so that the
Vue.js app can use it to base its images.

Therefore, to make use of the injected base URI, you’ll add
a Vue.js mixin that reads the value of the base URI from the
HTML DOM and makes it available to the Vue.js app.

Note that if you want to run the Vue.js app outside the Web-
view, you need to place the following inside the /web/pub-
lic/index.html file:

<body>
 <input hidden data-uri=””>
 ...
</body>

Inside the /web/src/mixins/ExtractBaseUri.js file, define a
new Vue.js mixin.

It makes available the baseUri data option to any Vue.js
component:

data() {
 return {
 baseUri: ‘’,
 };
},

It then uses the Vue.js mounted() lifecycle hook to extract
the value:

Build a VS Code Extension
with Vue.js Using Vue CLI
Let’s use your newfound knowledge and build something
more fun!

In this section, you’ll use the Vue CLI to create a new Vue.js
app and host it inside a Webview as a separate editor.

The Webview API allows you to create fully customizable
views within the VS Code. I like to think of Webview as an
iframe inside VS Code. It can render any HTML content in-
side this frame. It also supports two-way communication
between the extension and the loaded HTML page. The view
can post a message to the extension and vice-versa.

Webview API supports two types of views that I’m going to
explore in this article:

•	 WebviewPanel is a wrapper around a Webview. It’s
used to display a Webview inside an editor in VS Code.

•	 WebviewView is a wrapper around a Webview. It’s used
to display a Webview inside the Sidebar.

In both types, the Webview hosts HTML content!

The Webview API documentation is rich and contains all the de-
tails you need to use it. Check it out here at Webview API (https://
code.visualstudio.com/api/extension-guides/webview).

Let’s start building our Vue.js sample application and host-
ing it inside an editor in VS Code.

Webview allows you to enrich your
VS Code extension by embedding
HTML content together with
JavaScript and CSS resource files.

Step 1
Generate a new VS Code extension project using Yeoman, as
you did above.

Step 2
Add a new command to open the Vue.js app. Locate the
package.json file and add the following:

“contributes”: {
 “commands”: [
 {
 “command”: “vscodevuecli:openVueApp”,
 “title”: “Open Vue App”
 }
]
},

The command has an identifier of vscodevuecli:openVueApp.

Then you declare an Activation Event as follows:

“activationEvents”: [
 “onCommand:vscodevuecli:openVueApp”
],

Building a VS Code Extension Using Vue.js

57codemag.com

You define the WebAppPanel class as a singleton to make
sure there’s always a single instance of it. This is done by
adding the following:

public static currentPanel: WebAppPanel | undefined;

It wraps an instance of the WebviewPanel and tracks it by
defining the following:

private readonly _panel: vscode.WebviewPanel;

The createOrShow() function is the core of WebAppPanel
class. It checks to see whether the currentPanel is already
instantiated, and it shows the WebviewPanel right away.

if (WebAppPanel.currentPanel) {
 WebAppPanel.currentPanel._panel.reveal(column);
 return;
}

Otherwise, it instantiates a new WebviewPanel using the
createWebviewPanel() function as follows:

const panel = vscode.window.createWebviewPanel(
 WebAppPanel.viewType,
 'Web App Panel',
 column || vscode.ViewColumn.One,
 getWebviewOptions(extensionUri),
);

This function accepts the following parameters:

•	 viewType: A unique identifier specifying the view type
of the WebviewPanel

•	 title: The title of the WebviewPanel
•	 showOptions: Where to show the Webview in the editor
•	 options: Settings for the new Panel

The options are prepared inside the getWebviewOptions()
function.

function getWebviewOptions(
 extensionUri: vscode.Uri
): vscode.WebviewOptions {

mounted() {
 const dataUri =
 document.querySelector(‘input[data-uri]’);
 if (!dataUri) return;

 this.baseUri = dataUri.getAttribute(‘data-uri’);
},

If it finds an input field with a data attribute named data-
uri, it reads the value and assigns it to the baseUri property.

The next step is to provide the mixin inside the /web/src/
main.js file:

Vue.mixin(ExtractBaseUri);

Switch to the App.vue component and replace the image
element with the following:

Now that the app is ready to run both locally and inside
the Webview, let’s customize the compilation process via the
Vue.js configuration file.

Create a new /web/vue.config.js file. Listing 1 shows the entire
source code for this file. Basically, you’re doing the following:

•	 Removing the hashes from the compiled file names.
The compiled JavaScript file will look like app.js only
without any hashes in the file name.

•	 Sets the output directory to be /dist-web/. The Vue
CLI uses this property to decide where to place the
compiled app files.

•	 Copy to the destination directory the /web/img/ di-
rectory and all of its content.

Next, let’s fix the NPM scripts so that you can compile both
the extension files and the Vue.js app at the same time us-
ing a single script.

First, start by installing the Concurrently NPM package by
running the following command:

npm i --save-dev concurrently

Then, locate the package.json file and replace the watch
script with this:

“watch”: “concurrently \”npm --prefix web run dev\”
 \”webpack --watch\””,

The watch script now compiles both the Vue.js app and the
extension files every time you change any files in both folders.

Run the following command to compile both apps and gen-
erate the /dist-web/ directory:
npm run watch

That’s it for now! The Vue.js app is ready for hosting inside
a Webview.

Step 5
Add a new TypeScript file inside the /src/ directory and name
it WebAppPanel.ts. Listing 2 has the full source code for this
file. Let’s dissect it and explain the most relevant parts of it.

const path = require('path');

module.exports = {
 filenameHashing: false,
 outputDir: path.resolve(__dirname, "../dist-web"),
 chainWebpack: config => {
 config.plugin('copy')
 .tap(([pathConfigs]) => {
 const to = pathConfigs[0].to
 // so the original `/public` folder keeps priority
 pathConfigs[0].force = true

 // add other locations.
 pathConfigs.unshift({
 from: 'img',
 to: `${to}/img`,
 })

 return [pathConfigs]
 })
 },
}

Listing 1: vue.config.js

Building a VS Code Extension Using Vue.js

58 codemag.com

import * as vscode from “vscode”;
import { getNonce } from “./getNonce”;

export class WebAppPanel {

 public static currentPanel: WebAppPanel | undefined;

 public static readonly viewType = “vscodevuecli:panel”;

 private readonly _panel: vscode.WebviewPanel;
 private readonly _extensionUri: vscode.Uri;
 private _disposables: vscode.Disposable[] = [];

 public static createOrShow(extensionUri: vscode.Uri) {
 const column = vscode.window.activeTextEditor
 ? vscode.window.activeTextEditor.viewColumn
 : undefined;

 // If we already have a panel, show it.
 if (WebAppPanel.currentPanel) {
 WebAppPanel.currentPanel._panel.reveal(column);
 return;
 }

 // Otherwise, create a new panel.
 const panel = vscode.window.createWebviewPanel(
 WebAppPanel.viewType,
 ‘Web App Panel’,
 column || vscode.ViewColumn.One,
 getWebviewOptions(extensionUri),
);

 WebAppPanel.currentPanel =
 new WebAppPanel(panel, extensionUri);
 }

 public static kill() {
 WebAppPanel.currentPanel?.dispose();
 WebAppPanel.currentPanel = undefined;
 }

 public static revive(panel: vscode.WebviewPanel,
 extensionUri: vscode.Uri) {
 WebAppPanel.currentPanel = new WebAppPanel(panel, extensionUri);
 }

 private constructor(panel: vscode.WebviewPanel,
 extensionUri: vscode.Uri) {
 this._panel = panel;
 this._extensionUri = extensionUri;

 // Set the webview’s initial html content
 this._update();

 this._panel.onDidDispose(() => this.dispose(), null,
 this._disposables);

 // Update the content based on view changes
 this._panel.onDidChangeViewState(
 e => {
 if (this._panel.visible) {
 this._update();
 }
 },
 null,
 this._disposables
);

 // Handle messages from the webview
 this._panel.webview.onDidReceiveMessage(
 message => {
 switch (message.command) {
 case ‘alert’:
 vscode.window.showErrorMessage(message.text);
 return;
 }
 },
 null,
 this._disposables
);
 }

 public dispose() {
 WebAppPanel.currentPanel = undefined;

 // Clean up our resources
 this._panel.dispose();

 while (this._disposables.length) {
 const x = this._disposables.pop();
 if (x) {
 x.dispose();
 }
 }
 }

 private async _update() {
 const webview = this._panel.webview;
 this._panel.webview.html = this._getHtmlForWebview(webview);
 }

 private _getHtmlForWebview(webview: vscode.Webview) {
 const styleResetUri = webview.asWebviewUri(
 vscode.Uri.joinPath(this._extensionUri, “media”, “reset.css”)
);

 const styleVSCodeUri = webview.asWebviewUri(
 vscode.Uri.joinPath(this._extensionUri, “media”, “vscode.css”)
);

 const scriptUri = webview.asWebviewUri(
 vscode.Uri.joinPath(this._extensionUri, “dist-web”, “js/app.js”)
);

 const scriptVendorUri = webview.asWebviewUri(
 vscode.Uri.joinPath(this._extensionUri, “dist-web”,
 “js/chunk-vendors.js”)
);

 const nonce = getNonce();
 const baseUri =
 webview.asWebviewUri(vscode.Uri.joinPath(
 this._extensionUri,
 ‘dist-web’)
).toString().replace(‘%22’, ‘’);

 return `
 <!DOCTYPE html>
 <html lang=”en”>
 <head>
 <meta charset=”utf-8” />
 <meta name=”viewport”
 content=”width=device-width, initial-scale=1” />
 <link href=”${styleResetUri}” rel=”stylesheet”>
 <link href=”${styleVSCodeUri}” rel=”stylesheet”>
 <title>Web App Panel</title>
 </head>
 <body>
 <input hidden data-uri=”${baseUri}”>
 <div id=”app”></div>
 <script type=”text/javascript”
 src=”${scriptVendorUri}” nonce=”${nonce}”></script>
 <script type=”text/javascript”
 src=”${scriptUri}” nonce=”${nonce}”></script>
 </body>
 </html>
 `;
 }
}

function getWebviewOptions(extensionUri: vscode.Uri): vscode.WebviewOptions {
 return {
 // Enable javascript in the webview
 enableScripts: true,

 localResourceRoots: [
 vscode.Uri.joinPath(extensionUri, ‘media’),
 vscode.Uri.joinPath(extensionUri, ‘dist-web’),
]
 };
}

Listing 2: WebAppPanel.ts

Building a VS Code Extension Using Vue.js

59codemag.com

The function then prepares the URIs for the other resources
including the js/app.js and js/chunk-vendors.js files that
were compiled by the Vue CLI back in Step 5.

Remember from Step 4, the Vue CLI copies all images inside
the /dist-web/img/ directory. All image paths inside the
Vue.js app use a base URI that points to either a VS Code
URI when running inside the Webview or a file: URI when
running in a standalone mode.

At this stage, you need to generate a VS Code base URI and
inject it into the hidden input field that the Vue.js loads and
reads via the Vue.js mixin.

The WebAppPanel generates the VS Code base URI of the
extension using the following code:

const baseUri =
 webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, ‘dist-web’
)
).toString().replace(‘%22’, ‘’);

It communicates this URI to the Vue.js app by setting the
data-uri data attribute value on a hidden input field inside
the HTML page that’s also loading the Vue.js app.

Finally, the function embeds all the CSS and JavaScript URIs
inside the HTML page content and returns it.

That’s it!

Let’s run the extension by clicking the F5 key, and start
typing “Open Vue App” inside the Command Palette of the
VS Code instance that just opened, as shown in Figure 9.

 return {
 enableScripts: true,
 localResourceRoots: [
 vscode.Uri.joinPath(extensionUri, ‘media’),
 vscode.Uri.joinPath(extensionUri, ‘dist-web’),
]
 };
}

It returns an object that has two properties:

•	 enableScripts: Controls whether scripts are enabled in
the Webview content or not

•	 localResourceRoots: Specifies the root paths from which
the Webview can load local resources using URIs (Univer-
sal Resource Identifier representing either a file on disk
or any other resource). This guarantees that the exten-
sion cannot access files outside the paths you specify.

WebviewPanel wraps a Webview
to render inside a VS code editor.

The createOrShow() function ends by setting the value of
the currentPanel to a new instance of the WebAppPanel by
calling its private constructor.

The most important section of the constructor is setting the
HTML content of the Webview as follows:

this._panel.webview.html =
 this._getHtmlForWebview(webview);

The _getHtmlForWebview() function prepares and returns
the HTML content.

There are two CSS files that you’ll embed in almost every
Webview you create. The reset.css file resets some CSS prop-
erties inside the Webview. Although the vscode.css file con-
tains the default theme colors and CSS properties of the VS
Code. This is essential to give your Webview the same look
and feel as any other editor in VS Code.

const styleResetUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, “media”, “reset.css”
)
);

const styleVSCodeUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, “media”, “vscode.css”
)
);

The _extensionUri property represents the URI of the direc-
tory containing the current extension. The Webview asWeb-
viewUri() function converts a URI for the local file system to
one that can be used inside Webviews. They cannot directly
load resources from the Workspace or local file system using
file: URIs. The asWebviewUri() function takes a local file:
URI and converts it into a URI that can be used inside a
Webview to load the same resource.

Figure 9: Open Vue App command

Figure 10: Vue app loading inside VS Code extension

Building a VS Code Extension Using Vue.js

60 codemag.com

Step 1
Generate a new VS Code extension project using Yeoman, as
you did before.

Step 2
Add a new command to open the Vue.js app. Locate the
package.json file and add the following:

"contributes": {
 "commands": [
 {
 "command": "vscodevuerollup:openVueApp",
 "title": "Open Vue App",
 "category": "Vue Rollup"
 }
]
},

The command has an identifier of vscodevuerollup:openVueApp.

Then you declare an Activation Event:

“activationEvents”: [
 “onCommand:vscodevuerollup:openVueApp”
],

In addition, define a new View Container to load inside the
Activity Bar. Listing 3 shows the sections that you need to
add inside the package.json file.

The Activity Bar entry has an ID of vscodevuerollup-side-
bar-view. This ID matches the ID of the collection of Views
that will be hosted inside this View Container and that’s
defined inside the views section.

“views”: {
 “vscodevuerollup-sidebar-view”: [...]
}

The (vscodevuerollup-sidebar-view) entry represents a col-
lection of Views. Every View has an ID.

{
 “type”: “webview”,
 “id”: “vscodevuerollup:sidebar”,
 “name”: “vue with rollup”,
 “icon”: “$(remote-explorer)”,
 “contextualTitle”: “vue app”
}

Make note of this ID vscodevuerollup:sidebar, scroll up to
the activatinEvents section, and add the following entry:

onView:vscodevuerollup:sidebar

When using the onView declaration, VS Code activates the
extension when the View, with the specified ID, is expanded
on the Sidebar.

Step 3
Switch to the extension.js file and inside the activate()
function register the command handlers.

First, register the vscodevuerollup:openVueApp command:

context.subscriptions.push(
 vscode.commands.registerCommand(

Click the command to load the Vue.js app inside a Webview
in a new editor window, as shown in Figure 10.

That’s all you need to have a Vue.js app generated by Vue CLI
load inside a VS Code extension.

Build a VS Code Extension
with Vue.js using Rollup.js
In this section, I’ll expand on what you’ve built so far and
introduce a new scenario where the Vue CLI might not be the
right tool for the job.

As you know, the Vue CLI compiles the entire Vue.js app into
a single app.js file. Let’s put aside the chunking feature of-
fered by the CLI for now.

However, when building a VS Code extension, there are
times when you need to load one HTML page inside a Web-
viewPanel in an editor. At the same time, you might need to
load another HTML page inside a WebviewView in the Side-
bar. Of course, you can use plain HTML and JavaScript to
build your HTML, but because you want to use Vue.js to build
your HTML pages, the Vue CLI is not an option in this case.

You need to create a Vue.js app that contains multiple small
and independent Vue.js components that are compiled sep-
arately into separate JavaScript files and not just merged
into a single app.js file.

I came up with a solution that involves creating micro Vue.js
apps using a minimum of two files. A JavaScript file and one
or more Vue.js components (a root component with many
child components). The JavaScript file imports the Vue.js
framework and mounts the corresponding Vue.js root com-
ponent into the DOM inside the HTML page.

For this solution, I’ve decided to use Rollup.js (https://rol-
lupjs.org/) to compile the files.

Let’s explore this solution together by building a new VS
Code extension that does two things:

•	 Uses a WebviewPanel to host a Vue.js app (or root
component) into a new editor

•	 Uses a WebviewView to host a Vue.js app (or root com-
ponent) into the Sidebar

“viewsContainers”: {
 “activitybar”: [
 {
 “id”: “vscodevuerollup-sidebar-view”,
 “title”: “Vue App”,
 “icon”: “$(remote-explorer)”
 }
]
 },
 “views”: {
 “vscodevuerollup-sidebar-view”: [
 {
 “type”: “webview”,
 “id”: “vscodevuerollup:sidebar”,
 “name”: “vue with rollup”,
 “icon”: “$(remote-explorer)”,
 “contextualTitle”: “vue app”
 }
]
 },

Listing 3: Add a View Container

Building a VS Code Extension Using Vue.js

61codemag.com

Here, you’re dealing with the second type of Webviews that I’ve
mentioned earlier, the WebviewView. To load a Webview into
the Sidebar, you need to create a class that implements the
WebviewViewProvider interface. It’s just a wrapper around a
WebviewView.

Step 4
In this step, you’ll create a custom Vue.js app. Start by creat-
ing the /web/ directory at the root folder of the extension.

Inside this directory, create three different sub-directories:

•	 pages: This directory holds all the Vue.js pages.
•	 components: This holds all the Vue.js Single File Com-

ponents (SFC).
•	 img: This holds all the images you use in your Vue.js

components.

Let’s add the first Vue.js page by creating the /web/pages/
App.js file and pasting this code inside it:

import Vue from “vue”;
import App from “@/components/App.vue”;

new Vue({
 render: h => h(App)
}).$mount(“#app”);

There’s no magic here! It’s the same code that the Vue CLI uses
inside the main.js file to load and mount the Vue.js app on the
HTML DOM. However, in this case, I‘m just mounting a single
Vue.js component. Think of this component as a root Component
that might use other Vue.js components in a tree hierarchy.

 ‘vscodevuerollup:openVueApp’, async (args) => {
 WebAppPanel.createOrShow(context.extensionUri);
 }
)
);

Then register the vscodevuerollup:sendMessage command:

const sidebarProvider =
 new SidebarProvider(context.extensionUri);

context.subscriptions.push(
 vscode.window.registerWebviewViewProvider(
 SidebarProvider.viewType,
 sidebarProvider
)
);

WebviewViewProvider wraps
a WebviewView, which,
in turn, wraps a Webview.
The WebviewView renders
inside the Sidebar in VS Code.

You’re instantiating a new instance of the SidebarProvider
class and using the vscode.window.registerWebviewView-
Provider() function to register this provider.

<template>
 <div>
 <p>Message received from extension</p>
 {{ message }}

 <p>Send message to extension</p>
 <input type=”text” v-model=”text”>
 <button @click=”sendMessage”>Send</button>

 <p>Open Vue App</p>
 <button @click=”openApp”>Open</button>
 </div>
</template>

<script>
export default {
 data() {
 return {
 message: ‘’,
 text: ‘’,
 };
 },
 mounted() {
 window.addEventListener(‘message’, this.receiveMessage);
 },
 beforeDestroy() {
 window.removeEventListener(‘message’, this.receiveMessage);
 },
 methods: {
 openApp() {
 vscode.postMessage({
 type: ‘openApp’,
 });
 this.text = ‘’;
 },
 sendMessage() {
 vscode.postMessage({
 type: ‘message’,

 value: this.text,
 });
 this.text = ‘’;
 },
 receiveMessage(event) {
 if (!event) return;

 const envelope = event.data;
 switch (envelope.command) {
 case ‘message’: {
 this.message = envelope.data;
 break;
 }
 };
 },
 },
}
</script>

<style scoped>
p {
 margin: 10px 0;
 padding: 5px 0;
 font-size: 1.2rem;
}
span {
 display: inline-block;
 margin-top: 5px;
 font-size: 1rem;
 color: orange;
}
hr {
 display: inline-block;
 width: 100%;
 margin: 10px 0;
}
</style>

Listing 4: Sidebar.vue component

Building a VS Code Extension Using Vue.js

62 codemag.com

import path from "path";
import fs from "fs";

import alias from '@rollup/plugin-alias';
import commonjs from 'rollup-plugin-commonjs';
import esbuild from 'rollup-plugin-esbuild';
import filesize from 'rollup-plugin-filesize';
import image from '@rollup/plugin-image';
import json from '@rollup/plugin-json';
import postcss from 'rollup-plugin-postcss';
import postcssImport from 'postcss-import';
import replace from '@rollup/plugin-replace';
import resolve from '@rollup/plugin-node-resolve';
import requireContext from 'rollup-plugin-require-context';
import { terser } from 'rollup-plugin-terser';
import vue from 'rollup-plugin-vue';

const production = !process.env.ROLLUP_WATCH;

const postCssPlugins = [
 postcssImport(),
];

export default fs
 .readdirSync(path.join(__dirname, "web", "pages"))
 .map((input) => {
 const name = input.split(".")[0].toLowerCase();
 return {
 input: `web/pages/${input}`,
 output: {
 file: `dist-web/${name}.js`,
 format: 'iife',
 name: 'app',
 sourcemap: false,
 },
 plugins: [
 commonjs(),

 json(),
 alias({
 entries: [{ find: '@',
 replacement: __dirname + '/web/' }],
 }),
 image(),
 postcss({ extract: `${name}.css`,
 plugins: postCssPlugins }),
 requireContext(),
 resolve({
 jsnext: true,
 main: true,
 browser: true,
 dedupe: ["vue"],
 }),
 vue({
 css: false
 }),
 replace({
 'process.env.NODE_ENV': production ?
 '"production"' : '"development"',
 preventAssignment: true,
 }),
 esbuild({
 minify: production,
 target: 'es2015',
 }),
 production && terser(),
 production && filesize(),
],
 watch: {
 clearScreen: false,
 exclude: ['node_modules/**'],
 },
 };
 });

Listing 5: rollup.config.js

Note that I’ve borrowed the same App.vue file from the Vue
CLI files you created previously.

Let’s add another page by creating the /web/pages/Side-
bar.js file and pasting this code inside it:

import Vue from “vue”;
import Sidebar from “@/components/Sidebar.vue”;

new Vue({
 render: h => h(Sidebar)
}).$mount(“#app”);

This page loads and mounts the Sidebar.vue component.

Listing 4 shows the complete content of the Sidebar.vue
component. It defines the following UI sections:

•	 Display the messages received from the extension.
•	 Allow the user to send a message to the extension

from within the Vue.js app.
•	 Execute a command on the extension to load the App.

js page in a Webview inside an editor.

Navigate to the extension root directory and add a new rol-
lup.config.js file.

Listing 5 shows the complete content of this file.

The most important section of this file:

export default fs
 .readdirSync(
 path.join(__dirname, “web”, “pages”)
)

 .map((input) => {
 const name =
 input.split(“.”)[0].toLowerCase();

 return {
 input: `web/pages/${input}`,
 output: {
 file: `dist-web/${name}.js`,
 format: ‘iife’,
 name: ‘app’,
},
…

The code snippet iterates over all the *.js pages inside the
/web/pages/ directory and compiles each page separately
into a new JavaScript file inside the /dist-web/ directory.

Let’s install the Concurrently NPM package by running the
following command:

npm i --save-dev concurrently

Then, locate the package.json file and replace the watch
script with this:

“watch”: “concurrently \”rollup -c -w\”
 \”webpack --watch\””,

The watch script now compiles both the Vue.js pages and the
extension files every time you change any file in both folders.

Run this command to compile both apps and generate the /
dist-web/ directory:

npm run watch

Building a VS Code Extension Using Vue.js

SPONSORED SIDEBAR:

Need FREE Project
Advice? CODE Can Help!

No strings free advice on
a new or existing software
development projects.
CODE Consulting experts
have experience in cloud,
Web, desktop, IoT, mobile,
microservices, containers, and
DevOps projects. Schedule
your free hour of CODE call
with our expert consultants
today. For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

63codemag.com

import * as vscode from “vscode”;
import { getNonce } from “./getNonce”;

export class WebAppPanel {
 public static currentPanel: WebAppPanel | undefined;

 public static readonly viewType = “vscodevuerollup:panel”;

 private readonly _panel: vscode.WebviewPanel;
 private readonly _extensionUri: vscode.Uri;
 private _disposables: vscode.Disposable[] = [];

 public static createOrShow(extensionUri: vscode.Uri) {
 const column = vscode.window.activeTextEditor
 ? vscode.window.activeTextEditor.viewColumn
 : undefined;

 // If we already have a panel, show it.
 if (WebAppPanel.currentPanel) {
 WebAppPanel.currentPanel._panel.reveal(column);
 return;
 }

 // Otherwise, create a new panel.
 const panel = vscode.window.createWebviewPanel(
 WebAppPanel.viewType,
 ‘Web App Panel’,
 column || vscode.ViewColumn.One,
 getWebviewOptions(extensionUri),
);

 WebAppPanel.currentPanel =
 new WebAppPanel(panel, extensionUri);
 }

 public static kill() {
 WebAppPanel.currentPanel?.dispose();
 WebAppPanel.currentPanel = undefined;
 }

 public static revive(panel: vscode.WebviewPanel,
 extensionUri: vscode.Uri) {
 WebAppPanel.currentPanel =
 new WebAppPanel(panel, extensionUri);
 }

 private constructor(panel: vscode.WebviewPanel,
 extensionUri: vscode.Uri) {
 this._panel = panel;
 this._extensionUri = extensionUri;

 // Set the webview’s initial html content
 this._update();

 this._panel.onDidDispose(() => this.dispose(),
 null, this._disposables);

 // Update the content based on view changes
 this._panel.onDidChangeViewState(
 e => {
 if (this._panel.visible) {
 this._update();
 }
 },
 null,
 this._disposables
);

 // Handle messages from the webview
 this._panel.webview.onDidReceiveMessage(
 message => {
 switch (message.command) {
 case ‘alert’:
 vscode.window.showErrorMessage(message.text);
 return;
 }
 },
 null,
 this._disposables

);
 }

 public dispose() {
 WebAppPanel.currentPanel = undefined;

 // Clean up our resources
 this._panel.dispose();

 while (this._disposables.length) {
const x = this._disposables.pop();
 if (x) {
 x.dispose();
 }
 }
 }

 private async _update() {
 const webview = this._panel.webview;
 this._panel.webview.html = this._getHtmlForWebview(webview);
 }

 private _getHtmlForWebview(webview: vscode.Webview) {
 const styleResetUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, “media”, “reset.css”)
);

 const styleVSCodeUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, “media”, “vscode.css”)
);

 const scriptUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, “dist-web”, “app.js”)
);

 const styleMainUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, “dist-web”, “app.css”)
);

 const nonce = getNonce();

 return `
 <!DOCTYPE html>
 <html lang=”en”>
 <head>
 <meta charset=”utf-8” />
 <meta name=”viewport”
 content=”width=device-width, initial-scale=1” />
 <link href=”${styleResetUri}” rel=”stylesheet”>
 <link href=”${styleVSCodeUri}” rel=”stylesheet”>
 <link href=”${styleMainUri}” rel=”stylesheet”>
 <title>Web Pages Panel</title>
 </head>
 <body>
 <div id=”app”></div>
 <script src=”${scriptUri}” nonce=”${nonce}”>
 </body>
 </html>
 `;
 }
}

function getWebviewOptions(extensionUri: vscode.Uri): vscode.WebviewOptions {
 return {
 // Enable javascript in the webview
 enableScripts: true,

 localResourceRoots: [
 vscode.Uri.joinPath(extensionUri, ‘media’),
 vscode.Uri.joinPath(extensionUri, ‘dist-web’),
]
 };
}

}

Listing 6: WebAppPanel.ts loading single Vue.js Root Component

Building a VS Code Extension Using Vue.js

64 codemag.com

You can now see four new files created inside the /dist-web/
directory:

•	 app.js
•	 app.css
•	 sidebar.js
•	 sidebar.css

Every page generates two files, specifically the JavaScript
and CSS files.

That’s it for now! The Vue.js pages are ready for hosting
inside a Webview.

Step 5
Let’s start first by copying the WebAppPanel.ts file from the exten-
sion project that uses the Vue CLI. Then you change the resource
files to include both /dist-web/app.js and /dist-web/app.css.

Listing 6 shows the entire source code of this file after the
changes.

Add a new /src/SidebarProvider.ts file and paste the con-
tents of Listing 7 inside it.

The SidebarProvider implements the WebviewViewProvider
interface. It wraps an instance of the WebviewView that, in
turn, wraps a Webview that holds the actual HTML content.

The resolveWebviewView() function sits at the core of this
provider. It’s used by VS Code to load the Webview into the
Sidebar. It’s in this function that you set the HTML content
of the Webview for VS Code to display it inside the Sidebar.
The provider loads both resource files /dist-web/sidebar.js
and /dist-web/sidebar.css inside the HTML.

The HTML of this Webview now contains the following code:

<script>
 const vscode = acquireVsCodeApi();
</script>

The vscode object will be the bridge that the Vue.js app can
use to post messages to the extension.

That’s it! Let’s run the extension by pressing the F5 key.
A new instance of the VS Code opens.

Locate and click the last icon added on the Activity Bar.
Figure 11 shows how the Sidebar.vue Component is loaded
inside the Sidebar section.

Step 6
Let’s load the App.vue component inside an editor when the
user clicks the Open button on the Sidebar.

Go to the /web/components/Sidebar.vue file and bind the
button to an event handler:

<button @click=”openApp”>Open</button>

Then, define the openApp() function as follows:

openApp() {
 vscode.postMessage({
 type: ‘openApp’,
 });
},

The code uses the vscode.postMessage() function to post
a message to the extension by passing a message payload.
In this case, the payload specifies the type of the message
only.

Switch to the SidebarProvider.ts file and inside the re-
solveWebviewView() function listen to the message type
you’ve just defined. You listen to posted messages inside
the onDidReceiveMessage() function as follows:

webviewView.webview.onDidReceiveMessage(
 async (data) => {
 switch (data.type) {
 case “openApp”: {
 await vscode.commands.executeCommand(
 ‘vscodevuerollup:openVueApp’,
 { ...data }
);
 break;
 }
 // more
 }
});

When the user clicks the Open button on the Sidebar, the provider
reacts by executing the command vscodevuerollup:openVueApp
and passing over a payload (if needed).

That’s it! Let’s run the extension by pressing the F5 key.
A new instance of the VS Code opens.Figure 11: Sidebar.vue component inside the Sidebar

Webview API allows two-way
communication between the
extension and the HTML content.

Building a VS Code Extension Using Vue.js

65codemag.com

Start by defining the vscodevuerollup:sendMessage com-
mand inside the package.json file as follows:

{
 “command”: “vscodevuerollup:sendMessage”,
 “title”: “Send message to sidebar panel”,
 “category”: “Vue Rollup”
}

Click the last icon added on the Activity Bar. Then click the
Open button. Figure 12 shows the App.vue component load-
ed inside a Webview on the editor. The Sidebar.vue compo-
nent is loaded inside a Webview on the Sidebar.

Step 7
Let’s add a command to allow the extension to post a mes-
sage to the Sidebar.vue component from within VS Code.

import * as vscode from "vscode";
import { getNonce } from "./getNonce";

export class SidebarProvider implements
 vscode.WebviewViewProvider {

public static readonly viewType = 'vscodevuerollup:sidebar';

 private _view?: vscode.WebviewView;

 constructor(
 private readonly _extensionUri: vscode.Uri
) {}

 public resolveWebviewView(
 webviewView: vscode.WebviewView,
 context: vscode.WebviewViewResolveContext,
 _token: vscode.CancellationToken
) {
 this._view = webviewView;

 webviewView.webview.options = {
 // Allow scripts in the webview
 enableScripts: true,

 localResourceRoots: [
 this._extensionUri
],
 };

 webviewView.webview.html = this._getHtmlForWebview(webviewView.webview);

 webviewView.webview.onDidReceiveMessage(async (data) => {
 switch (data.type) {
 case "message": {
 if (!data.value) {
 return;
 }
 vscode.window.showInformationMessage(data.value);
 break;
 }
 case "openApp": {
 await vscode.commands.executeCommand(
 'vscodevuerollup:openVueApp', { ...data }
);
 break;
 }
 case "onInfo": {
 if (!data.value) {
 return;
 }
 vscode.window.showInformationMessage(data.value);
 break;
 }
 case "onError": {
 if (!data.value) {
 return;
 }
 vscode.window.showErrorMessage(data.value);
 break;
 }
 }
 });
 }

 public revive(panel: vscode.WebviewView) {
 this._view = panel;
 }

 public sendMessage() {

 return vscode.window.showInputBox({
 prompt: 'Enter your message',

 placeHolder: 'Hey Sidebar!'
 }).then(value => {
 if (value) {
 this.postWebviewMessage({
 command: 'message',
 data: value,
 });
 }
 });
 }

 private postWebviewMessage(msg: {
 command: string, data?: any
 }) {
 vscode.commands.executeCommand(
 'workbench.view.extension.vscodevuerollup-sidebar-view');
 vscode.commands.executeCommand(
 'workbench.action.focusSideBar');

 this._view?.webview.postMessage(msg);
 }

 private _getHtmlForWebview(webview: vscode.Webview) {
 const styleResetUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, "media", "reset.css")
);

 const styleVSCodeUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, "media", "vscode.css")
);

 const scriptUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, "dist-web", "sidebar.js")
);

 const styleMainUri = webview.asWebviewUri(
 vscode.Uri.joinPath(
 this._extensionUri, "dist-web", "sidebar.css")
);

 const nonce = getNonce();

 return `
 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="width=device-width, initial-scale=1" />
 <link href="${styleResetUri}" rel="stylesheet">
 <link href="${styleVSCodeUri}" rel="stylesheet">
 <link href="${styleMainUri}" rel="stylesheet">
 <title>Web Pages Panel</title>
 <script nonce="${nonce}">
 const vscode = acquireVsCodeApi();
 </script>
 </head>
 <body>
 <div id="app"></div>
 <script src="${scriptUri}" nonce="${nonce}">
 </body>
 </html>
 `;
 }
}

Listing 7: SidebarProvider.ts

Building a VS Code Extension Using Vue.js

66 codemag.com

mounted() {
 window.addEventListener(
 ‘message’, this.receiveMessage
);
},

The receiveMessage() function runs when the user triggers
the command inside VS Code.

You define the receiveMessage() function as follows:

receiveMessage(event) {
 if (!event) return;

 const envelope = event.data;
 switch (envelope.command) {
 case ‘message’: {
 this.message = envelope.data;
 break;
 }
 };
},

It validates the command to be of type message. It then ex-
tracts the payload of the command and assigns it to a local
variable that the component displays on the UI.

Let’s run the extension!

Locate and navigate to the Sidebar.vue component hosted
inside the Sidebar.

Open the Command Palette, start typing “Send message
to sidebar panel”. VS Code prompts you for a message, as
shown in Figure 13. Enter any message of your choice and
hit Enter.

The message will be displayed on the Sidebar, as shown in
Figure 14.

Congratulations! You’ve completed your third VS Code ex-
tension so far.

Conclusion
You can see how dissecting the VS Code helps your greater
understanding of how it works. Once you can grasp the basic
behavior of each component, it becomes an easier task to
manipulate the code to make it do what you need it to.

This is just the beginning of a new series of articles on ex-
tending VS Code by building more extensions. In the coming
episodes, the plan is to expand the functionality of exten-
sions and connect to remote REST APIs, databases and much
more.

Stay tuned!

Then, register this command inside the extension.ts file:

context.subscriptions.push(
 vscode.commands.registerCommand(
 ‘vscodevuerollup:sendMessage’, async () => {
 if (sidebarProvider) {
 await sidebarProvider.sendMessage();
 }
 })
);

The command handler calls the sendMessage() instance
function on the SidebarProvider class when the user trig-
gers the sendMessage command.

Listing 8 shows the sendMessage() function. It prompts the
user for a message via the built-in vscode.window.show-
InputBox() function. The message the user enters is then
posted to the Sidebar.vue component using the Webview.
postMessage() built-in function.

Sidebar.vue component handles the message received from
the extension by registering an event listener as follows:

Figure 12: Sidebar.vue and App.vue components inside VS Code extension

Figure 13: Promoting the user for input

Figure 14: The Sidebar.
vue component receives a
message from the extension.

public sendMessage() {
 return vscode.window.showInputBox({
 prompt: ‘Enter your message’,
 placeHolder: ‘Hey Sidebar!’}
).then(value => {
 if (value) {
 this._view?.webview.postMessage({
 command: ‘message’,
 data: value,
 });
 }
 });
 }

Listing 8: sendMessage() function

� Bilal Haidar
�

Building a VS Code Extension Using Vue.js

67codemag.com

ONLINE QUICK ID 2107081

Power BI and R: A Visual Power Punch
I first learned about the impact of data visualization several years ago from the late great Hans Rosling, the Swedish physician
and public health professor. His colorful animated bubble charts tell you, despite what you may otherwise believe, that the
world is indeed becoming a better place. I use Power BI a lot these days to create my own visualizations. Power BI lets you create

scalable dashboards containing updated data analysis to
share with a wide user group. It does, however, have limita-
tions for customizing visuals. One way around this leverages
the powerful graphic libraries in R to create visuals directly
in Power BI. Combining the capabilities of Power BI and R
together gives you a visual power punch.

Setting Up Power BI
For this example, you’re going to use a volatile dataset that
gets updated daily: the WTI spot price. WTI stands for West
Texas Intermediate and it’s a common measurement of en-
ergy futures found in pricing models. It’s available from the
EIA (Energy Information Administration) government web-
site (https://www.eia.gov), which provides not only analy-
sis for US energy trends but also access to a vast array of
datasets you can easily query with its API query tool. You
can initially analyze the overall trends for this spot price in
a page on the EIA website (https://www.eia.gov/dnav/pet/
hist/RWTCD.htm).

If you’re following along on your own, you’ll need your own
API token for the EIA data to place in your own block of M
code for the Power Query Editor, which you can find on the
EIA website: https://www.eia.gov/opendata/register.php. If
you’re new to using the EIA API connection, you’ll see a form
space within this page where you can enter your email ad-
dress and agree to the terms and conditions for using the
API connection to register for your own API token. Once you
fill out this form, you’ll receive an email with details on how
to access your own new API token. You don’t need to register
for a new API token through the EIA if you already have one,
but if you forget yours you can get it from this page as well.

Get Data
Power BI enables you to easily connect to and refresh da-
tasets from a variety of data sources. This project doesn’t
focus on how to implement the ETL framework in the Power
Query Editor, but you can see how to set up a similar project
using an API query in an earlier article I wrote on Power
Query in CODE Magazine: https://www.codemag.com/Ar-
ticle/2008051/Power-Query-Excel%E2%80%99s-Hidden-
Weapon. Note that while the earlier article uses the Power
Query Editor in Excel, you can transfer its functionalities
and M code directly into Power BI. You can get the data
directly in Power BI Desktop by updating the attached start-
ing Power BI Desktop file.

1.	 Select the Transform data button from the top Home
ribbon.

2.	 Make sure to select the WTI Prices query from the query
list on the left, then double click on the Source step in
the Applied Steps list on the right.

3.	 In the open dialog box, where it says <your_api_to-
ken_goes_here> delete only this character string in
the Web connection URL and replace it with your own
API token.

4.	 Confirm this update and you’ll see that your query now
contains the updated WTI prices from the EIA API.

Choose the Color Palette
If you look at the top of the EIA website (www.eia.gov), you
can see their logo. I’d like to bring in not only their logo but
also incorporate the colors of the logo into the visuals. I
matched the colors in the logo to their hex values using the
Adobe color matching tool.

You can see the logo colors displayed in the palette of five
colors (Figure 1). Keep this color palette on hand, as it will
become helpful throughout this project to select consistent
colors from the EIA logo.

Framing Time and Trends
The WTI price, as an oil commodity price, fluctuates fre-
quently and you do want to ultimately illustrate these
trends in tandem with the R visual you’ll create. Placing
several visuals in the same Power BI view creates an insight-
ful analysis for the consumers of this data. For those of you
starting in the *.PBIX file I included in this article’s file,
once you update the data to include your own API token,
you’ll see the initial framework for the analysis that you’ll
continue to build in this project including:

•	 EIA logo image
•	 A date range slicer visual to dynamically select the

date range for this analysis
•	 A line chart visual showing the daily WTI price trends
•	 Analytics displaying the reference lines on the line

chart for the maximum, average, and minimum WTI
prices

•	 Summary cards in on the left displaying the KPIs
matching to the reference lines on the line chart

You can see that the price fluctuates quite a bit by the nei-
ther smooth nor consistent line chart shape (Figure 2).
Also, notice the color scheme of the line chart matches up
to the blue in the EIA logo for the daily WTI price. The green
and yellow colors of the references lines and summary cards
match up to the EIA logo as well. The hex values for these
colors come directly from the color hex values displayed in
the EIA color palette (as you saw in Figure 1).

Below the line chart visual, you’ll add the R visual to the
current white space. My approach for creating Power BI vi-
suals starts with first creating a table visual. This ensures
that the dataset values make sense, and the DAX measures
I calculate for the model directly in Power BI make sense as
well. Let’s create a table visual by selecting the standard

Helen Wall
www.linkedin.com/in/
helenrmwall/
www.helendatadesign.com

Helen Wall is a power user of
Microsoft Power BI, Excel, and
Tableau. The primary driver
behind working in these tools
is finding the point where
data analytics meets design
principles, thus making data
visualization platforms both
an art and a science. She con-
siders herself both a lifelong
teacher and learner. She is a
LinkedIn Learning instruc-
tor for Power BI courses that
focus on all aspects of using
the application, including
data methods, dashboard
design, and programming in
DAX and M formula language.
Her work background includes
an array of industries, and in
numerous functional groups,
including actuarial, financial
reporting, forecasting, IT,
and management consulting.
She has a double bachelor’s
degree from the University of
Washington where she studied
math and economics, and also
was a Division I varsity rower.
On a note about brushing with
history, the real-life charac-
ters from the book The Boys
in the Boat were also Husky
rowers that came before her.
She also has a master’s degree
in financial management
from Durham University
(in the United Kingdom).

Figure 1: EIA color palette

Power BI and R: A Visual Power Punch

68 codemag.comPower BI and R: A Visual Power Punch

Installing R for Power BI
Desktop

For R to successfully run in
Power BI Desktop, you need to
configure R in two places. First
install a compatible version of
R on your own computer that
works with Power BI Desktop
(this project uses version 3.6).
Next, you’ll need to configure
R scripts to run directly in
Power BI Desktop through
the options menu. If you have
several versions of R on your
computer, you can choose
from a drop-down list of
multiple versions of R that will
run in Power BI Desktop.

it displays by default. You then use these two variables to
create a concatenated string that RETURN saves as the cal-
culated output value.

Title Line Chart =

VAR first_date = FORMAT(FIRSTDATE(
ALLSELECTED(‘WTI Prices’[Date])),”Long Date”)

VAR last_date = FORMAT(LASTDATE(
ALLSELECTED(‘WTI Prices’[Date])),”Long Date”)

RETURN “Daily WTI price trends and fluctuations
between “ & first_date & “ and “ & last_date

First, you’re going to create a DAX measure that calculates
the average for each year, although this may seem odd
because you already calculated this in the table visual as
the aggregated average WTI price. You’re creating this DAX
measure because you’ll later use it directly in other DAX
measures. Select New Measure from either the top ribbon
in Power BI or by selecting the ellipsis (three little dots)
next to the Calculations table name. Next, you want to add
the DAX measure expression into the formula space. You can
calculate the average price by setting it equal to the CALCU-
LATE function, which you’ll wrap around the AVERAGE func-
tion to return the average WTI price.

Average Price = CALCULATE(AVERAGE(
‘WTI Prices’[WTI Price]))

The table pivot coordinates determine the results of this cal-
culation. When you add it to the table visual, it calculates
the average WTI price by year. However, if you add perhaps
the month date dimension to the table, these aggregation
values will change because you’re no longer evaluating the
calculation on a yearly basis, but a monthly basis.

Next, you want to calculate the standard deviation for the
WTI price by creating a new measure for the standard de-
viation Like the average price DAX measure, you’ll use the
CALCULATE function, but inside the function you’ll use the
STDEV.P function. The P on the end of this function indicates
that you’re calculating the standard deviation on a popula-
tion. Now you add it to your table visual, to make sure the
calculation looks correct alongside the average prices for
the year.

Standard Deviation = CALCULATE(STDEV.P(
‘WTI Prices’[WTI Price]))

But what exactly does the standard deviation mean? Let’s
take a step back to examine key concepts of statistics in the
context of this analysis. The average WTI price comes from
calculating this aggregation for each day in the work week
for a year, which amounts to about 260 data observations
per year. The prices can fluctuate quite a bit even within a
single calendar year. The standard deviation measures the
variance of these prices. You can take this standard devia-
tion value and add or subtract it from the average yearly
price to determine the lower and upper bounds of the range
containing roughly 68% of that year’s data, which you see
in the two middle shaded sections of Figure 2 (source is
https://commons.wikimedia.org/wiki/File:Normal_Distri-
bution_Sigma.svg). Adding or subtracting two standard de-
viations gives you the range for 95% of the data (Figure 2).

table visual from the Visualization pane. Next, add the WTI
Date field to the Values field bucket, then add the WTI price
field to the right, so it appears in the table in that order.
Notice that it already aggregates the prices. If you compare
this to the actual WTI prices, they’re the same because this
table uses a daily date dimension. But you can also see that
adding the date field automatically adds four date dimen-
sions to the table instead of one.

You want to ultimately create an R visual illustrating the aver-
ages and distributions by year, so let’s remove all the date
dimension fields from the table visual except Year. Notice
that the aggregated values for the WTI price can change. This
occurs because you just changed the pivot table coordinates
of the table. Whereas before the table aggregated the WTI
price by day, it now aggregates the price as a summation over
the year. You can see its aggregation type by navigating to
the WTI Price field in the Visualization pane, then selecting
the down arrow to see the available aggregation options. For
numeric values, Power BI defaults to the Sum aggregation
type. For this summary though, you want to see the average
price for the entire year because prices work like rates, which
means that summing up the numbers doesn’t make much
sense. Once you have a summary table for the average WTI
price by year, you can start to create the DAX measure calcu-
lations and check them by adding them to the table.

Calculate DAX Measures
Before you start to add DAX measures to the Power BI model,
you can create a separate table solely to store these mea-
sures. This keeps the model clean and organized because
not only can you easily identify the model’s DAX measures,
but more importantly, others can as well. I already created
a Calculations table in the Power BI Desktop model. You can
create your own Calculations table by following these steps:

1.	 Select Enter data from the top Home ribbon.
2.	 In the open dialog box, give this table a new name, like

Calculations, then select Load to save the table.
3.	 Add a DAX measure to this new table.
4.	 You can then delete the current existing column and it

will only contain this new measure.
5.	 If you collapse the Fields pane by selecting the arrow

point right at the top of the pane and then expanding
it again, you’ll see that the table name appears with a
calculator icon next to it. This indicates that it’s a table
exclusively for measures and remains that way as you
add more measures to it.

You can see a measure already in the Calculations measures
table in the existing Power BI Desktop file. This is the dy-
namic chart name for the line chart visual. If you want to
see how it applies to the title name, you first select the line
chart visual, then choose the formatting options for this
visual. Open the Title submenu and look for the fx button,
then select it. This opens a dialog box where you see the
selected measure already applied for the title name. You can
see in the visual title that this measure formula below gives
a dynamic date range for the chart depending on the date
range you select.

The VARs in this DAX measure formula let you set the vari-
ables for the first date selected and the last date selected,
which pull from the date range slicer on the left of the view.
Each of these formulas uses the DAX function FORMAT to
display the date as a long date rather than the short date

69codemag.com

icon in the visualization option list. Power BI automatically
sets up initial code for the R visual script denoted with green
font using the data fields you already selected (Figure 4).

Let’s calculate a price range using two standard deviations
to get the Min Price and Max Price.

Next, you want to take a standard deviation DAX measure to
calculate the minimum and maximum values representing a
95% confidence interval to display in the R visual. You’ll cre-
ate another new DAX measure for the minimum price lower
bound. You will then take your average price DAX measure
and subtract two times the standard deviation DAX measure
from it. Notice that you’re not using the CALCULATE function
in this calculation because you’re referencing two already
calculated measures.

Min Price = [Average Price]
- 2 * [Standard Deviation]

Lastly, you’ll create another DAX measure for the maximum
price, but this time you’ll add two times the standard devia-
tion to the average price DAX measure instead of subtract-
ing it from it.

Max Price = [Average Price]
+ 2 * [Standard Deviation]

Once you create these measures, add them both to the table
visual alongside the average price measure (Figure 3). You
can see how you now have a range of calculated values for
each year, including a minimum calculated price, a maxi-
mum calculated price, and the average price.

To create the R visual, you want to leverage these three fields
plus the Year date dimension from the model. This means that
you can delete the other fields in the table to clean it up be-
fore moving to the next step of this project. Once you select
the R visual for this set of data, you’re going to transition to
using R exclusively to build out the visualization.

Tapping into R Visualizations
Next, you want to enable R scripts to run directly in Power
BI Desktop. To do so, you’ll need to set up two processes.

Install R
First, you need to install R on your own computer if you
don’t already have it there. You can have multiple versions
of R on your computer, but you’ll specify the version for
Power BI to connect to. Set up the R-CRAN for the area of
the world that you live in. Once you install R, open the RGui
to install the additional libraries you’ll use in this project.
In the interface, type in install.packages(“ggplot2”). Then
you’ll want to install the packages for “scales” and “extra-
font” in the same way.

Enable R Scripts
You also need to enable R scripts directly in Power BI Desk-
top. Navigate to the options menu within the Power BI
Desktop home page and choose to enable R scripts. You’ll
receive a confirmation message for this set up. You also
want to make sure that you select the R version 3.6 from the
drop-down menu. The R version will certainly change in the
future, but for now, make sure to select this version of R for
the scripts to run properly.

Initiate Visual
To check that you enabled the R scripts to correctly set up a
table in Power BI, convert it to an R visual by selecting the R

Figure 2: Normal distribution of data

Figure 3: Table summary of DAX measure calculations

Figure 4: Initial R script in Power BI standard R visual

Power BI and R: A Visual Power Punch

70 codemag.com

This lets Power BI do some of the planning process for run-
ning the R script for you. Power BI brings in the data into an
R data.frame it calls a dataset, then runs another command
directly after that to create a unique dataset for the visual.
If you remove one of the data fields from this R visual and
then added another field, the dataset wouldn’t update, but
rather you could leave the existing fields alone, or you can
change the field names manually yourself. You can also see
that the dataset has another line of code below it that re-
turns the unique dataset. You see a final line that says paste
or type your script here. Here’s where you start to add your
own code to create your custom R visual.

First, make sure to enable R script by selecting the yel-
low button directly on your R visual (see message for “R

script visuals are not enabled” in Figure 4). Even though
you imported the packages for this visual in the RGui, you
also need to import them directly in this code to prop-
erly run the R script. To run the ggplot2 package in this
visual, you add it to the first line of your own code by tell-
ing the R visual to load the ggplot2 library. You’ll do the
same for the scales and extrafont library (Figure 5). The
next line of R code with the loadfonts command tells the
R script that you’re running this R script on Windows so it
references the font options on the appropriate operating
system.

In the next line, you call the ggplot function to initialize
your R visual. You’ll then reference the dataset that Power
BI automatically created initially for the R visual as an input
for this function, along with identifying the fields that go
on the axes of this visual. Let’s put the Year on the x-axis
and the Average Price on the y-axis. Notice the back quotes
around the ‘Average Price’ field. Because the Average Price
field contains spaces to make it easier to read, you need to
add single-quotation characters around the field name for
the R script to properly run the code. Otherwise, the script
errors out because the field name isn’t a single string, but
two separate words separated by spaces. Next, you’ll hit the
play button icon in the top right of the R script window to
run the R script within Power BI Desktop. This creates an R
visual on the canvas with those fields on the axes. Notice
that there’s no chart yet. You’ll create this chart in the next
line of code.

Create the Bar Chart
You can choose from many chart options to run in R, but
let’s create a bar chart in this example. To create the bar
chart, you want to first add a plus sign (+) to the existing
code, and then use the geom_bar function to create a bar
chart within this space. Set the stat for the geom_bar func-
tion to ‘identity’, which tells the R script to use the x-axis
field you already set in the previous line of code. When you
hit the play button to run the R script in Power BI again, it
now creates a bar chart in the same space (Figure 6). If you
want to explore other R visual options, check out this guide
to R visuals from the R Studio website: https://rstudio.com/
wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf.

If you don’t include the fill within the chart function, the
visual defaults to a very dark grey chart color. There are
several different ways you can add colors to your R script.
You can add more code after stat = ‘identity’ to pass the
fill color into the R script. You can set this fill parameter to
a particular color like ‘blue,’ but you can also specify the
exact color to match a hex color value like those in the EIA
logo (Figure 1)., when you run the R script again, Power BI
displays a bar chart visual with bars that exactly match the
blue hue in the EIA logo.

Add Standard Deviation Bars
Next, let’s add error bars to the existing bars in the visual
to illustrate the range of values in the 95% confidence in-
terval for each year of WTI price data. The error bars go di-
rectly on top of the blue bars representing the average WTI
price for each year. To add them to the R script, first put
the plus sign (+) at the end of the previous line of code.
Then, in the next line, you’ll use the geom_errorbar func-
tion to create these error bars. Within this function, you’ll
need to nest the aes function. The aes, or aesthetics func-
tion in ggplot2 creates visual characteristics within a chart

Figure 5: Initial R visual with ggplot library on canvas

Figure 6: Change bar color.

Power BI and R: A Visual Power Punch

71codemag.com

Remember Those Plus
Signs!

Notice between all the
functions in the R script, you
can see plus signs joining
them together The code to
create the visual properly
won’t run properly if you don’t
remember to include these
plus signs!

Remove Gridlines
You can also use the theme() function within ggplot2 to
change the formatting of your R visuals. You can set the
grids to an empty view by making panel.grid.major.x and
panel.grid.minor.x both equal to element_blank(). Run-
ning the script after adding these two new theme lines to
the existing script results in the removal of the grid along
the x-axis, but keeps the grid along the y-axis, which makes
it easier to quantify the average, high, and low WTI price
values for each year (Figure 9).

Add Labels
Because the year appears in both the title and the x-axis la-
bel, it seems reasonable to remove the x-axis label to avoid

including color and fill, point shapes, line type, size, or
group. The aesthetics function lets you bring in groups or
fills into your charts. For geom_errorbar, this includes the
width of the error bar, which you set to 0.7, but you can set
it to another value. If you play around with this value, you
can see how changing to impacts the appearance of the
R visual.

You can also set the color of these bars to the dark grey
color in the EIA logo by using the fill = c(#404040) in a
similar way to which you set the bar color to the blue in the
EIA logo. To pass in the parameters for the bottom of the
error bar, set ymin within the aes function to the Min Price
field already added to the R visual. You’ll do the same to add
the top of the error bar by setting the ymax equal to the
Max Price field. Remember to include back quotes around
each field name because their names do contain spaces,
otherwise, the R script will error out! When you run the vi-
sual, you’ll see the error bars neatly added to the top of the
blue bar chart (Figure 7).

Reformat Axes
Adding scale_x_continuous to your R script tells Power BI
that you want the R visual to display the x-axis to using
even breaks for the years. To do so, you want to use a func-
tion from the scales library that works with the ggplot2
library. You also want to calculate within the R script the
number of years to use along this axis, which you do by
calculating the length of the dataset Year field. Putting this
within the scale_x_continuous function that you’re adding
to the line of code that creates the error bars lets you scale
the x-axis tick marks to equal to the number of years in the
date range of the current dataset. When you run this code,
the R visual adds a label for each year with a tick mark to the
x-axis for each bar in the bar chart (Figure 8).

If you run the R script without adding the expand param-
eter at the end of this function, you’ll notice that the chart
displays a few leading and trailing years without data to the
beginning and end of the date range before 1986 and after
2021. Eliminating these extra years in the visual improves
readability, but more importantly, it also removes any con-
fusion of potentially thinking the WTI prices are zeros in
these years.

Change the Background View
Notice that even after updating the formatting for the x-
axis in the previous step, the visual still displays a light
grey background grid behind the bars and their error bars.
Although this doesn’t make the visual incorrect, it does
clutter the canvas a bit. It would look a bit cleaner with a
white background. To remove the default background from
the R visual, you’ll add another line of code after the previ-
ous line for scale_x_continuous with the plus sign. On the
next line, adding the function theme_bw() removes the gray
background (Figure 9).

Add Labels
The ggplot2 library offers not only a plethora of chart op-
tions for the visual, but also a quite extensive array of for-
matting options. Let’s say you want to add easy-to-read la-
bels to the axes or the title. You can make these updates by
adding a single line of code to the R script. Again, use the
plus sign to add another function to the existing R script,
then use the labs function to pass in the new titles for the
axes and main title that you want to update.

Figure 7: Add error bars to bar chart.

Figure 8: Reformat x-axis.

Power BI and R: A Visual Power Punch

72 codemag.com

R (and Python and D3)
in Power BI

This project leverages R to
create custom visuals within
Power BI, but it isn’t the only
available language for visuals.
You can also create your own
custom Power BI visuals by
utilizing scripts for Python
and D3.

leverage an extended array of font options with an R visual
(Figure 9). First, you’ll leverage the theme() function again
by adding additional lines to the code. Nested within this
function, you can set axis.text.x, axis.text.y, and title equal
to the element_text function. You’ll then pass the param-
eters for the actual element formatting into this element_
text function. The size parameter refers to the font size of
the axis mark labels or the title. You can set Family equal to
the font family you want to use. In this case, you can see
the script references for the font family Segoe UI, which the
visual imports from the “extrafont” library. You can select
from many font family types in the “extrafont” library, but
Segoe UI matches the title text in the line chart above the
R visual. If you run this code as is, you’ll see subtle differ-
ences between the text appearances, even though they both
have the same font size and type.

For the x-axis specifically, you can see several applied for-
matting options, including the angle (in this case, 45 de-
grees) to which the text labels sit in relationship to the
direction of the x-axis. The parameters hjust and vjust
lets you move each of the labels by an incremental adjust-
ment in direction either horizontally or vertically from their
original location to change the axis label markers and make
them easier to read. You can play around with these values
by changing them from the ones you already see to experi-
ment with what the adjustments update (Figure 9).

Put It All Together
You just created your own custom visual in Power BI by
leveraging the existing standard R visual within Power BI
Desktop! You likely noticed that the R visual has two titles—
one you added in the R script and that the existing default
chart Power BI automatically includes with the visual. To
turn off the visual title, select the R visual again, then go
to the formatting options in the Visualizations pane and
navigate to the Title submenu where you can simply turn
the default Title radio button to the off mode.

Also, you may notice that, all told, the script for creating the
R visual has 24 lines within Power BI. Granted, the initial R
visual configuration Power BI automatically created several
of those lines, but you can streamline the code by con-
solidating the transformations nested within the theme()
function into a consolidated line of code within the R script
at the end of the script (Figure 10). You can also consoli-
date these functions into a few lines of R code that you’ll
find in the final attached Power BI Desktop.pbix file for
the project.

Notice how analyzing the visual output of this chart in tan-
dem with the line chart and summarized WTI price trends
gives valuable insight about the trends in WTI price on a
daily basis, as well as how these prices fluctuate between
years and even within individual years. You can see how
adjusting the date range in the slicer on the left side of the
page lets you analyze the WTI price trends over a narrower
date range and changes some of the sizing proportions
in the R visual for this narrower data range. This sample
project also only represents a small part of the capabilities
of R within Power BI! You can explore many more options
for leveraging R visuals directly within Power BI, as well as
Python and D3.

repeating labels and give the visual a clean appearance. To
remove the x-axis label, you can add another line of code
to the existing script again using the theme() function, but
this time you want to set the axis.title.x equal to element_
blank() before running the updated code (Figure 9).

Adjust Text Sizing and Font
Your R visual is starting to show some nice insights for the
WTI price trends, including illustrating that higher average
prices by years doesn’t necessarily mean the variance is
higher as well. You can continue to make formatting chang-
es to this visual, including changes to the sizing and font
for any text on the chart. The R library “extrafont” lets you

Figure 9: Changing the visual formatting.

Figure 10: Final view with consolidated R script for the visual.

� Helen Wall
�

Power BI and R: A Visual Power Punch

73codemag.com

 v

Jul/Aug 2021
Volume 22 Issue 4

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bilal Haidar	 Joydip Kanjilal
Julie Lerman	 Sahil Malik
Rod Paddock	 John V. Petersen
Paul D. Sheriff	 Helen Wall

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $50.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445

CODE COMPILERS

CODA: On Commitment…

(Continued from 74)

how something as macro as organizational com-
mitments directly relates to something as micro
as source code control. What if the organization
is a public entity? Add many, many more com-
mitments around SOX, for instance. How do you
verify SOX compliance? Via SOC/SOC-2. That’s an
example of strategy and tactics. You may think
that it’s like peeling the layers of an onion. It
isn’t, though, because in these cases, we start
from the core and work our way out. That’s where
the bodies are buried. That’s where the truth is.
That’s where all the small things are! It’s there,
in that sea of things at the core of the organiza-
tion, where we find out if we’re able to meet our
commitments.

Honoring commitments, however, doesn’t neces-
sarily mean that there must be perfection 100%
of the time. No project is 100% perfect. And yet,
there are many, many successful projects. There’s
always failure, to at least some degree. The ques-
tion is what does our commitment say about
these situations where deliverables haven’t been
met, either in whole or part? What does the con-
tract say about breach? In my opinion, it’s always
best to confront and adopt these procedures from
the start. Otherwise, there’s too much wheel-
spinning and finger-pointing instead of doing
the things necessary to remedy the failure! Job
#1 is honoring commitments, not being perfect.
Nobody and no thing is perfect.

It’s necessary to make commitments. It’s neces-
sary to honor those commitments. It’s necessary
to enable the honoring of those commitments.
Promises and commitments, like everything else,
build on one another, like a sturdy structure. The
key is to focus on how your organization goes
about it, which includes what it prioritizes as nec-
essary. And if you find there are issues, work from
the inside out, starting with the small things. Of-
ten, the small things are easy to fix!

� John V. Petersen
�

codemag.com

in that it goes up and down the organization.
In other words, if everyone is in the same boat,
everyone has made and has signed up to the
promise, to the commitment, from the CEO to the
intern. Commitments and the law are very similar.
Often, there must be enforcement for them to be
worth anything.

Instead of asking what is good enough, the more
important question may be whether the team is
enabled to meet “good enough.” And for the re-
cord, I’m not suggesting that “good enough” is
akin to chucking it over the wall! I suggest that
we must define what must be good enough first
and then second, see to it that we can actually
meet the promises we’re making.

As a practical matter, a good place to look for
guidance on whether a deliverable is of sufficient
quality (good enough) may be found in your Defi-
nition of Done. If you have one, chock that up as
another commitment that needs to be honored!
As I stated earlier, promises and commitments
build upon each other. If you haven’t codified a
definition of done or such other similar thing, if
you take nothing else from this editorial, take
that! And by that, I don’t mean any aspirational
talk or philosophies on how things should work
in a utopian environment (business school). Take
with you the commitment your team is going to
codify and establish a definition of done!

For a moment, I’d like to revisit the mundane, the
simple, the small things, not so much because
they matter. It’s because the small things tend
to be authentic and, therefore, can’t be faked.
By small things, I mean those things that folks
just know about an organization; how it works,
what makes it tick, what motivates it, its people,
etc. Some may call it tribal knowledge. This sort
of information is vital because these things all go
to how information moves through the organiza-
tion, a thing our ability to honor commitments
depends upon.

What I’m referring to are the “small things.”
Small things are units of work. For example, how
does the shop implement Git, and perhaps more
granularly, pull requests? You may be wondering

•	 Carry out—perpetrate
•	 To pledge or bind

The first definition is about the act itself, whatev-
er it may be. What was carried out, perpetrated?
Unless we’re talking about source code control,
the word “commit” sounds downright nefarious!

The second definition is about those things that
occur before what we commit to accomplish, and
an earnest effort has begun. In another context,
we may think of one being core development and
the other being all those things that must occur
before core development may begin; such things
include pre-sales proofs of concept and terms of
service negotiation. That’s the commitment, the
promise. When the deal is “signed, sealed, and
delivered,” the popped champagne corks must
turn to the team’s code craft, for there is a soft-
ware product to be delivered. That’s the commit-
ment, which as it turns out, is made up of sev-
eral other commitments. In the legal world, it’s
a contract, a promise in exchange for a promise
or some action. In the present context, the many
commitments we all make to each other to deliver
software is usually evidenced by a legal contact.
The point here, before getting into the details, is
that our commitments are the key, up and down
an organization, to making things work. And they
all build on one another, sometimes like a house
of cards. Although it may be a bit of a mundane
topic, it’s often good to revisit such things be-
cause when we go back to reflect when on what
went wrong, it’s typically the little, mundane
things that went awry.

What was promised? Does it depend on who you
ask? If it’s the lead sales team, the answer will be
clear, whatever that answer may be. And if there
is ambiguity, the statement of work (SOW) should
provide clarity. If there’s no clarity, there’s a big-
ger problem, so whatever answer you get doesn’t
really matter! What if we asked the dev team what
was promised? A response would be received to
be sure. If not, then just like before, the answer
you get doesn’t matter. Assuming we get two ac-
tionable and clear responses, to what degree, in
terms of organizational and project impact, would
the two responses align? If they don’t, that’s yet
another different problem. But if they’re aligned,
are they aligned legally with what was actually

promised? This is why clear and consistent com-
munications is so necessary in order for an or-
ganization to and its constituent people to meet
their commitments. There are three basic groups/
parties we need to be concerned with:

•	 Those who make the promises (e.g., sales)
•	 Those who fulfill the promises (e.g., devel-

opment)
•	 Those who are the beneficiaries of such

promises (e.g., the customer)

How we carry out our commitments is just as im-
portant, and perhaps more important than just
meeting the commitment. It’s my opinion that in
any rational business (and I choose to punt on
the irrational kind), there’s sufficient amount of
earnest desire to do the right thing, in the right
way, for the right reasons. Sticking with the rule
of three, another leg of the stool may be that
despite the strong desire, the effort required to
meet the commitment’s letter isn’t feasible. Why
is that? Generically speaking, it’s either igno-
rance, malice, or some combination of the two.
At the core is information, who has it and who
doesn’t. In any successful organization, informa-
tion moves as effectively as it needs to. It need
not be perfect, just good enough.

Just good enough—for how long? In perpetu-
ity? That can’t work. When we make decisions to
pin an effort or to just outright whack a feature,
we’re making an organizational commitment that
we’ve assessed the risk. But the only way that can
work is if people hold each other accountable.
Clear and effective communications are one im-
portant ingredient. Assuming we have that, what
happens when commitments aren’t being met.
Why is that? That’s where accountability comes
into play. It’s the device by which we see to it
that we honor our commitments. And in the most
successful organizations, people hold themselves
accountable.

No tool or automated promise is going to force
anybody to do anything. Only people, cloaked
in appropriate authority, can do that. Assum-
ing the happy path here, where there’s enough
shared vision of mutual respect, transparency,
etc., the thing referred to by many is the Ac-
countability Chain. The chain is bi-directional (Continued on page 73)

CODA: On Commitment…74

CODA: On Commitment…
To commit. To be committed. To make a commitment. Each statement can be met with a generic
response: “To?” To what have I committed? To whom have I committed to do something by a
certain date? “Commit” is an interesting word, a verb with two basic and quite different meanings:

CODA

Sign up today for a free trial subscription at www.codemag.com/subscribe/knowledge

codemag.com/magazine
832-717-4445 ext. 8 • info@codemag.com

KNOWLEDGE
IS POWER!

Commercial UAV
Expo – Americas

