
co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 8
.9

5
 C

an
 $

 1
1.

95

NOV
2021

©
 I

llu
st

ra
ti

on
: G

it
H

ub
/k

aw
ilk

in
C# 10, .NET MAUI, Blazor, Visual Studio 2022

.NET 6.0
VISUAL STUDIO

Explore What’s New
in ASP.NET Core

Changes
to EF Core

Building Power
Apps with .NET 6

Inside Front cover .Net Artwork to come
from MS

Inside Front cover .Net Artwork to come
from MS

www.codemag.com4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $50.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill Me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �The Unified .NET 6

There were many lessons learned as the .NET team released .NET 5 during
the lockdown with an all-remote team. Rich shows how those lessons
carried into .NET 6 with major performance improvements, multiple
operating system scenarios for building client apps, support for Apple
Silicon chips, and faster and more responsive development tools.
Rich Lander

13 	 �Bring Your .NET Apps Forward
with the .NET Upgrade Assistant
Now that you’re using all the shiny new tools in .NET 6, you need to make
sure that the rest of your .NET Framework is keeping up. Mike shows you
how the new Upgrade Assistant makes it easy.
Mike Rousos

19 	 �Visual Studio 2022 Productivity
VS 2022 is finally 64-bit! Mika shows you how, with enhanced speed, AI
coding assistance, expanded productivity tools, and streamlined team
collaboration, you’ll find this new version improving your workdays.
Mika Dumont

29 	 �Essential C# 10.0: Making it Simpler
It’s time for the annual release of C# vNext. Mark shows you how it’s
streamlined in some ways and tightened in others. In fact, he thinks it
will mark a sea change in how C# devs write code.
Mark Michaelis

35 	 �What’s New in ASP.NET Core in .NET 6
You already know that ASP.NET Core provides everything you need to build
great Web UIs and powerful back-end services. Daniel shows how you can
build rich interactive client Web UIs using all your favorite interactivity tools,
standards-based HTTP APIs, real-time services, and back-end services.
Daniel Roth

46 	 �EF Core 6: Fulfilling the Bucket List
EF Core just gets better and better. Julie shows you how the development
team listened to the community for this latest release as she explores all
the cool new tools.
Julie Lerman

54 	 �An Introduction to .NET MAUI
You’ve been using Xamarin for years. Steven shows how the .NET
Multi-platform App UI (.NET MAUI) hasn’t just kept up with everything,
but how it compares with the old Xamarin.Forms.
Steven Thewissen

59 	 �Blazor Hybrid Web Apps
with .NET MAUI
You’ve been waiting for MAUI, and now it’s here! Ed takes you on
a tour and shows you how easy it is to code for the Web, desktops,
and mobiles using the skills you already have.
Ed Charbeneau

68 	 �Power Up Your Power Apps
with .NET 6 and Azure
Power Apps help design and specify how a mobile app will function
without having to know all those troublesome details of being a
professional coder. Come along as Brady walks you through .NET 6’s
new ASP.NET Core Minimal APIs, then publishes the app to Azure App
Service, imports it into Azure API Managements, and secures it with
Microsoft Identity Platform.
Brady Gaster

Departments
6 	� .NET Focus Features

Fabulous Features
Rod and the team here at CODE Magazine are pretty excited
about the new .NET release.
Rod Paddock

32 	 �Advertisers Index

74 	 Code Compilers

www.codemag.com

Does your development team lack skills or time to complete all your business-critical software projects?
CODE Consulting has top-tier developers available with in-depth experience in .NET,
web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/code
832-717-4445 ext. 9 • info@codemag.com

MORE THAN JUST
A MAGAZINE!

TRAINING/MENTORING SECURITY
CUSTOM SOFTWARE DEVELOPMENT

STAFFING

www.codemag.comcodemag.comEditorial

EDITORIAL

6

.NET Focus Features
Fabulous Features
I think this is the third .NET Focus issue we’ve shipped, and I can say without a doubt that these .NET
issues are very fun to put together. Well, it’s not all fun. LOL. Sometimes the deadlines are a bit crazy, but
overall, the experience is quite rewarding. This issue is no exception. The part I find most rewarding is

the privilege of working with the teams building
these features, creating in-depth content that
our readers will be able to take advantage of al-
most immediately. Another rewarding aspect is
getting a personal tour of what’s most important
in the version of .NET we’re creating content for
from the people responsible for making those
changes. As you’re about to see, there’s a lot to
this tour.

At a high level, this version of .NET is a unifica-
tion version. Rich Lander does a good job of con-
veying the overarching vision of .NET 6 in his apt-
ly named article “The Unified .NET 6.” This article
is not just “fluff.” There are a lot of details to
this unification, including performance improve-
ments. Check it out—you won’t be disappointed.

There are a TON of exciting new features in this
version of .NET and I believe my favorite one is
the concept of Minimal APIs. Daniel Roth does
a great job in his article “What’s New in ASP.NET
Core in .NET 6,” demonstrating how to build a
reasonably complex Web API with a single file.
I love this new ability as we’ll no longer need

to build completely scaffolded
Web projects to just “try

something.” In my humble opinion, this is one of
the most important aspects of this release. And
this is just one of the cool features being shipped
in ASP.NET Core.

My next favorite feature is just a simple little
thing. In C# 10, we can now create global Using
statements. No more redundant Includes at the
top of every program you create. You just put the
common Using statements in a common file and
cut down on the “cruft” in your programs. This’s
just one cool feature in C# 10. Check out Mark
Michaelis’ article, “Essential C# 10.0: Making It
Simple” for more details.

This next one is a HUGE set of changes that ev-
ery .NET developer will love. Visual Studio 2022 is
now—drum roll please—64-bit. Yes! You read that
correctly. In Mika Dumont’s article, “Visual Studio
2022 Productivity,” you’ll learn that a major benefit
of this release is SPEED, SPEED, and more SPEED.
The shift to 64 bits will make VS compile faster,
search faster, and make your everyday development
work…well…faster! <g> As if this isn’t enough al-
ready, there are a ton of other features for devel-
opers. No spoilers here: Check this article out for
yourself. There’s lots of great information here.

Another area of focus that you’ll find fascinating
are the various user interface frameworks that
are in heavy development now. We have content
on the .NET Multi-platform App UI (.NET MAUI),

Blazor, and Power Apps. The work that the
.NET team has been doing over the

years is paying huge dividends in the
.NET 6 release. There are now many

ways to build applications for any plat-
form you want. Want C# code in your

Web applications? Blazor can help. Want to
build mobile applications? Take a trip to .NET

MAUI to make that interface painless for you
and the users. Want to build Office 365 appli-
cations? It’s Power Apps to the rescue.

I’m looking forward to seeing how
these various platforms play out over
the coming years.

Along with these features and tools,
there are also some great articles on

tools you can use to migrate your appli-
cations to the current version, as well as

deep dives into performance updates in the over-
all .NET framework, .NET 6. And the beauty of this
performance work is that it’s essentially “free.”
There are no major changes to your code and yet
there are huge performance gains.

And last but not least. The Entity Framework is
making huge strides for us “gear heads” who love
data. Audit tables, performance improvements,
improvements to migrations and, finally, more
work on the CosmoDB provider. For EF Core users,
there’s definitely a lot to love.

Like all releases, .NET 6.0 has something for ev-
eryone and we’re just scratching the surface in
this issue. I hope you like what we have curated
for you.

� Rod Paddock
�

www.codemag.com

Is your business being held back by outdated software? We can help.
We specialize in updating legacy business applications to modern technologies.
CODE Consulting has top-tier developers available with in-depth experience in .NET,
web development, desktop development (WPF), Blazor, Azure, mobile apps, IoT and more.

Contact us today for a complimentary one hour tech consultation. No strings. No commitment. Just CODE.

codemag.com/modernize
832-717-4445 ext. 9 • info@codemag.com

TIME TO
MODERNIZE YOUR
OLD SOFTWARE?

shutterstock/Arunas Gabalis

www.codemag.com8 codemag.com

ONLINE QUICK ID 2111022

The Unified .NET 6

The Unified .NET 6
The .NET 6 project started in late 2020 as Microsoft was finishing .NET 5. .NET 5 proved to be a very successful base to start from,
having been the first release to tackle .NET platform unification, the first of the annual November releases, the first “all remote”
team release (due to the pandemic), and it has been (most importantly) rapidly and broadly adopted. The.NET 5 release cycle

taught Microsoft how to better span major investments across
multiple releases, which continues into .NET 6. The new re-
lease delivers major performance improvements, enables
new scenarios for building client apps for multiple operating
systems, adds support for Apple Silicon chips, and provides
much faster and more responsive development tools with hot
reload. At the same time, it improves on existing scenarios.

.NET users see keeping up with .NET innovation as a key in-
gredient of their business success, expanding their devel-
oper workforce to include the .NET team, and taking advan-
tage of performance improvements, observability, and new
language features. Microsoft thinks that .NET developers
will be eager to convert to .NET 6.

This article is focused on the fundamentals of the release,
including runtime, libraries, and SDK. It’s these fundamental
features that you experience and interact with most every
day, with new libraries APIs, language features, runtime
plumbing, and SDK capabilities. The article provides a look at
only a handful of improvements and new capabilities. You’ll
want to check out the .NET Team blog (https://devblogs.mi-
crosoft.com/dotnet/) to learn about the whole release.

Unifying the .NET Platform as
net6.0-everything
The top headline of the release (and this article) is unify-
ing the .NET platform. Looking several years back, the .NET
Framework with Windows was on one side, and Xamarin with
Android and Apple operating systems was on the other. They
were both “.NET” but were defined more by their differences
than their commonality. .NET 6 unifies the experience and
product into a single offering.

The following items unify the platform:

•	 Uniform runtime and library implementation and com-
mon APIs

•	 Symmetric model for targeting operating systems, like
Android and Windows

•	 Support for all of the relevant operating systems and
environments

•	 Tools that enable building all app types
•	 Opt-in to targeting of additional experiences, en-

abling a significant limit to the time and size it takes
to use .NET on your computer

•	 New functionality is available to all .NET developers at
the same time

Let’s take a look at a number of templates to better demon-
strate what you’ll see in .NET 6.

Cross-Platform Model
I’ll start with the Console template (class library is the same:
https://docs.microsoft.com/en-us/dotnet/core/tutorials/
library-with-visual-studio?pivots=dotnet-5-0) because it’s

the baseline by which you’ll judge all others. You can think of
net6.0 as the cross-platform target framework moniker (TFM).

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 </PropertyGroup>

</Project>

Note: All unrelated content has been removed in these ex-
amples. The actual templates are longer and include other
configuration, like enabling nullability. Those changes are
also important but aren’t covered in this article.

Apps that target the net6.0 TFM will work on all supported
operating systems and CPU architectures. The APIs exposed
via the net6.0 TFM are designed to work everywhere, like
HttpClient. There are platform compat analyzers that warn
you in the few cases where APIs are OS-specific.

There’s nothing surprising in this template. It has a refer-
ence to the base SDK: Microsoft.NET.SDK. As an aside, the
SDK reference is the reason this project format is often called
“SDK-style.” The project also declares that it’s a .NET 6 app
by specifying a dependence on the net6.0 target framework.

As an aside, the net6.0 TFM, and net5.0 before it, satisfy the
same purpose as .NET Standard. .NET Standard is still sup-
ported but Microsoft is no longer making new versions. You
can think of net6.0 as your new .NET Standard, if you’d like.
One of the major improvements over .NET Standard is that it
works for apps, not only libraries.

ASP.NET Core apps are nearly identical but reference a dif-
ferent SDK, which is Microsoft.NET.Sdk.Web. That’s the
mechanism that provides Web apps with additional APIs and
build-time functionality (like Razor page compilation) as
compared to Console apps.

Operating System API Targeting
In terms of existing templates, Windows Forms and WPF
apps introduce operating system targeting.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net6.0-windows
 </TargetFramework>
 <UseWindowsForms>true</UseWindowsForms>
 </PropertyGroup>

</Project>

There are two differences to call out. The first is that Micro-
soft has extended the target framework to describe and in-
clude operating system APIs. The change was first made in

Rich Lander
rlander@ms
Twitter: @runfaster2000
GitHub: @richlander

Richard Lander is a Prin-
cipal Program Manager on
the .NET team at Microsoft.
He works on making .NET
work well in the cloud, in
memory-limited Docker
containers, and on ARM
hardware like the Raspberry
Pi. He’s part of the design
team that defines new
.NET runtime capabilities
and features. Richard also
focuses on making the .NET
open source project a safe
inclusive place for people
to learn, do interesting
projects, and develop
their skills. He also writes
extensively for the .NET
blog. Richard reported for
work at Microsoft in 2000,
having just graduated from
the University of Waterloo
(Canada) with an Honors
English degree, with inten-
sive study areas in Comput-
er Science and SGML/XML
Markup Languages. In his
spare time, he swims, bikes,
and runs, and enjoys using
power tools. He grew up in
Canada and New Zealand.

Melanie Spiller
Highlight
This should be "rlander@microsoft.com"

www.codemag.com 9codemag.com The Unified .NET 6

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFrameworks>net6.0-android;net6.0-ios;
 net6.0-maccatalyst</TargetFrameworks>
 <UseMaui>true</UseMaui>
 </PropertyGroup>

</Project>

This example is taken from the Weather `21 app that you
can find on GitHub, here: https://github.com/davidor-
tinau/WeatherTwentyOne.

You can see a few design points at play:

•	 The app multi-targets over three target frameworks.
•	 The SDK is uniform and coherent across all three be-

cause it’s the base SDK.
•	 The app declares that it’s a .NET MAUI app—with

UseMaui—across all target frameworks, which results
in MAUI-specific build tasks and other configuration.

You can see that there’s added support for Android, iOS,
and macOS with .NET 6 (previously all supported by Xama-
rin) and that they’re modeled in the same way as Windows.
These new operating systems have first-class support at the
most fundamental levels of the .NET SDK.

macOS and Windows Arm64
Continuing with client operating systems, there’s added
support for Arm64 CPUs for macOS and Windows. For macOS,
that’s new with .NET 6 and for Windows, Microsoft is build-
ing on .NET 5 capabilities. Both Arm64 operating systems
offer x64 emulation, which, on one hand, is zero cost for
Microsoft but on the other hand, has caused Microsoft to
significantly rethink the .NET installation model and the CLI
support for architecture targeting.

macOS Arm64
Let’s start with macOS. You’ve probably heard about Apple’s
move to Apple Silicon chips, called (in this timeframe)
“M1” and “M2.” They are essentially the desktop version of
the A-series iPhone chips, which are all the way up to (in
this timeframe) “A14” and “A15”. Microsoft has had sup-
port for Arm64 (on Linux) since the .NET Core 3.0 release,
and Arm32 before that. That all helped, but Apple required
implementation of a couple of security-oriented features
above and beyond the existing .NET Arm64 capability.

The primary requirement was adding support for the W^X
memory feature, which was already on Microsoft’s backlog.
Memory pages (think virtual memory) can (in theory) be
marked with any or all of three states: read, write, and ex-
ecute. Think of these as permissions or capabilities. When
running on Apple Silicon chips, macOS doesn’t allow a
memory page to be configured for both write and execute.
This prevents an attacker from generating code at runtime
and then causing the application to execute it. That’s why
the feature is called “write exclusive execute” or “write xor
execute.” Pages can be read-write or read-execute but nev-
er write-execute or read-write-execute. Some parts of the
runtime, like the JIT, relied on r-w-x pages and have since
been adapted to new approaches that only use the allowable
memory page types.

.NET 5. This is apparent in net6.0-windows because Windows
is an operating system. Although Windows Forms and WPF
aren’t Windows APIs, they’re available only on Windows and
rely heavily on Windows technologies. As a result, Microsoft
chose to expose them with the Windows-specific TFM. Win-
dows APIs, including Windows Forms and WPF, aren’t avail-
able if you target the cross-platform net6.0 target framework.

The second change is that .NET 6 doesn’t expose application-
specific SDKs. You’ll notice that the Windows Forms project
uses the base Microsoft.NET.Sdk and also sets the UseWin-
dowsForms property to true. WPF works the same way. The
UseXYZ property tells the base SDK which additional SDKs
should be imported as an implementation detail. There are
all the same SDKs as before but they’re not a formal part of
the project file. This is the new model going forward. It may
be applied to ASP.NET Core templates in a future release.

This new model was created to enable multi-targeting. SDKs
don’t play nicely with multi-targeting, at least not with the
way they’re currently exposed as a singular attribute value.
They also don’t work well for composing multiple technolo-
gies. For example, imagine that you want to expose a Web
endpoint from a client app. Which SDK would you put at the
top of the file? With the new model, that problem goes away.

Before I switch to looking at other operating systems, let’s
take a closer look at the Windows TFM. The new net6.0-win-
dows has no version number, yet .NET 6 supports multiple
Windows versions. The version-less TFM (as it relates to the
operating system) targets the lowest-supported operating
system version. In this case, that’s Windows 7. If you want
access to WinRT APIs, you need to target Windows 10. You
can use net6.0-windows10.0.17763.0 to target Windows
10, version 1809, for example.

Expanding Supported Operating Systems
Now that you’ve taken a look at the more familiar Windows
experience, check out how the same model plays out for
Android, macOS, and iOS. The spoiler is that it’s the same.

The following are the TFMs for these OSes:

•	 net6.0-android
•	 net6.0-maccatalyst
•	 net6.0-ios

These TFMs are version-less, just like net6.0-windows. They
are all equivalent to the lowest-supported versioned TFM for
each of those operating systems. For example, net6.0-ios
and net6.0-ios14 are equivalent. For .NET 7, perhaps net7.0-
ios and net7.0-ios15 will similarly match.

You may not be familiar with Mac Catalyst. It’s a newer ma-
cOS application type defined by Apple and a variant of iOS
(including iOS UI APIs) that’s optimized for desktop apps.
Its primary purpose is to make source code sharing between
iOS and macOS platforms easier and to provide macOS de-
velopers with access to the newest Apple APIs (which have
historically only been available with iOS). For .NET 6, Micro-
soft decided to prioritize Mac Catalyst over Mac (classic).
There’s no support with .NET 6 for creating non-Mac Catalyst
Mac apps and no net6.0-macos target framework.

You can see this all coming together with a .NET Multi-plat-
form App UI (.NET MAUI) app.

Melanie Spiller
Highlight
Bad break. Break after "mac" or not at all.

www.codemag.com10 codemag.comThe Unified .NET 6

rich@M1 % dotnet build -a x64
rich@M1 % ./bin/Debug/net6.0/osx-x64/yyzapp
Hello, X64!

The same thing works with dotnet run and dotnet test.

The goal with x64 emulation was to deliver an experience
that was intuitive to use and could be driven entirely from
the Arm64 SDK. Microsoft focused on the Arm64 SDK be-
cause most developers have that anyway and because it’s
faster, by definition, given that it isn’t emulated. The .NET
build system is a significant body of software and it’s going
to run much faster natively on Apple Silicon chips.

Effect on Containers?
You might be wondering how all of this affects containers.
The answer is: Not a lot.

rich@M1 ~ % docker run --rm mcr.microsoft.com/dotnet/samples

Debian GNU/Linux 10 (buster)
OSArchitecture: Arm64

By default, Docker runs in Arm64 mode on Apple Silicon, the
native architecture of the computer. Just like on Mac Intel
computers, Docker uses Linux images, so no change there.
You can also run x64 container images using QEMU-based em-
ulation. Microsoft doesn’t support .NET running in QEMU (on
any operating system). That said, I’ll at least show you how
it works, using the --platform switch, so you can try it out.

rich@M1 ~ % docker run --rm --platform
linux/amd64 ubuntu bash -c "cat /etc/os-release
| grep PRETTY && uname -a"
PRETTY_NAME="Ubuntu 20.04.2 LTS"
Linux a881a5627af8 5.10.47-linuxkit
x86_64 x86_64 x86_64 GNU/Linux

System.Text.Json Source Generators
One of the goals, if not the most fundamental goal, of high-lev-
el programming languages is to compile human-centric abstrac-
tions down to machine-centric optimized (and safe) code. As-
pects of .NET do just that, like the garbage collector, the thread
pool, and async/await. Those features have a well-defined con-
tract with the rest of the system. For the System.Text.Json seri-
alizer (and really any serializer), it’s a lot harder to separate the
human-centric API from the runtime execution model, in large
part due to reflection. Reflection is both an incredibly enabling
technology and a damned curse. Source generators, which were
new in .NET 5, offer a way to break that formal coupling.

Reflection has at least two challenges. The first is that per-
vasive use is bad for performance (startup, throughput, and
memory). It also makes assembly trimming difficult, which
is another dimension of performance. The assembly trim-
mer—and any software like it—makes decisions statically
based on what it can see and trust in assembly metadata.
Reflection is inherently late-bound such that its complete
operation is not recorded in metadata, which in turn limits
the assembly trimmer from doing a great job.

With this new approach, you can write the same high-level
serialization code as normal, and then opt into using the
source generator, which generates a custom serialization

For .NET 6, this memory-related feature is enabled by default
for macOS on Apple Silicon computers, and is otherwise opt-
in. Microsoft expects it to be enabled by default for all en-
vironments with .NET 7. It’s a good security feature and will
benefit all .NET developers and deployments. There’s a road-
map of defense-in-depth features, and others are planned for
.NET 7 and future releases to further secure applications.

X64 Emulation
The most significant Arm64-related change is x64 emulation,
which is available on both macOS and Windows (on Arm64
computers). The primary issue is that x64 emulation (on both
operating systems) is a very narrow capability (focused nearly
exclusively on instruction set emulation), as compared to the
broad WoW64 subsystem on Windows that supports 32-bit x86
apps including file and registry virtualization. That means that
.NET and other development platforms are responsible for the
bulk of the user experience for supporting x64 emulation.

First, the team needed to enable developers to install both
Arm64 and x64 .NET builds on the same computer. At the
start of the release, and at the time of writing, these builds
collide (in multiple ways). That’s not a workable model. Mi-
crosoft has been working on a plan—documented at dotnet/
designs—for enabling Arm64 and x64 builds to coexist and
to be insensitive to the order of install.

Going forward, it’s expected that most developers (on Arm64
macOS and Windows computers) will exclusively install the
Arm64 .NET SDK (which will also include Arm64 runtimes
for that version) for building code and then install and use
whichever additional Arm64 and x64 runtimes they want to
use for running and testing it. For developers, x64 runtime
usage (on Arm64 computers) will probably be limited to en-
suring compatibility with x64 production targets (both cloud
and client) and validating x64-specific bugs. Most x64 valida-
tion is expected to be performed by x64-capable continuous
integration (CI). Microsoft expects this to be common for
many years. A common need for the x64 SDK on Arm64 com-
puters isn’t expected, although it will be available.

Microsoft also expects end users to use x64-only apps on
Arm64 as a popular scenario.

The .NET CLI syntax has been extended to make targeting x64
easier with the Arm64 SDK. The following is an example of that.

Here’s the .NET 6 app.

using System.Runtime.InteropServices;

Console.WriteLine($"Hello,
 {RuntimeInformation.OSArchitecture}!");

Assuming the .NET 6 Arm64 SDK is installed, the app runs as
Arm64 by default. Let’s validate that.

rich@M1 % dotnet build
rich@M1 % ./bin/Debug/net6.0/yyzapp
Hello, Arm64!

Using the Arm64 SDK again, you can also target the app to
x64 with the new -a (architecture) switch to produce an x64
app instead of the default native architecture. This assumes
that the .NET 6 x64 runtime is installed, because otherwise
the app wouldn’t run.

www.codemag.com 11codemag.com The Unified .NET 6

•	 The JsonContext class provides a place to hang an attri-
bute that’s global to the program (as opposed to a single
serialization call) that links a type (in this case JsonMes-
sage) and any serialization options (none of which are
provided in this example) to the source-generated code.

•	 JsonSerializerContext defines and enforces (by virtue
of inheritance) the shape that the serializer expects
from (in this case) JsonContext.

That’s pretty reasonable for a new scheme with so much
benefit. You can see that it doesn’t require much to adapt
existing code. This new model is generally recommended,
and is something you should strongly consider for perfor-
mance-sensitive scenarios that process JSON content.

On the TechEmpower Caching Benchmark, a 40% increase in
throughput solely was observed by moving to source gen-
eration for JSON serialization. Table 1 gives you a sense of
how much reflection can cost and how much computers love
executing static code.

Microsoft has also validated that IL trimming is improved
when using source generation. In particular, trimming is able
to cut the size of System.Text.Json.dll (for self-contained
apps) in half. It also makes the assembly trimmer easier to
use in more aggressive trimming modes because all code (at
least as it relates to System.Text.Json) is statically reachable.

This description has been entirely focused on serialization. De-
serialization has also been improved but not to the same de-
gree. For deserialization (and you can do this with serialization,
too), you can opt into using source generation to produce a
metadata model that can be used at runtime. This is more like
having a map, but not the route. Similar support for deserializa-
tion as serialization might be added in a future release.

JIT Compiler
Performance has been a big part of every .NET release. Mi-
crosoft publishes a post on the .NET Team blog every year on
the latest improvements. Everyone is recommended to take
a look at the “Performance improvements in .NET 6” post
(https://devblogs.microsoft.com/dotnet/performance-
improvements-in-net-6/). I’ll provide a short summary of
some of the performance improvements in the JIT.

Inlining
One of the most effective performance optimization techniques
in the just-in-time compiler is inlining. The runtime gets the JIT
to compile one method and then calls into another that then
needs to be JITed. Method calls are not free, particularly if they
are virtual or (worse yet) interface calls (which is common). The
JIT can erase method calls by pulling a method body (that would
be called) into the current one as inline code. For methods that
get called a lot, this performance optimization can help a lot.

The first example in the .NET 6 performance post (https://
devblogs.microsoft.com/dotnet/performance-improve-

implementation with static (early bound) code using low-
level primitives like Utf8JsonWriter and no reflection.

Zooming out, the System.Text.Json serializer is perhaps
the best example of a relatively high-level .NET libraries
component that takes advantage of and supports many
new features while maintaining and improving perfor-
mance. Recent examples are: IAsyncEnumerable, records,
and nullability. These improvements make the serializer
increasingly easier to use and more capable. They also in-
form these low-level features because the team itself is an
important consumer.

Baseline Case
Let’s start with the baseline case for using the System.Text.
Json serializer. It’s important to start with this case to dem-
onstrate how easy it is to switch the new optimized patten.

using System.Text.Json;
using System.Text.Json.Serialization;

JsonMessage message = new("Hello, world!");

// baseline case for using JsonSerializer
string json = JsonSerializer.Serialize<JsonMessage>(message);
Console.WriteLine(json);

// Message type
internal record JsonMessage(string Message);

This code results in the following output.

{"Message":"Hello, world!"}

The serializer uses reflection to discover the Message prop-
erty and then to extract its value from the associated getter.
That works but it isn’t optimal.

Optimized Serialization
The following code uses the source generator and produces
much better results because it doesn’t use reflection, but
uses property accessor calls on JsonMessage and generates
the JSON with Utf8JsonWriter directly.

// relies on source generation
string optimizedJson = JsonSerializer.Serialize(message,
 JsonContext.Default.JsonMessage);
Console.WriteLine(optimizedJson);

// Source generator definition
[JsonSerializable(typeof(JsonMessage))]
internal partial class JsonContext : JsonSerializerContext
{
}

I’ve shared just the changes to the program. The call to
JsonSerializer.Serialize is switched to use a different signa-
ture and the partial JsonContext class is new. Otherwise, it’s
all the same. Note that the JsonContext name is arbitrary.
You can choose any name for the class.

The magic is three-part:

•	 JsonContext is a partial class, which means the source
generator can generate .g.cs files that fill out the rest
of the class.

Table 1: TechEmpower Caching Benchmark (with source generation)

Requests/sec Requests
.NET 5 243,000 3,669,151
.NET 6 260,928 3,939,804
.NET 6 + JSON Source generation 364,224 5,499,468

www.codemag.com12 codemag.comThe Unified .NET 6

Table 3 is the ValueTuple’3 type being called on the ITuple
interface that it implements.

The JIT inlines and devirtualizes the .Length property call in
.NET 5 and .NET 6, respectively.

This improvement is absolutely impressive and demon-
strates the value of this style of optimization. However, this
particular optimization only applies when a method can be
inlined and then specialized based on the narrow use of the
code. Methods are generally not inlined (for good reason).
As part of .NET 6, Microsoft has developed a completely dif-
ferent technology called dynamic PGO that has the capabil-
ity to devirtualize any method (non-inlined). That enables
much broader performance benefits.

If you have familiarity with devirtualization, you’ll know that
a code generator needs to be correct when it devirtualizes an
interface or other virtual call. If not, the program will have un-
predictable results or (more likely) crash because it might spe-
cialize, for example, an ICollection<T> argument as List<T> but
then IList<T> or ImmutableArray<T> is passed in next. Clearly,
you shouldn’t risk crashing apps to get a performance win.

Dynamic PGO includes a new feature called guarded devir-
tualization. It’s a sort of “zero risk gamble” performance
feature. Based on observation, it can see that your code
almost always passes List<T> to a method that takes an
ICollection<T>. It then generates a fast path for List<T> and
then a slow path for any other ICollection<T>. If dynamic
PGO is right most of the time, it can provide a significant
performance win. If the gamble proves wrong more than it
expects, it can skip the preferred devirtualized call and go
back to the normal virtualized call for all cases.

Let’s see how this feature plays out with IEnumerable<int>
with a call to MoveNext(), as captured by the benchmark
shown in Table 4.

You can see that PGO results in bigger code size because it
requires more machinery to work correctly and safely (the
fast and slow paths), but wow! The drop in execution time is
worth the price of admission. IEnumerable<T> is a particu-
larly apt example because it’s used everywhere.

Dynamic PGO is a fully supported opt-in feature in .NET 6
and worth trying out (by setting the DOTNET_TieredPGO
environment variable to “1”). Microsoft plans to enable dy-
namic PGO by default with .NET 7. It’s a very exciting feature
with a lot of potential for improving performance.

Closing
.NET 6 is perhaps the most foundational release since .NET Core
1.0. It includes support for major new hardware platforms,
broader use of source generation, another jump forward in per-
formance, and tens of features not mentioned in this article.
.NET 6 is a good reminder that Microsoft is investing in .NET for
the long-term across both client and cloud. If you build cloud or
client apps—and particularly if you build both—you’ve got a lot
of strong options with .NET. Looking ahead, what comes next
looks even better as new investments come to fruition. Like it’s
always been, it’s a great time to be a .NET developer.

ments-in-net-6/) describes a case where a Utf8Formattter.
TryFormat improved significantly in this release without any
code changes. Surely that’s impossible. A 22% improvement
was seen in throughput and a 35% reduction in generated
assembly code as seen in Table 2.

The Utf8Formattter.TryFormat method has a one-line imple-
mentation to the internal TryFormatInt64 method. In .NET 6,
that method was marked with the MethodImplOptions.Aggres-
siveInlining attribute, which greatly increases the chance that
the method will be inlined. You can think of this attribute as
the .NET performance optimization that’s responsible for the
double-digit improvement to TryFormat and likely other callers.

It gets better. As a result of inlining, the JIT is able to see through
the method call and choose to copy the method body in full or
in part. In this case, the JIT is able to see and process branches
(if and switch statements) in the method implementation and
choose to inline just a single method call that would have been
the final and only observable result of actually running all the
code. That’s a huge benefit if this method is called a lot.

The JIT isn’t really “running code” but it sure seems like it.
It can reason about code and safely skip operations that are
unnecessary but provably produce the same results. There
are lots of compiler optimizations like this.

Devirtualization
Another big win from inlining is devirtualization, particu-
larly for interfaces. Imagine a method is inlined that takes
a collection interface like IList<T> or IEnumerable<T>. At
this point, the code is now specific to the parent method
and not subject to being called by arbitrary callers. As a
result, the JIT may be able to reliably specialize the code to
a single class and type of T resulting in much faster direct
calls instead of interface dispatch.

Here is an example in the performance post that does this.

public int GetLength() => ((ITuple)(5, 6, 7))
 .Length;

Method Runtime Mean Ratio Code Size
Format .NET 5.0 13.21 ns 1.00 1,649 B

Format .NET 6.0 10.37 ns 0.78 590 B

Table 2: TryFormat Performance

Method Runtime Mean Ratio Code Size Allocated
GetLength .NET Framework 4.8 6.3495 ns 1.000 106 B 32 B

GetLength .NET Core 3.1 4.0185 ns 0.628 66 B –

GetLength .NET 5.0 0.1223 ns 0.019 27 B –

GetLength .NET 6.0 0.0204 ns 0.003 27 B –

Table 3: Interface dispatch performance

Method Mean Code Size
PGO Disabled 1.905 ns 30 B

PGO Enabled 0.7071 ns 105 B

Table 4: Devirtualization performance with PGO

SPONSORED SIDEBAR:

Get .NET 6 Help for
Free

How does a FREE hour-
long CODE Consulting
virtual meeting with our
expert consultants sound?
Yes, FREE. No strings.
No commitment.
No credit cards. Nothing to
buy. For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

� Rich Lander
�

www.codemag.com 13codemag.com

ONLINE QUICK ID 2111032

Bring Your .NET Apps Forward with the .NET Upgrade Assistant

Mike Rousos
mikerou@microsoft.com

Mike Rousos is a Principal
Software Engineer on the
.NET Customer Engage-
ment Team. A member of
the .NET team since 2004,
he has worked on a wide
variety of feature areas
and contributed content to
the .NET team blog, .NET
Conf sessions, Channel 9
videos, and .NET develop-
ment e-books like “.NET
Microservices: Architecture
for Containerized .NET
Applications.” Outside of
work, Mike is involved in
his church and enjoys read-
ing, writing, and games
of all sorts. His primary
hobby, though, is spending
time with his four kids.

Bring Your .NET Apps Forward
with the .NET Upgrade Assistant
.NET 6 brings many exciting innovations to the .NET ecosystem. Compared to the .NET Framework, .NET 6 is faster and can work
cross-platform on Windows, Mac, or Linux. .NET 6 and its successors are the future of .NET and going forward, all new features
will come to .NET 6+ rather than to .NET Framework. Because of these benefits, it’s valuable to upgrade existing .NET Framework

projects to build and run as .NET 6 apps instead. Transi-
tioning from .NET Framework to .NET 6 can be challenging,
though, because of the differences between the platforms,
especially for some app models, like Web apps.

To help make upgrading to .NET 6 easier, Microsoft’s .NET
team has created a tool known as the .NET Upgrade As-
sistant (sometimes referred to as just Upgrade Assistant).
Upgrade Assistant is an open-source command-line tool for
automating some of the changes necessary to upgrade to
.NET 6 and for highlighting other changes that need to be
made manually. Upgrading from .NET Framework to .NET 6
is a complex process and, for many projects, can’t be com-
pletely automated. Upgrade Assistant doesn’t aim to com-
pletely upgrade projects automatically; instead, its goal is
to automate away the many simple changes needed when
upgrading to .NET 6 so that developers can focus on the
most interesting changes. By partially automating the up-
grade process, the .NET Upgrade Assistant can make adopt-
ing .NET 6 quicker. Upgrade Assistant currently supports
upgrading class libraries, console apps, ASP.NET MVC, and
WebAPI projects, plus WinForms and WPF projects. The tool
works with either C# (csproj) or VB (vbproj) projects.

The .NET Upgrade Assistant is developed as an open-source
project at https://github.com/dotnet/upgrade-assistant.
This article introduces the basics of using the tool, and ad-
ditional documentation and samples are available on the
GitHub page. Users can also submit issues, questions, or
pull requests via GitHub.

Installing the .NET Upgrade Assistant
Before installing the .NET Upgrade Assistant, make sure the
following prerequisites are installed:

•	 The .NET SDK. Upgrade Assistant is a .NET SDK com-
mand-line tool, so the .NET SDK is required to install
and run it. The SDK can be installed from https://dot-
net.microsoft.com/download.

•	 The infrastructure needed to build the projects being
upgraded. As part of execution, Upgrade Assistant
builds the projects being upgraded. Therefore, any
tooling required to build the projects needs to be
present on the computer running Upgrade Assistant.
At the very least, this means that MSBuild needs to
be present and, in many cases, Visual Studio 2019 or
above also needs to be installed.

As a .NET SDK tool, Upgrade Assistant can be easily installed
and managed from the command line. To install the latest
release of the tool from NuGet, run the command dotnet
tool install -g upgrade-assistant. Similarly, Upgrade Assis-

tant can be updated to the latest version by running dotnet
tool update -g upgrade-assistant.

Because Upgrade Assistant is installed from NuGet, the installa-
tion process considers any NuGet configuration present on the
computer. If you see errors about not being able to find Upgrade-
Assistant on custom feeds or if you encounter issues related to
authentication, it may be because custom NuGet configuration
is interfering with the install process. You can work around these
issues by ignoring inapplicable NuGet sources: dotnet tool in-
stall -g upgrade-assistant --ignore-failed-sources.

By default, the latest released version of Upgrade Assistant
is installed. New versions are released approximately twice a
month as new features become available in the tool. If you’d
like to get even more frequent updates, nightly builds can be
installed from the Upgrade Assistant team’s CI feed. These
builds are produced every time the code changes in the GitHub
repo and provide immediate access to the latest features. The
CI builds are not as well tested, though, so they should only be
used until the features you need are incorporated into a regu-
lar bi-monthly release to NuGet. Installing from the CI feed
can be done with: dotnet tool install -g upgrade-assistant
--add-source https://pkgs.dev.azure.com/dnceng/public/_
packaging/dotnet-tools/nuget/v3/index.json.

Using the .NET Upgrade Assistant
The .NET Upgrade Assistant can be executed by simply run-
ning upgrade-assistant from a command prompt. When
running the tool, you need to specify either the analyze
command or the upgrade command.

The Upgrade Command
The most common command for Upgrade Assistant is up-
grade. This is the command that walks the user through dif-
ferent upgrade steps and begins getting the input project or
solution ready to run on .NET 6. Upgrading with Upgrade As-
sistant is as simple as running upgrade-assistant upgrade
<Input File>, where <Input File> is either a project file
(csproj or vbproj) targeting an older version of .NET or a so-
lution (sln) containing one or more projects to be upgraded.

Other optional parameters that can be used with the up-
grade command include:

•	 --target-tfm-support allows the user to specify which
.NET version Upgrade Assistant should upgrade to.
They can choose LTS, Current, or Preview. With .NET 6’s
release, any of these options results in upgrading to
.NET 6 (as it’s both the most current and the latest LTS
release of .NET). Once preview versions of .NET 7 are
available, the Preview option upgrades to that target.

www.codemag.com14 codemag.comBring Your .NET Apps Forward with the .NET Upgrade Assistant

eShop sample app, a simple ASP.NET MVC e-commerce sam-
ple available at https://github.com/dotnet-architecture/
eShopModernizing/tree/master/eShopLegacyMVCSolution.

Because I want to upgrade the Web app to ASP.NET Core,
I’ll use Upgrade Assistant’s upgrade command. From the
eShopLegacyMVCSolution folder, execute this command:
upgrade-assistant upgrade eShopLegacyMVC.sln.

Upgrade Assistant can run either on solutions (sln files) or
projects (csproj or vbproj files). In the case of a solution with
multiple projects, Upgrade Assistant asks the user which project
is the solution’s entry point. The entry point project is the top-
level project the user wishes to upgrade. Typically, this is the
project that’s executed—usually an exe, Web app, or test proj-
ect. Once Upgrade Assistant knows the solution’s entry point,
it analyzes project-to-project dependencies to determine which
projects need to be upgraded to support ultimately upgrading
the entry point project and will recommend in which order the
projects should be upgraded (for example, beginning with mov-
ing the lower-level dependent projects first). It then walks the
user through upgrading each of those projects in turn.

In the case of the eShop sample, the solution only con-
tains a single project. So, even though I ran the tool on the
eShop solution, Upgrade Assistant recognizes that there’s
only one project to upgrade and jumps directly to project-
level upgrade steps, as shown in Figure 2. For each upgrade

•	 -- vs-path allows the user to specify which version of Visual
Studio to use when loading/building the project in cases
where multiple versions of Visual Studio are available.

•	 --skip-backup disables backing up the project before
upgrading and can be useful when running on proj-
ects that are in source control, as backups may not be
needed in that scenario.

•	 --verbose enables more verbose logging but is mostly
used for diagnosing problems in the tool as the output
includes much more detail and may be less useful for
normal use cases than the typical tool output.

Once Upgrade Assistant has started the Upgrade command,
it guides the user through applying a series of changes to
their project with an interactive command line interface.
This upgrade process is explored in more detail in the “Ex-
ample Walkthrough” section of this article.

The Analyze Command
If you’d like to see what changes the .NET Upgrade Assistant
recommends for a given project or solution without changing
anything, you can use the Analyze command. Like the Up-
grade command discussed earlier, the Analyze command takes
a single required parameter—the path of the solution or project
(csproj or vbproj) to analyze. The same optional parameters
mentioned above also work for the Analyze command.

Unlike the Upgrade command, the Analyze command isn’t
interactive. Instead, it evaluates the projects using the
same heuristics the Upgrade command uses to identify nec-
essary changes based on the desired version of .NET (LTS,
Current, or Preview) and outputs a report summarizing the
findings. This process doesn’t make any changes to the in-
put projects. Instead, it provides analysis of what changes
are required to upgrade the projects.

The output file is in the SARIF format, a well-known JSON-
based OASIS standard used by analysis tools. An example
output file is shown in Figure 1. SARIF files can be opened
using extensions for either Visual Studio or VS Code (avail-
able from https://marketplace.visualstudio.com), or even
in some Web-based viewing apps (https://microsoft.github.
io/sarif-web-component, for example).

Example Walkthrough
To give more detail on how the .NET Upgrade Assistant works
and what sorts of changes it can help with, let’s run the tool
on a sample app. For this exercise, I’ll run the tool on the

Figure 1: Example .NET Upgrade Assistant analyze output

Figure 2: .NET Upgrade Assistant upgrade steps

www.codemag.com 15codemag.com Bring Your .NET Apps Forward with the .NET Upgrade Assistant

only those that’re used directly by eShop. Applying this step
to the eShop project also replaces the Framework reference
to System.Configration with a package reference to System.
Configuration.ConfigurationManager.

Update TFM
The next upgrade step is the one that retargets to .NET 6
by changing the target framework moniker (TFM) used in
the project’s <TargetFramework> property. Up until now,
the project still targeted .NET Framework. The changes were
only about modernizing the project file and NuGet package
references. For non-Web scenarios, it’s possible to exit the
tool prior to applying the TFM change and have a project
that still builds and works as before, except that the project
file is updated to SDK-style.

Once the update TFM step is applied, the project is re-targeted
to a new .NET platform. The specific target framework to which
Upgrade Assistant chooses to upgrade a project depends on
a set of heuristics that consider input parameters and char-
acteristics of the project itself. For library projects, Upgrade
Assistant attempts to retarget to .NET Standard 2.0 because
that TFM makes it possible to use the library from the widest
variety of consumers. In cases where the project can’t target
.NET Standard (because it’s an exe or Web app, for example),
Upgrade Assistant targets .NET 6. This step also considers de-
pendencies because a project’s TFM must be at least as restric-
tive as the targets of its dependencies. Because of this, Up-
grade Assistant may choose a more specific TFM, like .NET 6.0
(represented by the TFM short name “net6.0” in the project
file) or even an OS-specific TFM like net6.0-windows if that’s
necessary based on the dependencies the project has.

Console output from the TFM upgrade step explains which
TFM will be used and why. In the case of the eShop sample,
logging explains that the .NET 6 TFM will be used because
the project builds to an executable (a Web app), so .NET
Standard can’t be used.

After applying this step, you can see that the <TargetFrame-
work> property of the project file has been updated to
net6.0 (representing .NET 6.0 as the target).

The second NuGet update
step is about updating NuGet
package references based
on the updated TFM.

Update NuGet Packages
The next step is a second round of updating NuGet package
dependencies. Whereas the first NuGet package update step
was about cleaning up package references after converting
to the new project file format, this second NuGet update
step is about updating NuGet package references based on
the updated TFM. Some of the NuGet packages referenced by
the project may not work with the new target. This upgrade
step queries NuGet (and any additional NuGet sources con-
figured for the project) to look for updated packages that
work with the new TFM. The step also considers manually
configured mappings of some NuGet packages to known .NET
6-compatible equivalents.

step, the user can choose a command from a list of options.
Typically, users choose the first action (apply) to apply the
upgrade step to the project. In some cases, they may choose
to learn more details about the step first, or to skip it. Com-
mands are chosen by entering their corresponding number
and pressing enter. As a shortcut, pressing enter without
specifying a number executes the first command in the list.

Project Backup
The first step of the upgrade is to back the project up by
copying it (and its source files) to another location. This
is important because, by design, Upgrade Assistant leaves
many projects in a non-building state after it’s finished ex-
ecuting (because it applies some of the changes needed to
upgrade to .NET 6 but others need to be applied manually).
Backing up the project makes it possible for users to easily
roll back to a version that successfully builds and works, in
case they abandon the upgrade.

Project File Format Update
After backing up the project, the next step Upgrade Assis-
tant applies is updating the project file to use the SDK style
project file format. SDK style projects are more concise and
more human-readable. They use globbing patterns and au-
tomatically include common source files. They also use the
<PackageReference> format for referencing NuGet packages
(instead of a packages.config file).

After applying this step, you can look at the eShopLegacyM-
VC.csproj file to see that it’s considerably simpler and that
package references have been updated to use the <Pack-
ageReference> format. Notice that the project still targets
.NET Framework 4.7.2. Although the new project file format
is required for .NET 6, it can also be used with older .NET
Framework targets. Some users find it useful to run the first
few steps of Upgrade Assistant to update to newer csproj
and package reference formats without updating the .NET
platform they’re building against. In order to enable that
scenario, the retargeting to .NET 6 occurs later in the up-
grade process in a separate step.

NuGet Package Cleanup
The next upgrade step, after updating the project file format,
is cleaning up NuGet package references. This is necessary be-
cause of differences between the old packages.config method
of referencing NuGet packages and <PackageReference> refer-
ences. A packages.config file lists all NuGet packages needed by
a project regardless of whether those packages are referenced
directly from the project or if they’re only needed transitively
by the project’s dependencies. When using the <PacakgeRefer-
ence> format for references, though, only top-level direct ref-
erences need to be listed. When NuGet packages are restored,
the NuGet client automatically finds other packages needed by
the project’s direct dependencies and downloads them also.

When Upgrade Assistant converted from the old-style proj-
ect file to the new one, it copied over all NuGet references.
During this step, Upgrade Assistant cleans up NuGet pack-
age references by removing those that are referenced tran-
sitively by other package references. It also performs other
low-risk cleanup, such as replacing some assembly referenc-
es with equivalent NuGet package references, which work
for both .NET Framework and .NET 6.

After applying this step, you’ll notice that the list of NuGet
packages referenced from the eShop project is reduced to

www.codemag.com16 codemag.com

the eShop sample, none of these sections are present
in the config file, so the step is marked as complete
even before you get to it, as no work is necessary.

•	 Finally, the system.web.webPages.razor/pages/
namespaces conversion sub-step finds any namespaces
that are automatically imported into Razor pages and
moves those imports into a _ViewImports.cshtml file,
which is the correct way to auto-import namespaces in
ASP.NET Core. After running this step, notice the new
_ViewImports.cshtml file added to the project’s Views
folder (shown in Figure 3).

Update Razor Files
The next upgrade step fixes up Razor (cshtml) files to work
after the upgrade. It has two sub-steps. The first sub-step
applies source-level fixes to C# code embedded in Razor
files. The rules used to update the C# code are the same as
are applied to .cs files in the next step. The second sub-step
replaces usage of the @helper function syntax in Razor files
with local methods because @helper isn’t supported in ASP.
NET Core.

The eShop sample doesn’t use @helpers, so the second
sub-step is already marked complete when you get to the
Razor file update step. There are code fixes to be applied,
however. Applying that step updates the _Layout.cshtml
file in the eShop project to include a @using Microsoft.
AspNetCore.Http import and replaces HttpContext.Current
usage with HttpContextHelper.Current. HttpContextHelper
is a class that Upgrade Assistant can insert into projects as
a way to deal with HttpContext.Current usage in Web apps.
HttpContext.Current was a commonly used static property
in ASP.NET that returned the HTTP context for the current
request. In ASP.NET Core, these sorts of global statics aren’t
used. The HttpContextHelper class is added to upgraded
projects to act as a bridge that provides the ability to stati-
cally request the current HTTP context until call sites can be
updated to not use that pattern.

Update Source Files
The final upgrade step before moving on to the next project
(if there is one) is to update C# source files to fix up code
patterns that won’t work on .NET 6. This step has many sub-
steps, one for each rule that will be applied. As with some
of the previous steps, any sub-steps that are unnecessary
(because the project doesn’t contain the relevant code pat-
tern) are marked as complete. You may notice that the list of
sub-steps for this step (shown in Figure 4) isn’t the same as
the sub-steps that were listed here when Upgrade Assistant
first started up. The reason for the difference is that some of
the source updater’s sub-steps are conditional on the type
of project being upgraded and, prior to the project being
converted to an ASP.NET Core project, some of the sub-steps
didn’t apply.

In the case of the eShop sample, logging tells us that this
step replaces EntityFramework version 6.2 with version 6.4
because the latter version works with .NET 6. It also removes
some packages like Antlr, WebGrease, and Autofac.Mvc5
that were useful in ASP.NET scenarios but are unnecessary
for ASP.NET Core.

There are also some warnings in the console output for this
step. These warnings occur if a NuGet package is referenced
that doesn’t support the new TFM and no newer version of
the package that will work with the updated target can be
found. In these cases, developers need to manually update
the packages to more modern equivalents or restructure the
project to not have these dependencies. For eShop, log-
ging informs us that the Microsoft.ApplicationInsights.Web
package reference could not be automatically updated and
should be manually reviewed.

Add Template Files
Upgrade Assistant’s next step is to add some additional files
to the project that will be useful after upgrade. For Web sce-
narios like the eShop sample, Upgrade Assistant adds com-
mon files that are needed in ASP.NET Core apps. By using the
See more step details command, you can see more informa-
tion about the files to be added. They include: program.cs,
startup.cs, appsettings.json, and appsettings.development.
json. All of those are files that are expected to be part of an
ASP.NET Core app but weren’t present in the ASP.NET version
of eShop. The files that are added provide a starting point
for important ASP.NET Core components in the upgraded
app and include comments explaining to the user what the
files are for and where to go to learn more about them. This
step is also useful because adding these files to the project
makes it possible for future upgrade steps to further update
them based on other project details, as will be shown in
future steps.

If any of these files already exist in the project, Upgrade
Assistant analyzes them to determine whether the files al-
ready present are likely to fill the same role as the template
files and, if they were, skips adding the templates. If the
files looked like different files that just shared a common
name, however, the existing file is renamed and the new file
added. After applying this step to the eShop sample, you’ll
see the four new files listed previously added to the project.

Update Config Files
ASP.NET Core apps don’t use web.config files. The next
step—upgrading config files—is all about migrating impor-
tant data that would have existed in web.config or app.con-
fig files into new homes that are appropriate for .NET 6. This
step has a number of sub-steps to perform different tasks
with the project’s web.config file:

•	 The first sub-step moves application settings from
web.config into appsettings.json. After applying this
to the eShop sample, you’ll see that settings like
UseCustomizationData are added to appsettings.json
based on data in web.config.

•	 The next sub-step is similar but moves connection
strings rather than app settings. Again, when run on
eShop, you’ll notice that the app’s database connec-
tion string moved into appsettings.json.

•	 The next sub-step disables web.config sections that
are no longer supported on .NET 6, such as System.
ServiceModel or System.Diagnostics. In the case of

Figure 3: Auto-generated _ViewImports file with migrated
import statement

Bring Your .NET Apps Forward with the .NET Upgrade Assistant

www.codemag.com 17codemag.com

also adds a reference to a set of Roslyn Analyzers (Microsoft.
DotNet.UpgradeAssistant.Extensions.Default.Analyzers) that
causes any of the source issues identified by the source up-
date step (including those like the bundling warning that
couldn’t be fixed automatically) to show up as warnings in
the project. This makes it easy to identify next steps in the
upgrade process when working with the project afterwards.

Advanced Usage
In addition to the basic workflow discussed above, there
are a few other commands and command line options that
can be useful for customizing the .NET Upgrade Assistant’s
behavior.

Automating Upgrade Assistant
By default, Upgrade Assistant runs in an interactive mode
that requires the user to step through upgrade steps indi-
vidually. It’s important that users understand the changes
Upgrade Assistant is making during the upgrade process be-
cause it’s likely that the project won’t build after the tool
finishes and the user will need to understand what state
the project’s in and how to complete the upgrade manually.

After using Upgrade Assistant for a while, though, users
may become familiar with the upgrade process and want
the tool to run more autonomously, especially if they will
be running the tool on many different solutions. To enable
this, the --non-interactive option can be passed to the
upgrade command to cause Upgrade Assistant to automati-
cally apply all upgrade steps without pausing for user inter-
action. In the case of solution files with many projects, this
can be combined with the --entry-point option to specify
which project is the entry point when launching Upgrade
Assistant. The entry point option can be specified multiple
times or use wildcards to select multiple entry points.

Using Extensions
The .NET Upgrade Assistant includes first-class support for
extensions so that users can fine-tune its behavior to meet
their needs. Extensions can modify the behavior of exist-
ing upgrade steps or even add their own completely cus-
tom steps. There are a couple of ways to use extensions.
To quickly use an extension, the --extension option can be
used when running Upgrade Assistant to specify an exten-
sion to use. A more robust way to use extensions, though, is
through the Upgrade Assistant extensions command.

Over time, the list of code fixes that are applied by the
source code update step will grow. In the case of the eShop
sample, the source update rules that are applied are:

•	 Removing imports for System.Web namespaces
•	 Replacing common ASP.NET Web types (like Controller

or ActionResult) with equivalents that exist in ASP.NET
Core in different namespaces

•	 Replacing HttpContext.Current usage with HttpCon-
textHelper.Current, as discussed in the Update Razor
Views section of this article

•	 Updating or removing ASP.NET attributes such as [Au-
thorize] (which exists in a different namespace) or
[AllowHtml] (which is no longer needed and can be
removed)

Each of the code fixes is applied in turn and logs which
files were updated so that users understand what code was
changed in their project, as shown in Figure 5.

Finally, after all code fixes are applied, the source update
step notifies the user (via warnings in the console) if there
are any other code patterns found that couldn’t be auto-
matically addressed and require manual fix-up. In the case
of eShop, after applying all the code fixes from this step,
Upgrade Assistant informs you that manual changes are
needed to address the project’s use of bundling APIs in
BundleConfig.cs that aren’t supported on ASP.NET Core.

Manual updates are still needed
to get the project building and
working, but many of the initial
changes have been taken care of
automatically by Upgrade Assistant.

After applying the source update step, upgrade of the eShop
project is complete. There are still manual updates needed
to get the project building and working, but many of the ini-
tial changes have been taken care of automatically by Up-
grade Assistant and you’ve been alerted to some of the other
changes that will be needed as follow-ups. Upgrade Assistant

Figure 4: Source update steps for the eShop project

Figure 5: Output from the source updater step details changes made

Bring Your .NET Apps Forward with the .NET Upgrade Assistant

www.codemag.com18 codemag.com

show up in the Upgrade Assistants list of steps when
the tool executes.

•	 Roslyn analyzers and code fix providers. Upgrade As-
sistant’s source updater step uses these types to auto-
matically address source-level changes (if both an an-
alyzer and code fix provider are available) or to alert
the user to a change that needs to be made manually
(if only an analyzer is available).

•	 Implementations of Microsoft.DotNet.UpgradeAs-
sistant.IUpdater<T> to be used by Upgrade Assistant
steps, like the config updater or Razor file updater to
modify their respective file types.

By implementing these types and creating associated con-
figuration, extensions can either customize the behavior of
the existing upgrade steps or add their own new ones.

Road Map
As Upgrade Assistant continues to evolve, additional features
will be added based on customer input. Be sure to provide
feedback through the GitHub project (https://github.com/
dotnet/upgrade-assistant/issues) to weigh in on the features
you’d like to see added. Once you’ve tested the tool out, you
can also provide feedback directly to the Upgrade Assistant
team through a survey at https://aka.ms/DotNetUASurvey.

Some of the areas the Upgrade Assistant team is already
exploring for future investment are listed in the tool’s road-
map document (https://github.com/dotnet/upgrade-assis-
tant/blob/main/docs/roadmap.md). These areas include
possible investments in:

•	 Additional analyzers and code fix providers to expand
the set of source updates the tool can make

•	 Support for multi-targeting
•	 Support for migrating GC configuration
•	 Additional reporting options
•	 Support for WebForms projects
•	 Graphical user interface on top of the existing CLI
•	 Support for applying some upgrade steps (such as

NuGet cleanup) to an entire solution at once rather
than one project at a time

Wrap-Up
Upgrading projects from .NET Framework to .NET 6 is a non-
trivial task and one that will probably never be completely
automated. Hopefully the .NET Upgrade Assistant will make
the process more approachable by providing guidance to us-
ers and by automating away some of the simpler but more
numerous changes required so that developers can focus on
the more interesting and challenging parts of the upgrade.

For additional information about the .NET Upgrade Assistant,
you can look at the project’s GitHub repository (https://
github.com/dotnet/upgrade-assistant) and docs (https://
docs.microsoft.com/dotnet/core/porting/upgrade-assis-
tant-overview). Additional guidance on upgrading, in gen-
eral, is available both in documentation (https://docs.micro-
soft.com/dotnet/core/porting) and in an ebook focused on
ASP.NET to ASP.NET Core upgrades (https://docs.microsoft.
com/dotnet/architecture/porting-existing-aspnet-apps).

The extensions command allows users to install extensions for
use with specific projects. Running upgrade-assistant exten-
sions add <name> installs the specified extension for use when
Upgrade Assistant is run in the current directory. Extensions in-
stalled using this command are installed as NuGet packages. By
default, Upgrade Assistant queries NuGet.org for the latest ver-
sion of extension packages that are added. Optional --source
and --version arguments can be used to indicate the NuGet
source to use and the specific version of an extension to install.

Installed extensions are stored in a JSON file (upgrade-
assistant.json) that can be checked into source control
to ensure that everyone working with the project is using
the same extensions (and the same versions of extensions)
when running Upgrade Assistant.

Other useful extensions commands include:

•	 Upgrade-assistant extensions list: Lists currently in-
stalled extensions

•	 Upgrade-assistant remove <name>: Uninstalls the
specified extension

•	 Upgrade-assistant update <name>: Updates the
specified extension to the latest version

•	 Upgrade-assistant restore: Downloads all extensions
listed in upgrade-assistant.json, which is useful if
the extensions were originally installed on a differ-
ent computer and the upgrade-assistant.json file has
been shared.

Authoring Extensions
Besides using the .NET Upgrade Assistant’s default steps or
extensions published by others, developers and organiza-
tions may want to create their own Upgrade Assistant exten-
sions to modify the tool’s behavior.

A deep dive into how to create Upgrade Assistant exten-
sions is out of scope for this article, but all the details are
available at https://github.com/dotnet/upgrade-assistant/
blob/main/docs/extensibility.md and several sample exten-
sions can be found at https://github.com/dotnet/upgrade-
assistant/tree/main/samples.

At a high level, the key components of an extension are:

•	 A manifest file (called ExtensionManifest.json) that lists all
the files and config settings that comprise the extension.

•	 Assemblies (called extension service providers) that
contain types implementing the Microsoft.DotNet.
UpgradeAssistant.Extensions.IExtensionServicePro-
vider interface. This interface provides a mechanism
for extensions to register types with Upgrade Assis-
tant’s dependency injection container.

•	 The IExtensionServiceProvider interface and many
other Upgrade Assistant APIs useful to extension
authors are available in the Microsoft.DotNet.Up-
gradeAssistant.Abstractions NuGet package.

All services in Upgrade Assistant are resolved from its de-
pendency injection container, so by using an extension ser-
vice provider to register additional types, you can change
the tool’s behavior. Common types to register in the DI con-
tainer include:

•	 Types derived from Microsoft.DotNet.UpgradeAssis-
tant.UpgradeStep. These are the upgrade steps that

� Mike Rousos
�

Bring Your .NET Apps Forward with the .NET Upgrade Assistant

www.codemag.comcodemag.com 19

ONLINE QUICK ID 2111042

Visual Studio 2022 Productivity

Mika Dumont
@mika_dumont

Mika is a Program Manager
at Microsoft on the .NET
and Visual Studio team.
Her main focus is helping
.NET developers be more
productive in Visual Studio.

Visual Studio 2022 Productivity
To improve your developing productivity, Microsoft made Visual Studio 2022 more intelligent, more approachable, and
lighter weight. For the first time ever, Visual Studio is 64-bit. With enhanced speed, combined with AI coding assistance, ever
expanding productivity tools, and streamlining team collaboration, this new version of Visual Studio has you set up for success.

In this article, I’ll cover my favorite productivity enhance-
ments in Visual Studio 2022 that will make your workflow
more efficient.

Performance
Improving performance is always a top customer request.
In Visual Studio 2022, Microsoft made significant progress,
including making Visual Studio 64-bit and reducing the time
it takes for several operations. Here are some of the im-
mediate benefits:

•	 Faster search
•	 Faster incremental build
•	 Faster test execution
•	 Faster frameworks

Now that it’s a 64-bit application, the devenv.exe process is
no longer limited to ~4 GB of memory. For users with large
or complex solutions, this is a game changer. You’ll have
more memory and avoid out of memory exceptions for ev-
ery aspect of daily development: opening, editing, search-
ing, running, and debugging. This move to 64-bit doesn’t
change the types or bitness of the applications you develop
with Visual Studio. You can still build 32-bit apps with 64-bit
Visual Studio with all the performance benefits of working
with more memory available.

Faster Search
A performant search is key to a fast and productive devel-
oper inner loop. In Visual Studio 2022, searching for file
names is faster. You’ll see improvements, especially after
the initial solution load, because Visual Studio can preserve
more context in between opening and closing a solution.
Go To (Ctrl+T), Visual Studio Search (Ctrl+Q), and Find in
Files (Ctrl+Shift+F) have improved significantly. Addition-
ally, Solution Explorer search is now 50% faster when tested
on popular open-source repositories such as Orchard Core.

Faster Incremental Build
Incremental build allows you to avoid the extra overhead of re-
building components that are still up to date despite all recent
changes. This saves a massive amount of time and resources, so
it’s important that this system is as accurate and performant
as possible. Microsoft improved the “Fast up to date” check to
better detect file changes for .NET and .NET Core projects. This
performance improvement speeds up any feature that depends
on build execution like debugging and unit testing.

Faster Test Execution
With the introduction of Hot Reload, Microsoft has reduced
the time it takes to execute tests in C# projects targeting
.NET 6.0 or later. Additionally, by further optimizing Live
Unit Testing start up processes, the time to start up Live
Unit Testing is reduced. A 30% improvement was observed
when tested on popular open-source repositories, such as
Orchard Core.

Faster Frameworks
I would be remiss to cover Visual Studio performance with-
out mentioning the amazing gains seen at the platform
level with each new framework version. particularly regard-
ing .NET 5.0 and .NET 6.0. Any app or developer tool using
the latest major frameworks is going to instantly see per-
formance gains in even the most fundamental operations.
There’s a multiplicative effect with any performance opti-
mizations in the JIT (just-in-time compiler), the garbage
collector, threading, types in the System namespace, etc.
Visual Studio is one of the developer tools that gets to reap
the rewards as features update to target the latest versions.

If you want an in-depth look at the .NET performance im-
provements (including benchmarks down to the nanosec-
ond!), check out https://aka.ms/dotnetperf6.

Personal and Team Productivity
One of the first things developers do in Visual Studio is per-
sonalize it. Making your environment comfortable to work
in is an essential part of getting into the zone. Both cus-
tomizing your IDE and syncing your personal settings across
devices have some new capabilities:

•	 Organize your workspace using color
•	 Match the Visual Studio theme to the Windows theme
•	 Improved theming flexibility

Visual Studio now has the capability to organize tabs by color,
so you don’t have to search for an open file. Your active docu-
ment can be bolded so it’s easier to find. You can also cus-
tomize your tab width and appearance to suit your workflow.
To find the new document management settings, navigate to
Tools > Options > Tabs & Windows, as shown in Figure 1.

When there’s little background light, shifting your theme to
Night mode could improve reading. You now have the capa-

Figure 1: Personalize tabs

www.codemag.comcodemag.com20 Visual Studio 2022 Productivity

community of theme authors to convert a selection of Visual
Studio Code themes to work in Visual Studio. To install a custom
theme, visit the Visual Studio Marketplace, as shown in Figure 3.

Hot Reload
For many developers, one of the most time-consuming opera-
tions during the development and debugging phase is rebuild-
ing and restarting the app in order to test a code change or
complete a behavior that isn’t yet implemented. The new Hot

bility to match your Visual Studio theme to your Windows
theme. For example, if you have a Dark theme enabled for
Windows, you’ll see a default Dark theme for Visual Studio
2022. You can enable this in Tools > Options > Environment
> General and from the Color Theme drop-down, select Use
system setting, as shown in Figure 2.

The journey is to expand the theming capabilities and make Vi-
sual Studio more inclusive. Microsoft has teamed up with the

Figure 2: Use system-setting color themes

Figure 3: More themes

Figure 4: Hot Reload button
and menu options

www.codemag.comcodemag.com 21

•	 Add missing Using directives, as shown in Figure 5.
•	 Renaming support, as shown in Figure 6.
•	 Razor syntax highlighting
•	 Improved colorization options

Razor syntax highlighting has also been updated to improve
contrast, general look and feel, and usability. For example,
you may notice that the C# background highlighting has been
removed. This update improves contrast and makes it clearer
when something has been selected or highlighted. The col-
orization options in Tools > Options > Fonts and Colors has
been updated to be more descriptive and customizable.

Navigation and Code Exploration
Navigating and exploring code is an integral part of devel-
oper productivity. In Visual Studio 2022, Value Tracking has
been added, allowing you to perform data flow analysis on
your code to help you quickly determine how certain values
might have passed at a given point. Value Tracking is avail-
able on any member in the context (right-click) menu by
selecting the Track Value Source command. The Track Value
Source command opens the Value Tracking window allowing
you to analyze results, as shown in Figure 7.

It’s also easier for you to visually inspect and navigate the
inheritance chain with the new Inheritance Margin icons, as
shown in Figure 8. The Inheritance Margin icons are located
in the margins representing your code’s implementations
and overrides. Clicking on the Inheritance Margin icon dis-
plays inheritance options that you can select to navigate to.
If you find Inheritance Margin distracting, you can disable
them in Tools > Options > Text Editor > [C# or Basic] >
Advanced and deselect Show inheritance margin.

Reload experience in Visual Studio 2022 reduces the number of
restarts required by allowing you to modify your .NET applica-
tion’s source code while it’s running. Unlike the existing Edit
and Continue experience, with Hot Reload, you don’t need to
hit a breakpoint or pause your application to apply changes.

To use Hot Reload, simply make a supported change and use
the new “Hot Reload” button to apply the changes to your
running app. The next time the code is executed, the updated
logic will be used, reducing the need for many restart cycles.

An option was also added for developers who prefer to use the
Save operation to apply Hot Reload changes without the need
to explicitly click the Hot Reload button. You can do so by
expanding the Hot Reload menu and opting into this behavior
by selecting “Hot Reload on File Save,” as shown in Figure 4.

Hot Reload is available for developers who build apps pow-
ered by both .NET Framework and .NET Core for many types
of apps, such as WPF, WinUI 3, Windows Forms, ASP.NET Core
(for code-behind code changes), Console Apps, and even
project types such as Azure Functions. Anywhere a modern
supported version of .NET is available, Hot Reload is pro-
vided while under the debugger.

In addition, those developers who upgrade to .NET 6 get
additional benefits, including powerful new features only
available to the latest version of .NET, such as:

•	 Support for using Hot Reload when not using the de-
bugger, such as launching your app in Visual Studio
through the CTRL-F5 mechanism or using the .NET CLI
dotnet watch tool

•	 Support for using Hot Reload with Razor files in both
ASP.NET Core and Blazor projects

•	 Support for using Hot Reload with .NET MAUI apps
across WinUI, iOS, and Android runtimes for both reg-
ular XAML-only projects and hybrid Blazor apps.

Hot Reload also works alongside other debugger experienc-
es. This includes Edit and Continue for editing code during
a breakpoint, as well as features that focus on the look and
feel of an app while also changing code, such as XAML Hot
Reload and CSS Hot Reload.

Finally, please be aware that some edits are not supported
and when this situation is encountered, a “rude edit” dialog
is displayed. Restarting the app at this point will be needed
to apply your changes so you can move forward. This is just
the start of the journey and in future releases of Visual Stu-
dio and .NET, Microsoft will be working to reduce the type of
edits that aren’t supported.

The New Razor Editor
In Visual Studio 2022, a new Razor editor was added for
local development with MVC, Razor Pages, and Blazor. The
new Razor editor has a ton of new tooling support surpass-
ing the functionality of the old Razor editor. For instance,
there’s now a ton of C# code fixes and refactorings, im-
proved syntax coloring, Go to Definition support, and item
filtering in the IntelliSense completion list.

The design of the new Razor editor makes it much easier
to enable C# code fixes and refactorings, and many more
will be enabled in future releases. Here are just a few of my
favorite code fixes and refactorings available in Razor files.

Figure 5: Add missing Using directives

Figure 6: Renaming support for Blazor components

Figure 7: Value Tracking window showing changes to the
“day” variable

Figure 8: Inheritance Margin

Visual Studio 2022 Productivity

www.codemag.comcodemag.com

Figure 10: Convert namespace to the new C# 10.0 file-scoped namespace

Figure 9: Inline hints for C# and Visual Basic files

Figure 11: Simplify LINQ expressions to remove the unnecessary call to the Enumerable for
the .Where() method to help improve performance and readability

Figure 13: Sync Namespaces

A highly anticipated feature is inline hints. Inline hints display
inline parameter name hints for literals, casted literals, and
object instantiations prior to each argument in function calls,
and inline type hints for variables with inferred types, lambda
parameter types, and implicit object creation. To enable and
customize inline hints go to Tools > Options > Text Editor > [C#
or Basic] > Advanced and select Inline Hints. The inline hints
then appear in C# or Visual Basic files, as shown in Figure 9.

Code Fixes and Refactorings
Visual Studio provides hints to help you maintain and modify
your code in the form of code fixes and refactorings. These ap-
pear as lightbulbs and screwdrivers next to your code or in the
margin. The hints can resolve warnings and errors as well as
provide suggestions. You can open these suggestions by typing
(Ctrl+.) or by clicking on the lightbulb or screwdriver icons.

You can check out the most popular refactorings that are
built into Visual Studio at https://aka.ms/refactor. A bunch
of new code fixes and refactorings have been added to Vi-
sual Studio 2022. Here are some of my favorites:

•	 Convert namespace to the new C# 10.0 file-scoped
namespace, as shown in Figure 10.

•	 For improved performance and readability, simplify
LINQ expressions to remove the unnecessary call to
the Enumerable for the .Where() method, as shown
in Figure 11.

•	 Extract base class
•	 Add explicit cast
•	 Extract local function
•	 Inline method
•	 Convert between verbatim string and regular string
•	 Generate comparison operators
•	 Use pattern matching
•	 Simplify conditional expression

You can also invoke code fixes and refactorings from the Solu-
tion Explorer (right-click) menu. One of our highly anticipat-
ed refactorings is Remove Unused References, which allows
you to clean up project references and NuGet packages that
have no usage. The Remove Unused References command is
available in the (right-click) menu of a project name or de-
pendencies node in Solution Explorer, as shown in Figure 12.
Selecting Remove Unused References opens a dialog where
you can view all references that will be removed, with an op-
tion to preserve the ones that you want to keep.

Another refactoring available in the Solution Explorer (right-
click) menu is Sync Namespaces. Sync Namespaces allows you
to synchronize namespaces with your folder structure. The
Sync Namespaces command is available in the (right-click)
menu of a project or folder in Solution Explorer, as shown in
Figure 13. Selecting Sync Namespaces automatically synchro-
nizes namespaces to match your folder structure.

.NET Analyzers
Code fixes and refactorings are powered by analyzers. An
analyzer is a tool that inspects your code and reports di-
agnostics and errors. The .NET Compiler Platform (Roslyn)
has several recommended analyzers that give you verbose
feedback on code quality and code style. Starting in .NET
5.0, these analyzers are included with the .NET SDK and
are enabled, by default, for projects that target .NET 5.0 or
later. If you’d like to learn more about .NET analyzers, visit
https://aka.ms/dotnetanalyzers.

Figure 12: Remove Unused References window

22 Visual Studio 2022 Productivity

www.codemag.comcodemag.com

If you want a specific analyzer that you don’t see included
in the .NET SDK, you can create your own analyzer with the
open source Roslyn APIs. Creating your own analyzer allows
you to create a diagnostic and code fix for a scenario that’s
special to your code base. You can then share it with your
team or anyone who depends on your library. For an ex-
ample tutorial, visit https://aka.ms/diy-analyzer.

Code Style Enforcement
Enforcing consistent code style is important as developer
teams and their code bases grow. Visual Studio allows you to
configure analyzers to apply your preferred code style rules
and customize the severity at which they appear in the edi-
tor, as shown in Figure 14. You can easily change your code
style severity to display the rule violation as a suggestion,
warning, or error in the editor.

You can configure code styles in the code style pages in
Tools > Options or with EditorConfig. EditorConfig files help
to keep your code consistent by defining code styles and for-
mats. These files can live with your code in its repository and
use the same source control. This way, the style guidance is
the same for everyone on your team who clones from that
repository. With the EditorConfig rules and syntax, you can
enable or disable individual .NET coding conventions and
configure the severity to which you want each rule enforced.

To add an EditorConfig file to a project or solution, right-
click on the project or solution name within the Solution
Explorer. Select Add New Item. In the Add New Item dialog,
search for EditorConfig. Select the .NET EditorConfig tem-
plate to add an EditorConfig file prepopulated with default
options. A .editorconfig file appears in Solution Explorer,
and it opens in the editor, as shown in Figure 15.

You can also add an EditorConfig file based on the code style
settings you’ve chosen in the Visual Studio Options dialog. The
options dialog is available at Tools > Options > Text Editor > [C#
or Basic] > Code Style > General. Click Generate .editorconfig
file from settings to automatically generate a coding style .edi-
torconfig file based on the settings on this Options page.

If violations are found, they’re reported in the code editor
(as a squiggle under the offending code) and in the Error
List window, as shown in Figure 16.

The .NET 6.0 SDK has a new command called dotnet format that
you can run in the command line in-order to apply code styles
from an EditorConfig file or from the Code Style options page.
To use dotnet format, make sure your project targets the .NET
6.0 SDK or later. Next, open the Visual Studio integrated termi-
nal by pressing Ctrl+` (that’s an apostrophe). You can then run
dotnet format to apply code style preferences across your en-
tire solution, as shown in Figure 17. If you’d like to learn more
about dotnet format, visit https://aka.ms/dotnet-format.

IntelliSense Completion
IntelliSense is a code-completion aid that includes a num-
ber of features, including List Members, Parameter Info,
Quick Info, and Complete Word. These features help you to
learn more about the code you’re using, keep track of the
parameters you’re typing, and add calls to properties and
methods with only a few keystrokes.

IntelliSense completion was recently added in DateTime and
TimeSpan string literals for both C# and Visual Basic, as
shown in Figure 18. Place your cursor inside the DateTime
or TimeSpan string literal and press Ctrl + Space to open the
completion list. You will then see completion options and an
explanation as to what each character means.

Similarly, there’s IntelliSense completion for regex strings,
as shown in Figure 19. These completions also include an
in-line description of what the suggestion does.

IntelliCode Context-Aware Completion
IntelliCode provides AI-assisted IntelliSense in having sug-
gestions appear at the top of the completion list with a star
icon next to them, as shown in Figure 20.

The completion list suggests the most likely correct API for
a developer to use rather than presenting a simple alpha-
betical list of members and arguments. IntelliCode uses the
developer’s current code context as well as patterns based

Figure 14: Configure code style severity for the new C# 10.0 file-scoped namespace

Figure 15: EditorConfig helps enforce code style

23Visual Studio 2022 Productivity

www.codemag.comcodemag.com

on thousands of highly rated, open-source C# projects on
GitHub. The results form a model that predicts the most
likely and most relevant API calls.

In addition to providing AI-assisted IntelliSense completion,
IntelliCode also provides context-aware inline completion.
Inline completion predicts the next line of code and presents
it as an inline suggestion to the right of your cursor, as shown
in Figure 21. You can either accept the completion by press-
ing tab-tab; or keep typing to adjust the completion further.

IntelliCode can detect the manual code change that you’re
making and suggest an action to apply to your workflow.
This is currently supported for two scenarios: generating a
constructor and adding a new parameter to a constructor.

IntelliCode can also suggest edits to assist you while you’re
making similar changes in multiple places in your code. It
tracks edits locally and detects repetition. It then offers to
apply those same edits in other places where they might ap-
ply, as shown in Figure 23. For example, if a user has missed
locations where a refactoring could be applied, IntelliCode
suggestions help find those locations and fixes them.

Debugging
Visual Studio 2022 has added and improved upon features
that enhance your productivity while debugging. The Force
Run to cursor command on the right-click context menu
(shown in Figure 24) lets you run directly to your cursor loca-
tion in the source code by ignoring any breakpoints and any
first-chance exception break conditions that may occur. Any
breakpoints and first-chance exceptions encountered during
execution are temporarily disabled.

When you’re in an active debug session, a green glyph with the
tooltip Force run execution to here appears next to the line
of code where your mouse hovers (as shown in Figure 25),
along with withholding a Shift key.

The breakpoint experience has also been improved with new
UI gestures and functionalities to streamline the breakpoint
debugging. The new temporary breakpoint lets you break the
code only once. When debugging, Visual Studio debugger only
pauses the application once for this breakpoint and deletes
it automatically after it’s been hit (as shown in Figure 26).

You can convert any breakpoint to a temporary breakpoint
by enabling the “Remove breakpoint once hit” checkbox
from the settings window or setting a new temporary break-
point (as shown in Figure 27) with an advance breakpoint
context menu on the right-click in the breakpoint gutter.

You can now also drag breakpoints from one location to an-
other. This works for the advanced breakpoint as long as the
actions/condition variables are within the Context.

There are plenty of new improvements to the Attach to Process
dialog, shown in Figure 28, so you can identify the process that
you want to attach much easier. With the new Command Line
column and the app pool details in the Title column, you don’t
have to go back and forth with Task Manager to get the PID for
those identical-looking processes. The Show as parent/child
processes checkbox will give you a hierarchical parent-child
process list view in attach to the process dialog itself.

The Select any window from desktop option lets you pick
any running window from the desktop and attaches it to its
associated process for debugging.

Figure 16: Error List shows warnings present in your code

Figure 17: Run dotnet format in Visual Studio’s integrated terminal to apply code style
preferences to a solution

Figure 18:
IntelliSense

completion in
DateTime and

TimeSpan string
literals for both C#

and Visual Basic

Figure 19: IntelliSense completion for regex strings

Figure 20: Starred IntelliCode suggestions in the IntelliSense completion list

24 Visual Studio 2022 Productivity

www.codemag.comcodemag.com

If you’re working with applications that have multiple ex-
ternal libraries, and which have their components published
to Source Servers, e.g., Newtonsoft.Json, CsvHelper, xUnit.
net, etc., the new External Sources node in Solution Explor-
er (Figure 29) will give you an easier way to browse those
sources and debug through them if needed. This node ap-
pears while debugging in the Solution Explorer and shows
sources for managed modules with symbols loaded contain-
ing Source Link or Source Server information.

Remote Testing in Visual Studio
Run and debug tests on remote environments such as
Linux containers, WSL, and over SSH connections from
the comfort of Visual Studio. This idea of “remote test-
ing” is now supported from the Visual Studio Test Explorer.
Being able to target and debug Linux environments is crucial
for cross-platform scenarios. Now you don’t have to wait for
feedback from CI to know how your code behaves on Linux or
any other target OS. You can connect the Test Explorer direct-
ly to a remote environment, run tests there, view feedback
in the Test Explorer, and even debug issues on the remote
computer as they arise. Now, even testing on different op-
erating systems can be a part of your developer inner loop!

For now, the feature is “bring your own compute.” This means
that you entirely leave the provisioning of the remote environ-
ments up to the user. This includes installing the necessary de-
pendencies that your tests require in your target environment.
For instance, if you want your tests targeting .NET 6.0 to run
in a Linux container, you need to make sure that the container
has .NET 6.0 installed via your DockerFile. Someday Microsoft
might create an install experience that enables smooth acqui-

Figure 21: Inline completions with IntelliCode

Figure 22: Suggested actions with IntelliCode

Figure 23: Suggested repeated edits with IntelliCode

Figure 24: Force Run to Cursor command Figure 25: Force Run execution

Figure 26: Remove Temporary Breakpoint Figure 27: Add Temporary Breakpoint

sition of any of your test dependencies, but for now, the bulk of
the provisioning of the environment is up to the user’s speci-
fication. To understand the full setup details, visit the remote
testing documentation at https://aka.ms/remotetesting.

Remote environments are specified using testenvironments.
json in the root of your solution. An example testenviron-
ment.json for a locally running Linux container would look
something like this Figure 30.

25Visual Studio 2022 Productivity

www.codemag.comcodemag.com

See the remote testing docs for full descriptions of the tes-
tenvironment.json schema and examples for containers,
WSL, and SSH connections https://aka.ms/remotetesting.

Once the testenvironment.json is present, the Test Explorer loads
a drop-down of remote environments, as shown in Figure 31.

When you select a remote environment, the Test Explorer
begins discovering tests in the new environment. Once the
tests are loaded, you can use the Test Explorer as you nor-
mally would for running, viewing output, grouping tests,
and debugging your tests all with test results data streamed
from the remote connection.

Let Visual Studio bring modern, cross-platform development
to your inner loop with remote testing.

GitHub and Azure DevOps
In Visual Studio 2022, Microsoft made remote development
easier than ever with better GitHub integration. The Git tool-
ing in Visual Studio 2022 makes it easy to track changes you
make to your code over time so you can both track your prog-
ress and revert to specific versions. Whether you’re working

Figure 28: Attach to Process Dialog Improvements

Figure 29: External Sources node in Solution Explorer

Figure 30: The testenvironment.json for local Linux container

Figure 31: Remote testing drop-down in the Test Explorer

Figure 32: Linux test now passes in the Test Explorer Figure 33: Create a Git repository

26 Visual Studio 2022 Productivity

www.codemag.comcodemag.com

alone or working with a team of developers, the Git tooling in
Visual Studio 2022 can be very useful to you and your team.
GitHub offers free and secured cloud code storage where you
can store your code and access it from any device, anywhere.
Visual Studio 2022 comes with first-class GitHub and Azure

Figure 34: Git in Visual Studio 2022

DevOps functionality that makes it easy to use source control
to manage your code and collaborate with others. Get started
by adding your code to GitHub or Azure DevOps with the Cre-
ate a Git repository dialog box, as shown in Figure 33. To do
so, choose Git > Create a Git repository from the menu bar.

Figure 35: Comparing changes with Git

Figure 36: Managing your Git repository branches

27Visual Studio 2022 Productivity

www.codemag.comcodemag.com

Streamlined and Intuitive Git Experience
Visual Studio provides discoverable and intuitive Git features
focused on maximizing the productivity of your daily work-
flow. You no longer need to move away from your code to
commit your changes. These features include a top-level Git
menu, a Git Changes window, and a Git focused Status bar.
Git integrates with Visual Studio as a holistic experience; for
example, both Solution Explorer and the Code Editor have a
first-class Git integration, as you can see in Figure 34.

Repository Management and Collaboration
Visual Studio 2022 includes powerful multi repository brows-
ing and collaboration features that eliminate the need to use
other tools. Stay up to date with your repository by keep-
ing an eye on your incoming/outgoing commits, previewing
branches, and comparing commits (as shown in Figure 35).

And manage your repository by managing your branches
(Figure 36) and squashing and cherry-picking commits.

Figure 37: Git conflict resolution

Figure 38: Git conflicts window

The Git integration in Visual Studio promotes trust and confi-
dence by providing contextual assistance and prompting you
to do the right thing. It also includes a conflict resolution
experience (Figure 37) that can show/hide word differences
and navigate between conflicts and differences (Figure 38).

Get Involved
This is just a sneak peak of the latest productivity features in
Visual Studio 2022. To tap into more productivity features,
you can visit the Visual Studio blog site https://devblogs.mi-
crosoft.com/visualstudio/. To install Visual Studio 2022, you
can visit https://visualstudio.microsoft.com/vs/preview/. As
always, let Microsoft know what you think by providing feed-
back on the Developer Community website https://aka.ms/
devcomm or using the Report a Problem tool in Visual Studio.

� Mika Dumont
�

Resources

Hot Reload: https://aka.ms/
dotnet-hotreload

Refactorings in Visual Studio
2022: https://aka.ms/refactor

Creating Roslyn analyzers:
http://aka.ms/diy-analyzer

High-quality code base using
.NET analyzers: https://aka.ms/
dotnetanalyzers

Tips and tricks on Visual Studio
Productivity: https://aka.ms/
vs-productivity

Git tooling in Visual Studio
2022: https://aka.ms/vsgitdocs

28 Visual Studio 2022 Productivity

www.codemag.com 29codemag.com

ONLINE QUICK ID 2111052

Essential C# 10.0: Making It Simpler
Now that C# is scheduled for an annual release, which generally occurs in November each year, it’s time to review the upcoming
targeted enhancements for C# vNext: C# 10.0. Although there aren’t any mind-blowing new constructs (it’s implausible
to introduce something like LINQ every year), there‘s a steady stream of improvements. If I were to summarize C# 10.0,

Mark Michaelis
mark.michaelis.net
@MarkMichaelis

Mark is founder of Intel-
liTect, where he serves as
its chief technical architect
and trainer. For more than
two decades, he’s been a
Microsoft MVP and a Micro-
soft Regional Director since
2007. He serves on several
Microsoft software design
review teams, including C#,
Microsoft Azure, Share-
Point, and Visual Studio
ALM. He speaks at devel-
oper conferences and has
written numerous books,
including his latest, due in
December 2019: “Essential
C# 8.0 (7th Edition)”.

it would be removing the unneeded ceremony—such as extra
curly braces or duplicate code—that doesn’t add value. This
synopsis shouldn’t imply that the changes are irrelevant. In
contrast, I think many of these changes are so strong that they
will become the C# coding norm in the future. I suspect future
C# developers will tend to forget the old syntax. In other words,
several of these improvements are significant enough that you
will likely never go back to the old way unless you require back-
ward compatibility or need to code in an earlier version of C#.

File Scoped Namespace Declaration
(#UseAlways)
To begin, consider an ever so simple feature called file scoped
namespace declaration. Previously, namespace declaration
involved placing everything within that namespace between
curly brackets. With C# 10.0, you can declare the namespace
before all other declarations (classes, structs, and the like) and
not follow it with curly braces. As a result, the namespace au-
tomatically includes all the definitions that appear in the file.

For example, consider the following code snippet:

namespace EssentialCSharp10;

static class HelloWorld
{
 static void Main() { }
 // ...
}

// Additional namespace declarations are not
// allowed in the same file.
// namespace ScopedNamespaceDemo
// {
// }
// namespace AdditionalFileNamespace;

Here, the CSharp10 namespace is declared before any other
declarations: a file scoped namespace syntax requirement. Ad-
ditionally, a file scoped namespace declaration is an exclusive
namespace declaration. No other namespaces, either traditionally
curly-scoped or additional file-scoped, are allowed within the file.

Although not a significant change, I expect that I will always
use this 10.0 feature going forward. Not only is the statement
simpler without the curly braces, but it also means I no longer
need to indent other declarations within the namespace. For
this reason, I‘ve tagged it with #UseAlways in the title. In
addition, I think this feature warrants updating the C# cod-
ing guideline, assuming C# 10.0 or later: Do use file-based
namespace declarations.

Global Using Directive (#UseAlways)
My #UseAlways recommendation might be surprising be-
cause namespace declarations haven’t changed since C#

1.0, but C# 10.0 includes a second namespace-related
change: global namespaces directives.

Good programmers refactor ruthlessly! Why is it, then, that
C# forces us to re-declare a series of namespaces at the top
of every file? For example, most files include a using System
directive at the top. Similarly, a unit testing project virtu-
ally always imports the namespace for the target assembly
under test and the test framework namespace. Why is it
necessary to write the same using directive repeatedly for
each new file? Wouldn’t it make sense to write a single using
directive that applies globally through the project?

Of course, the answer is yes. For namespaces that you have
using directives throughout your project, you can now pro-
vide a global using directive that will import the namespace
throughout the project. The syntax requires the new global
contextual keyword to prefix a standard using directive, as
shown in the following snippet within an XUnit test project:

global using EssentialCSharp10;
global using System;
global using Xunit;

global using static System.Console;

You can place the above snippet anywhere within your code. By
convention, however, consider something like a GlobalUsings.cs
or Usings.cs file. Furthermore, once the global using directives
are in place, you can leverage them in all files within the project:

public class SampleUnitTest
{
 [Fact]
 public void Test()
 {
 // No using System needed.
 DateTime dateTime =
 DateTime.Now;

 // No using Xunit needed.
 Assert.True(
 dateTime <= DateTime.Now
);

 WriteLine("...");
 }
}

Note, global using directives include support for using stat-
ic. As a result, you can have a WriteLine() statement with
no “System.Console” qualifier. Global aliases using directive
syntax are also supported.

In addition to coding global using statements in C# explic-
itly, you can also declare them within MSBuild (as of 6.0.100-
rc.1). A Using element within your CSPROJ file for example

Essential C# 10.0: Making It Simpler

www.codemag.com30 codemag.com

Attributes
With a host of new parameter attributes introduced with
C# 8’s nullable-references, the lack of attribute support in
lambdas became even more noticeable. Fortunately, in C#
10, attributes on lambdas are now supported, including at-
tributes on the return type:

Func<string?, string[]?>? Func =
 [return: NotNullIfNotNull("cityState")]
 static (string? cityState) =>
 cityState?.Split(", ");

Note that in order to have attributes on the lambda, it’s also
necessary to surround the parameter list with parenthesis.
_ = [return: NotNullIfNotNull(“cityState”)] cityState => cit-
yState?.Split(“, “) is not allowed.

Explicit Return Type
If you’re in the habit of using implicit type declaration with
var, it’s not that uncommon that the compiler is unable to
figure out a method signature. Consider, for example, a
method that returns null if it fails to parse text to a nullable
integer:

var func = (string? text) =>
 int.TryParse(text, out number)?number:null;

The problem here is that both int? or object would be valid
returns. And it isn’t obvious which to use. Although it’s pos-
sible to cast the result, the syntax for casting large expres-
sion is cumbersome. A preferable alternative, and the one
available starting with C# 10.0, is to allow for declaring the
return type as part of the lambda syntax:

Func<string?, int?> func = int? (string? text) =>
 int.TryParse(text, out int number)?number:null;

The added bonus for those using var less habitually is that
the addition of the return type declaration enables quick
actions to convert a var to the explicit lambda type, as dem-
onstrated in the snippet above: Func<string?, int?>.

Note, lambdas declared with delegate { } syntax aren’t sup-
ported: Func<int> func = delegate int { return 42; } won
‘t compile.

Natural Function Types
Lastly, it’s possible to infer a natural delegate type for lambdas
and statements. Essentially, the compiler will do a “best fit” at-
tempt to determine the signature of the lambda expression or
statement and thereby allowing the programmer to avoid spec-
ifying redundant types when the compiler can infer the type.

Caller Expression Attribute
(#UsedRarely)
This feature has three different usage profiles. If you write
perfect code that never needs debugging or triage, this next
feature is probably useless for you. Alternatively, if you use
debug classes, logging classes, or unit test assertions, this
could be invaluable without you even knowing it exists. You
essentially reap the benefits of the feature without having
to make any adjustments to your code. If you’re a library
vendor where you provide validation or assertion logic, it’s
paramount that you use this feature where applicable. It will
significantly improve your API functionality.

(i.e., <Using Include=”Microsoft.VisualStudio.TestTools.Unit-
Testing” />) generates an ImpklicitNamespaceImports.cs file
that includes a corresponding global namespace declaration.
Furthermore, adding a static attribute (e.g., Static=”true”)
or an alias attribute, such as Alias=” UnitTesting,” generates
the corresponding static or alias directives. Furthermore,
the some of the target frameworks include implicit global
namespace directives. See https://docs.microsoft.com/en-
us/dotnet/core/project-sdk/msbuild-props#disableimplicitna
mespaceimports for a corresponding list. If, however, you pre-
fer that no such default global namespaces get generated, you
can turn them off with a ImplicitUsings element set to disable
or false. Here’s a sample PropertyGroup element from CSPROJ:

<PropertyGroup>
 <ImplicitUsings>disable</ImplicitUsings>
 <Using>EssentialCSharp10</Using>
 <Using>System</Using>
 <Using>Xunit</Using>
 <Using Static="true">System.Console</Using>
</PropertyGroup>

Note that this is not yet working with Visual Studio 2022
Preview 3.1.

You don’t want to convert all your using directives to global
using directives, or you’re likely to run into ambiguities in the
unqualified type names. However, I expect at least a few global
declarations in most projects—such as the default ones from
the target framework at a minimum, hence the #UseAlways tag.

Constant Interpolated Strings
(#UsedFrequently)
One feature that until now has no doubt irritated you is the
lack of a method to declare a constant interpolated string,
even though the value is entirely determinable from other
constants or compile-time determined values. C# 10 ad-
dresses this issue. Here are some examples to consider:

const string author =
 "Mother Theresa";
const string dontWorry =
 "Never worry about numbers.";
const string instead =
 "Help one person at a time and always " +
 "start with the person nearest you.";
const string quote =
 $"{ dontWorry } { instead } - { author }";

One case I particularly appreciate with constant interpola-
tion is leveraging the nameof operator within attributes, as
demonstrated in the following snippet:

[Obsolete($"Use {nameof(Thing2)} instead.")]
class Thing1 { }
class Thing2 { }

Prior to C# 10.0, the inability to use the nameof operator
within a constant string literal was undoubtedly a source of
consternation.

Lambda Improvements
C# 10.0 includes three improvements to lambda syntax sup-
port—both expressions and statements.

Essential C# 10.0: Making It Simpler

Melanie Spiller
Highlight

Melanie Spiller
Sticky Note
Bad break. Break after "city"

www.codemag.com 31codemag.com

sult is that the AssertNotNullOrEmpty() method now has both
the calculated value for the argument expression (in this case,
it’s value’s value, as well as the expression itself). Thereby,
when throwing the ArgumentException, not only can the mes-
sage identify what was wrong, “Argument cannot be null or
empty,” but it can provide the text for the “value” expression.

Notice that the CallerArgumentExpression attribute includes
a string parameter that identifies which parameter’s expres-
sion in the implementing method will be injected into the
CallerArgumentExpression’s parameter. In this case, because
“argument” is specified, the expression from the “argument”
parameter is injected into the value of argumentExpression.

The result is that you’re not limited to only using the Call-
erArgumentExpression on one parameter. You could, for ex-
ample, have an AssertAreEqual(expected, actual, [CallerAr
gumentExpression(“expected”)] string expectedExpression
= null!, [CallerArgumentExpression(“actual”)] string actu-
alExpression = null!) and then provide an exception that
shows the expressions, not just the end results.

There are a few coding guidelines to consider when imple-
menting a CallerArgumentExpression method:

•	 Do declare the caller argument expression parameter as
optional (using “=null!”) so that invoking the method
doesn’t require the caller to identify the expression ex-
plicitly. In addition, it allows the feature to be added to
existing APIs without the caller code changing.

•	 Consider declaring the caller argument expression
parameter as non-nullable and assign null with the
null-forgiveness operator (!). This allows the compiler
to specify the value by default and imply that it’s in-
tended not to be null if an explicit value is set.

Parenthetically, it’s unfortunate, but as of C# 10.0, you can’t use
the nameof operator to identify the parameter. For example,
CallerArgumentExpression(nameof(argument)) won’t work.
That’s because the argument parameter isn’t in scope at
the time the attribute is declared. However, such support is
under consideration post-C# 10.0 (see Support for method
parameter names in nameof(): https://github.com/dotnet/
csharplang/issues/373).

Record Structs (#UsedOccasionally)
C# 9.0 added support for records. At the time, all records
were reference types and potentially mutable. The advan-
tage of adding the record types is that they provided a con-
cise syntax for defining a new type with the primary pur-
pose of encapsulating data (with less emphasis on provid-
ing behavior or a service). Now, records of both types have
C# compiler-generated implementations of value equality,
non-destructive mutation, and built-in display formatting.

Record Structs Versus Record Classes
In C# 10.0, the record feature was extended to allow for record
value types (record structs) and record reference types (record
classes). For example, consider the Angle declaration shown here:

record struct Angle(
 double Degrees, double Minutes, int Seconds)
{
 // By default, primary constructor
 // parameters are generated as read-write

Working with Caller Attribute Methods
Imagine a function that validates a string parameter – veri-
fying that it isn’t null or empty. You could leverage such a
function in a property as follows:

using static EssentialCSharp10.Tests.Verify;

class Person
{
 public string Name
 {
 get => _Name ?? "";
 set => _Name = AssertNotNullOrEmpty(value);
 }
 private string? _Name;
}

There’s no C# 10.0-specific feature visible in this code snippet.
Name is a non-nullable property with an assert method that throws
an exception if the value is null or empty. So, what’s the feature?

The difference shows up at runtime. In this case, when the
value is null or empty, the AssertNotNullOrEmpty() method
throws an ArgumentNull exception whose message includes
the argument expression, “value.” And, if method invoca-
tion was AssertNotNullOrEmpty(“${firstName}{lastName}”),
then the ArgumentNull exception message would include the
exact text: “${firstName}{lastName}”, because that was the
argument expression specified when calling the method.

Logging is another area where this feature would prove very
helpful. Rather than calling Logger.LogExpression($”Math.
Sqrt(number) == { Math.Sqrt(number) }” you could instead
call Logger.LogExpression(Math.Sqrt(number)) and have the
Log() method include both the value and the expression in the
output message.

Implementing Caller Attribute Methods
One of the big advantages of this Caller Attribute Method is
added functionality without the caller knowing or making any
source code changes. When you’re implementing an assert,
logging, or debug type method, you need to understand how
to declare and leverage the feature. Here’s a listing demon-
strating the AssertNotNullOrEmpty() method implementation:

public static string AssertNotNullOrEmpty(
 string? argument,
 [CallerArgumentExpression("argument")]
 string argumentExpression = null!)
{
 if (string.IsNullOrEmpty(argument))
 {
 throw new ArgumentException(
 "Argument cannot be null or empty.",
 argumentExpression);
 }
 return argument;
}

The first thing to note is the CallerArgumentExpression attri-
bute decorating the argumentExpression parameter. By adding
this attribute, the C# compiler injects the expression speci-
fied as the argument into the argumentExpression. In other
words, although the caller statement was coded as _Name =
AssertNotNullOrEmpty(value), the C# compiler morphs the call
into _Name = AssertNotNullOrEmpty(value, “value”). The re-

Essential C# 10.0: Making It Simpler

www.codemag.com32 codemag.com

generated at compile time. After all, perhaps these methods are
the key feature justifying the record data type. Also, like record
classes, records structs include a default implementation for To-
String() that provides a formatted output of the property values.
(The ToString() output for an instantiated Angle, for example,
returns “Angle { Degrees = 30, Minutes = 18, Seconds = 0 }”).
In addition, record structs include a deconstruct method that al-
lows an instance of the type to convert into a set of variables
corresponding to the primary constructor: i.e., (int degrees, int
minutes, int seconds) = new Angle(30, 18,42). One last feature
that both record types have in common is the with operator. It
enables cloning the record into a new instance, optionally with
modification on selected properties. Here’s an example:

public static Angle operator +(
 Angle first, Angle second)
{
 (int degrees, int minutes, int seconds) = (
 (first.Degrees + second.Degrees),
 (first.Minutes + second.Minutes),
 (first.Seconds + second.Seconds));

 return first with
 {
 Seconds = seconds % 60,
 Minutes = (minutes +
 (int)(seconds / 60)) % 60,
 Degrees =
 (int)(degrees +
 (int)((minutes
 + (int)(seconds / 60)) / 60)
) % 360
 };
}

And, as a bonus, with support was added to structs (not
only record structs) in C# 10.0.

Unlike record classes, record structs always derive from Sys-
tem.ValueType because they’re .NET value types and there-
fore no additional inheritance is supported. In addition,
record structs can be qualified with the readonly keyword
(readonly record struct Angle {}), thus rendering them im-
mutable once the type is fully instantiated. Given the re-
adonly modifier, the compiler verifies that no fields (includ-
ing automated property-backing fields) are modified once
object initialization is complete. As demonstrated with the
Seconds primary constructor parameter, another difference
with record structs is that you can override the primary con-
structor behavior to generate fields rather than properties.

Parenthetically, you can also now declare a record reference
type with the class keyword (using simple record <Type-
Name> is still allowed), thus providing symmetry between
the two types of record declaration:

record class FingerPrint(
 string CreatedBy, string? ModifiedBy = null)
 {}

Note: The readonly record modifier isn’t allowed with record
classes at this time.

Mutable Record Structs
One thing to be wary of is that, unlike a record class, record
struct primary constructor parameters are read/write by de-

 // properties:
 // public double Degrees {get; set;}

 // You can override the primary
 // constructor parameter implementation
 // Including making them read-only
 // (no setter) or init only.
 public double Minutes {
 get; init; } = Minutes;

 // Primary constructor parameters can be
 // overridden to be fields
 public int Seconds = Seconds;
}

Declaring the record as a value type involves adding the
struct keyword between the contextual keyword record and
the data type name. Like record classes, you can also declare
a primary constructor immediately following the data type
name. This declaration instructs the compiler to generate
a public constructor (i.e., Angle [double Degrees, double
Minutes, int Seconds]) that assigns the fields and properties
(i.e., degrees, minutes, and seconds members) with the cor-
responding constructor parameter values. If not explicitly
declared, the C# compiler generates properties correspond-
ing to the primary constructor parameters (i.e., Degrees).
Of course, you can add additional members to the record
struct and override the generated properties with custom
implementations even if the accessibility modifier isn’t pub-
lic or the property is read-only, init-only, or read-write.

Record structs include the same benefits of record classes except
where behavior is inherent to C# value types. For example, equal-
ity methods (Equals(), !=, ==, and GetHashCode()) are all auto-

Advertisers Index

CODE Legacy
	 www.codemag.com/modernize� 7

CODE Consulting
	 www.codemag.com/code� 5

Microsoft
	 www. ???� 2

Microsoft
	 www. ???� 38

Microsoft
	 www. ???� 75

Microsoft
	 www. ???� 76

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

Essential C# 10.0: Making It Simpler

www.codemag.com 33codemag.com

 public Thing() : this("<default>")
 {
 Name = Id.ToString();
 }

 public Guid Id { get; } = Guid.NewGuid();
}

In this example, you define an ID property that’s assigned
with a property initializer. In addition, the default con-
structor is defined and initializes the Name property to be
the Id.ToString() value. It’s important to note that the C#
compiler injects the field/property initializer at the top of
the default constructor. This location ensures that the C#
compiler generates a primary constructor for the struct and
ensures that it’s invoked before the body of the default con-
structor is evaluated. Conceptually, this is very similar to
how constructors on classes behave. Property and field ini-
tializers are also done inside of the generated primary con-
structor to ensure that those values are set before the body
of the default constructor is executed. The effect is that the
ID is sent by the time the user-defined portion of the con-
structor executes. Be aware that the compiler enforces the
this() constructor invocation when a primary constructor is
specified on the record struct.

Because default constructors were previously unavailable,
guidelines dictated that default (zeroed out) values were
valid even in an uninitialized state. Unfortunately, the same
is true, even with default constructors, because zeroed-out
blocks of memory are still used to initialize structs. For ex-
ample, when instantiating an array of n Things—that is, var
things = new Thing[42]—or when not setting member fields/
properties in a containing type before accessing them.

Additional Improvements in C# 10.0
There are several other simplifications in C# 10.0. I put
these in the category of you-didn’t-know-this-wasn’t-pos-
sible-until-you-tried. In other words, if you encountered
these scenarios before, you were probably frustrated by the
idiosyncrasy but worked around it and continued. With C#
10.0, the issue is eliminated. Table 1 provides a list of such
features along with code samples.

What’s Not in C# 10.0
Several planned C# 10.0 features didn’t make the cut.

•	 Nameof(parameter) inside an attribute constructor
won’t be supported.

•	 There won’t be a parameter null-checking operator
that decorates a parameter and then throws an excep-
tion if the null value is used.

•	 Generic attributes that include a type parameter when
using the attribute.*

•	 Static abstracts members in interfaces forcing the
implementing type to provide the member.*

•	 Required properties so that the value must be set in a
compile time-verifiable way before construction com-
pletes

•	 Field keyword that virtually eliminates all need for a
separate field to be declared.*

Asterisked (*) items are available in C# 10.0 preview, but
are expected to be removed before general release.

fault (at least in the Visual Studio Enterprise 2022 Preview
[64-bit] Version 17.0.0 Preview 3.1 available at the time of
writing). This default is surprising to me for two reasons:

•	 Historically, structs were declared immutable to avoid
erroneously attempting to modify the struct by insidi-
ously modifying a copy. This is primarily because pass-
ing a value type as a parameter, by definition, creates
a copy. Modifying the copy is unexpectedly not re-
flected at the caller (if it wasn’t obvious or well known
that the type was a value type). Perhaps more insidi-
ous is a member that mutated the instance. Imagine
a Rotate() method on an Angle instance that rotated
the same Angle instance. Invoking said method from a
collection, i.e., Angle[0].Rotate(42,42,42), uninten-
tionally doesn’t change the value stored in angle[0].

•	 Parenthetically, mutable value types were far more
problematic when modifying them inside a collection
was allowable. However, something like Angle[0].De-
grees = 42 is now prevented by the compiler even if
Degrees is writable, thus preventing unexpectedly not
modifying Degrees.

•	 Mutable record structs, by default, would be incon-
sistent with record classes. Consistency behavior is a
strong motivator when it comes to learning, under-
standing, and remembering.

Despite the considerations, there are important differences
that distinguish the suitability of mutable record structs:

•	 Using a struct as a dictionary key does not carry the
same risk of getting lost in a dictionary (assuming no
self-modifying member is provided).

•	 There are reasonable scenarios where mutable fields
are not problematic (like with System.ValueTuple).

•	 Supporting mutability and fields in record structs
allows for tuples to easily be “upgraded” to record
structs.

•	 Record structs include the readonly modifier, which
renders it immutable with a single keyword.

Note: As of this writing in early September, the decision
about mutability by default has not been finalized.

It’s relatively rare for developers to need custom value types,
so I’m tagging this feature as #UsedOccasionaly. Even so, I
appreciate all the careful thought put into the ability to de-
fine value-type records. More importantly, almost all value
types require implementation for equality behavior. For this
reason, I suggest you consider a coding guideline: do use
record structs when defining a struct.

Default (Parameterless) Struct
Constructors
C# has never allowed a default constructor (a parameterless
constructor) on a struct. Without it, there also isn’t support
for field initializers on structs because there’s no place for
the complier to inject the code. In C# 10.0, this gap be-
tween structs and classes is closed with the ability to define
a default constructor on a struct (including a record struct)
and allowing field (and property) initializers on structs. The
following snippet provides an example.

public record struct Thing(string Name)
{

Essential C# 10.0: Making It Simpler

www.codemag.com34 codemag.com

Name Sample Code Description
Improved Definite
Assignment Analysis

string text = null;
if (
 text?.TryIntParse(
 out int number) == true)
{
 number.ToString(); // Undefined error
}

Occasionally, the scope of an out parameter declared inline of a method wasn’t available
within the statement block.
This enhancement also improves the quality of null reference analysis for reference types.
#UsedRarely

Record Classes with
Sealed ToString()

public record class Thing1(string Name)
{
 public sealed override string
 ToString() => Name;
}

In a record class, you can identify a ToString() method as sealed to prevent sub-types from
overriding the implementation and potentially obscuring the intention of the technique. This
isn’t possible in record structs because inheritance isn’t supported. #UsedRarely

Enhanced #Line
Directive

#line 42 “8. LineDirectiveTests.cs”
 throw new Exception();
 // ^
 // |
 // Column 13
#line default

This identifies the starting character in a #line directive based on the first character of the
following line.
In this example, the first character ‘t’ in throw identifies the column number. #UsedRarely

AsyncMethodBuilder
override

[AsyncMethodBuilder(
 typeof(AsyncValueTaskMethodBuilder))]
public readonly struct ValueTask :
 IEquatable<ValueTask>
{
 //...
}

This allows each async method to specify a custom AsyncMethodBuilder, rather than relying
only on a class-specified builder. #UsedRarely

Extended property
patterns

// C# 8.0 syntax:
// if(person is
// { Name: { Length: 0 } }) {}
if (person is { Name.Length: 0 })
{
 throw new InvalidOperationException(
 @$”Invalid {
 nameof(Person.Name)}.”);
}

Rather than using curly braces to traverse a property chain, C# 10.0 allows “dot” notation,
which is easier to understand. Going forward, a reasonable coding guideline would be: DO use
the dot notation syntax for property pattern matching traversal. #UsedOccasionally

String Interpolation
Improvements

N/A Allowing for association with the constant interpolated string is a significant performance
improvement in interpolated strings in general. In the past, interpolated string ultimately
resulted in a call to string.Format(), which is an inefficient implementation given the rampant
boxing, likely argument array allocations, string instantiation, and inability to leverage
Span. Much of this was addressed in .NET 6.0 and C# compiler improvements. The details are
available in Stephen Toub’s excellent article String Interpolation in C# 10.0 and .NET 6 found
at devblogs.microsoft.com/dotnet/string-interpolation-in-c-10-and-net-.6/. #UsedFrequently

Table 1: Additional Improvements

some features that will change the way I code: global using
directives and file-based namespace declarations, to name a
few. Although it’s something I’ll rarely code myself, I’m ea-
ger for logging, debugging, and unit testing library devel-
opers to update their APIs with support for caller argument
expression attributes. Triage and diagnostics will be easier
with the new APIs. And, although I think that defining cus-
tom value is rarely needed, the addition of record structs
certainly makes it easier with all the equality support. For
this reason alone, I suspect it’s rare that someone would
define a custom value type without using record struct.

Putting it all together, C# 10.0 is a welcome addition with
a healthy set of features and improvements—enough en-
hancements, in fact, that I’ll be disappointed whenever I
have to program with an earlier version of C#.

� Mark Michaelis
�

Of these features, I was most looking forward to the null-
checking operator, but at the same time, I’m holding onto
hope for a more generic solution to arrive that provides pa-
rameter checking for more than just null. Having support
nameof(parameter) in method attributes will also be great,
both for CallerArgumentExpression attributes as well as ASP.
NET and Entity Framework development.

Summary
There are many relatively small “improvements” of C# 10.0;
I don’t really see them as new features. Rather, they are the
sort of things that I previously assumed were already pos-
sible only to encounter compiler errors after coding. Now
with the improvements in C# 10.0, I’ll likely forget the time
prior when they didn’t work.

Beyond just the improvements, admittedly there isn’t any-
thing revolutionary in C# 10.0, but it certainly includes

Essential C# 10.0: Making It Simpler

www.codemag.com 35codemag.com

ONLINE QUICK ID 2111062

Daniel Roth
daroth@microsoft.com
@danroth27

Daniel Roth is a Principal
Program Manager at Micro-
soft on the ASP.NET team.
He has worked on various
parts of .NET over the
years, including WCF, XAML,
ASP.NET Web API, ASP.NET
MVC, and ASP.NET Core.
His current passion is making
Web UI development easy
with .NET and Blazor.

What’s New in ASP.NET Core in .NET 6
ASP.NET Core is a modern Web framework for .NET and includes everything you need to build beautiful Web UIs and
powerful back-end services. Unlike other development platforms that require you to piece together a Web application
from multiple frameworks, ASP.NET Core offers a complete and cohesive Web development solution (see Figure 1).

With ASP.NET Core, you can build dynamic server-rendered
UIs using MVC or Razor Pages. You can integrate ASP.NET
Core with popular JavaScript frameworks or you can build
rich interactive client Web UIs completely in .NET using
Blazor. For services, you can use ASP.NET Core to build stan-
dards-based HTTP APIs, real-time services with SignalR, or
high-performance back-end services with gRPC.

Under the hood, ASP.NET Core provides a flexible hosting
model, high performance servers, and a rich set of built-
in middleware to handle cross-cutting concerns like local-
ization and security. No matter what kind of Web, server,
or cloud app you’re trying to build, ASP.NET Core offers a
complete and fully integrated solution.

The next wave of new features and updates to ASP.NET Core
is now available with .NET 6. .NET 6 is the latest major re-
lease of .NET, which now ships on a regular yearly cadence.
.NET 6 is also a Long Term Support (LTS) release, which
means that it will enjoy three full years of support.

.NET 6 includes improvements that cover a broad set of themes:

•	 New developers: Makes it easier for new developers to
get started with .NET

•	 Client apps: Expands support for building cross-plat-
form native client apps

•	 Cloud native: Ensures that .NET has everything you
need to run natively in the cloud

•	 Enterprise and LTS: Ensures that enterprises relying
on LTS releases have a smooth upgrade path

•	 Ecosystem: Strengthens the .NET ecosystem
•	 Inner-loop performance: Makes development with

.NET faster and more productive
•	 Meet developer expectations: Continues to deliver on

the promises of the .NET platform

You can browse and dive into each of these .NET 6 themes on
the https://themesof.net site and on GitHub.

ASP.NET Core has contributed new functionality and improve-
ments to almost all the .NET 6 themes. To make it easier to find
all the ASP.NET Core related work, there’s an “ASP.NET Core in
.NET 6 roadmap” issue linked to from the themesof.net site.

How did the ASP.NET team decide on these themes and enhance-
ments? They were collected based on feedback from .NET com-
munity members, like you! Every suggestion, issue report, pull re-
quest, comment, and thumbs up has contributed to making .NET 6
a great release. Thank you for all your feedback and contributions!

There’s lots that’s new in in ASP.NET Core in .NET 6. Let’s
dive in and see what ASP.NET in .NET 6 has to offer.

Getting Started with ASP.NET Core
in .NET 6
Getting started with ASP.NET Core in .NET 6 is easy. Just go
to https://dot.net and install the .NET 6 SDK for your plat-

form of choice. To create and run your first app, simply run
the following commands:

dotnet new web
dotnet watch

You did it! Your browser should pop up and navigate to the
running app.

You might see a warning in the browser that the develop-
ment HTTPS certificate isn’t trusted. To set up the ASP.NET
Core development certificate for local development, run the
following command and then restart the app:

dotnet dev-certs https --trust

.NET 6 is included with Visual Studio 2022, so if you have
that installed, you’re all set to go. Just make sure you’ve got
the “ASP.NET and Web development” Visual Studio workload
installed to enable the Web related tooling. If you’re using
an older version of Visual Studio, you’ll need to upgrade to
Visual Studio 2022. .NET 6 development isn’t supported in
older Visual Studio versions, so go ahead and treat yourself
to the latest and greatest Visual Studio version.

To update an existing project to .NET 6, first update the target
framework in your projects to net6.0 and then update any
package references to the .NET 6 versions. .NET 6 is a highly
compatible release with previous .NET versions, but double
check the .NET 6 release notes for any breaking changes that
might affect you. Most .NET 5 apps should work on .NET 6.

Now that you’re all set up, let’s check out all the new features.

Minimal APIs
Building your first ASP.NET Core app is easier than ever be-
fore with .NET 6. You can now build your first ASP.NET Core
app with a single C# file and just a few lines of code.

Figure 1: ASP.NET Core: A complete Web development solution

What’s New in ASP.NET Core in .NET 6

www.codemag.com36 codemag.com

to a method directly on your app. No need to define an entire
API controller class (although doing so is still fully supported).

You’ve already seen that you can route to a method that returns
a string to create minimal API that returns some plain text. If you
return a complex object, it automatically gets serialized as JSON.

app.MapGet("/todos", () => new[] {
 new { Title = "Try .NET 6", IsDone = true},
 new { Title = "Eat veggies", IsDone = false},
});

With this minimal API, a GET request to /todos returns the
following JSON response:

[
 {"title":"Try .NET 6","isDone":true},
 {"title":"Eat veggies","isDone":false}
]

You can also return an IResult instance from a route handler
method. The Results static helper class provides many IRe-
sult implementations for common response types, like 404
Not Found or 201 Created.

Method parameters in route handlers can be bound to all
sorts of useful stuff:

•	 HttpContext
•	 The HttpRequest or HttpResponse
•	 The ClaimsPrincipal for the current user
•	 Configured services

Simple type parameters get automatically bound to route
value and query string parameters:

app.MapGet("/hello/{name}",
 (string name) => $"Hello {name}!");

Complex parameters get bound to JSON data in the request:

app.MapPost("/todos",
 async (Todo todo, TodoDbContext db) =>
{
 await db.Todos.AddAsync(todo);
 await db.SaveChangesAsync();

 return Results.Created(
 $"/todo/{todo.Id}", todo);
});

Minimal APIs require only a minimal amount of code to imple-
ment, but they can be used to define APIs both big and small.
Minimal APIs benefit from all the great functionality in ASP.NET
Core, including support for authentication, authorization, CORS,
and OpenAPI support. You can find a complete Todo API imple-
mentation in Listing 1 and tutorials for building minimal APIs in
the ASP.NET Core docs. Also check out Brady Gaster’s “Power Up
your Power Apps with .NET 6 and Azure” elsewhere in this maga-
zine for a complete end-to-end scenario based on minimal APIs.

More Developer Productivity
Building great Web apps requires rapid iteration. The faster
you can make code changes and test them, the better. .NET 6
includes various improvements that make ASP.NET Core de-
velopment faster, more iterative, and more fluid.

Here’s a complete ASP.NET Core app with .NET 6:

var app = WebApplication.Create(args);

app.MapGet("/", () => "Hello World!");

app.Run();

That’s it! Run the app and you get a single HTTP endpoint
that returns the text “Hello World!”

If you’ve been coding in C# for a while, you might be won-
dering how this code even compiles. Where’s Program.Main?
Modern C# no longer requires you to define Program.Main
to get your program started. Instead, you can define top-
level statements for your app’s entry point, which reduces
the amount of boilerplate code.

Where are the namespaces and using directives? You
don’t need to add using directives for the most common
namespaces in .NET 6 because they’re defined implicitly for
you using the new C# 10 support for global using directives.

ASP.NET Core in .NET 6 takes full advantage of modern C#.
All of the ASP.NET Core project templates have been updated
to use the latest C# features including top-level statements,
implicit global using directives, file-scoped namespace dec-
larations, and nullability checking.

Microsoft has also introduced a new minimal hosting API for
ASP.NET Core. The new WebApplication API gives you all the
flexibility of a traditional ASP.NET Core Startup class, but
with much less ceremony. The existing pattern of using a
Startup class is, of course, still supported, but the new API
is much more convenient.

You can add middleware directly to your WebApplication us-
ing the normal middleware extension methods just like you
would in Startup.Configure:

var app = WebApplication.Create(args);

// Configure the HTTP request pipeline.
app.UseStaticFiles();

app.Run();

To add services, create a WebApplicationBuilder and add
services to the builder.Services property like you would in
Startup.ConfigureServices:

var builder =
 WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Servcies.AddSingleton<WeatherService>();

var app = builder.Build();

...

app.Run();

WebApplication sets up routing for you, so you’re free to start
adding endpoints right away. Improvements to routing in ASP.
NET Core in .NET 6 makes building microservices and HTTP APIs
trivial. You can create a minimal API by simply mapping a route

What’s New in ASP.NET Core in .NET 6

www.codemag.com 37codemag.com

For a list of supported edits, see https://aka.ms/dotnet/
hot-reload.
Press "Ctrl + Shift + R" to restart.

If the hot reload succeeds, you see the result of the changes
in the app almost immediately:

watch : File changed:
C:\BlazorApp\Pages\Index.razor.
watch : Hot reload of changes succeeded.

Faster Razor Compilation
.NET 6 includes optimizations across the .NET platform to speed
up build times and improve app startup performance. For exam-
ple, the Razor compiler was updated to use Roslyn Source Gen-
erators instead of its earlier two-phase approach, which makes
building your MVC Views, Razor Pages, and Blazor components
much faster. In many cases, compiling Razor files (.cshtml, .ra-
zor) is now over twice as fast as it was with .NET 5 (see Figure 2).

Hot Reload
.NET 6 adds support for .NET Hot Reload, which enables you
to make changes to your app while it’s running without hav-
ing to restart it. The .NET tooling calculates the exact code
delta that needs to be applied to the app based on your code
changes and then applies the delta to the running app almost
instantly. Because code changes are applied to the running
app, any existing app state is preserved. .NET Hot Reload en-
ables you to rapidly iterate on a specific part of the app with
minimal disruption. .NET Hot Reload is designed to work with
all the .NET 6 app models and it works great with all flavors of
ASP.NET Core Web apps: MVC, Razor Pages, and Blazor.

.NET Hot Reload is enabled whenever you run an ASP.NET Core
app using dotnet watch. Previously the dotnet watch command
simply restarted your app and refreshed the browser whenever
it detected a code file change. In .NET 6, dotnet watch first at-
tempts to apply the changes to the running app using hot reload.

> dotnet watch
watch : Hot reload enabled.

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

var connectionString = builder.Configuration.GetConnectionString("Todos") ??
"Data Source=Todos.db";

builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSqlite<TodoDbContext>(connectionString);
builder.Services.AddSwaggerGen(c =>
{
 c.SwaggerDoc("v1", new() {
 Title = builder.Environment.ApplicationName,
 Version = "v1" });
});

var app = builder.Build();

if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI(c => c.SwaggerEndpoint("/swagger/v1/swagger.json",
$"{builder.Environment.ApplicationName} v1"));
}

app.MapFallback(() => Results.Redirect("/swagger"));

app.MapGet("/todos", async (TodoDbContext db) =>
{
 return await db.Todos.ToListAsync();
});

app.MapGet("/todos/{id}", async (TodoDbContext db, int id) =>
{
 return await db.Todos.FindAsync(id) is Todo todo ?
 Results.Ok(todo) :
 Results.NotFound();
});

app.MapPost("/todos", async (TodoDbContext db, Todo todo) =>
{
 await db.Todos.AddAsync(todo);

 await db.SaveChangesAsync();

 return Results.Created($"/todo/{todo.Id}", todo);
});

app.MapPut("/todos/{id}",
 async (TodoDbContext db, int id, Todo todo) =>
{
 if (id != todo.Id)
 {
 return Results.BadRequest();
 }

 if (!await db.Todos.AnyAsync(x => x.Id == id))
 {
 return Results.NotFound();
 }

 db.Update(todo);
 await db.SaveChangesAsync();

 return Results.Ok();
});

app.MapDelete("/todos/{id}",
 async (TodoDbContext db, int id) =>
{
 var todo = await db.Todos.FindAsync(id);
 if (todo is null)
 {
 return Results.NotFound();
 }

 db.Todos.Remove(todo);
 await db.SaveChangesAsync();

 return Results.Ok();
});

app.Run();

Listing 1: Minimal Todo API

Figure 2: Faster Razor build times with .NET 6.

What’s New in ASP.NET Core in .NET 6

 Center spread .NET artwork to come
from MS

 Center spread .NET artwork to come
from MS

www.codemag.com40 codemag.com

resources. By fully supporting async patterns, ASP.NET Core
enables more efficient utilization of server resources.

Async Streaming
ASP.NET Core now supports using IAsyncEnumerable to
asynchronously stream response data from controller ac-
tions. Returning an IAsyncEnumerable from an action no
longer buffers the response content in memory before it
gets sent. This helps reduce memory usage when returning
large datasets that can be asynchronously enumerated.

Support for async streaming in ASP.NET Core in .NET 6 can
make using Entity Framework Core with ASP.NET Core more
efficient by fully leveraging the IAsyncEnumerable imple-
mentations in Entity Framework Core for querying the da-
tabase. For example, the following code no longer buffers
the product data into memory before sending the response:

public IActionResult GetProducts()
{
 return Ok(dbContext.Products);
}

Better Integration with JavaScript
Frameworks
ASP.NET Core works great as a back-end for JavaScript-based
apps written with popular frontend frameworks. The .NET
SDK includes project templates for using ASP.NET Core with
Angular and React. In .NET 6, Microsoft has improved how
ASP.NET Core integrates with front-end JavaScript frame-
works using a common pattern that can be applied to using
ASP.NET Core with other JavaScript frameworks as well.

Most modern JavaScript frameworks come with command-line
tooling for creating new apps and running them during develop-
ment. In production, the built JavaScript app runs on a produc-
tion Web server, like an ASP.NET Core app. In previous .NET re-
leases, ASP.NET Core projects proxied requests for the JavaScript
app to the JavaScript development server during development to
preserve the JavaScript development experience. To enable this
setup, ASP.NET Core apps had to include Angular- and React-spe-
cific components. Adding support for additional JavaScript frame-
works meant building and maintaining additional integration
components in ASP.NET Core as the JavaScript ecosystem evolves.

In .NET 6, things are flipped around. Now, the browser is
pointed at the JavaScript development server and config-
ures the development server to proxy API requests to the
ASP.NET Core back-end. Most modern JavaScript develop-
ment servers have built-in proxying support for precisely
this sort of setup. The proxy configuration lives in the proj-
ect instead of in framework code, which makes it trivial to
adapt to other front-end JavaScript frameworks.

Microsoft has updated the built-in Angular and React templates
to the latest versions (Angular 12 and React 17) and reconfig-
ured the templates to use this new proxying setup. This should
simplify single-page app development with ASP.NET Core and
establish a pattern that can be used by the .NET community to
integrate ASP.NET Core with more JavaScript frameworks.

Blazor Improvements
Of course, why write your Web app in JavaScript when
you can build the entire thing with just .NET? Blazor is a

Hot reload allows you to modify the markup for your views,
pages, and components and see the visual impact in real
time without losing any app state. You can quickly make up-
dates to your Razor rendering logic, change the behavior of
methods, and add new type members and attributes.

Not all changes can be safely applied at runtime. For ex-
ample, you can’t change the signature of a method. If a
change can’t be applied using hot reload, then the tooling
gives you the option to restart the app to apply the change:

watch : File changed:
C:\BlazorApp\Pages\Counter.razor.
watch : Unable to apply hot reload because of
a rude edit. Rebuilding the app...
watch : Unable to handle changes using hot
reload.
watch : Do you want to restart your app –
Yes (y) / No (n) / Always (a) / Never (v)?

You can also hot reload CSS changes into the browser without
having to refresh the page. CSS hot reload will detect when CSS
changes have been made and then apply them to the live DOM. CSS
hot reload works with normal CSS files and with scoped CSS files.

Hot Reload is deeply integrated into Visual Studio 2022. With
Visual Studio 2022, you can easily apply changes to your run-
ning app while debugging and get great design-time feedback
on what changes can be successfully applied. When making CSS
changes, you can see the UI impact of your changes as you
type with CSS auto sync. To learn all about the Visual Studio
2022 tooling for Hot Reload and all the other .NET productivity
improvements be sure to check out Mika Dumont’s article on
“Visual Studio 2022 Productivity” elsewhere in this magazine.

MVC and Razor Pages Improvements
ASP.NET Core MVC has been the workhorse for ASP.NET Core
Web apps for many years and it just keeps getting better.
Here are some of the improvements coming to MVC and Ra-
zor Pages in .NET 6.

CSS Isolation for Pages and Views
CSS isolation was introduced in .NET 5 as a way to scope
styles to a specific Blazor component. In .NET 6, the same
functionality is enabled for MVC views and Razor pages.

View- and page-specific styles apply only to that view or page
without polluting the global styles. Isolating styles to a spe-
cific page or view can make it easier to reason about the styles
in your app and to avoid unintentional side effects as styles
are added, updated, and composed from multiple sources.

You define view and page-specific styles using a .cshtml.css
file that matches the name of the .cshtml file of the page or
view. Any styles defined in the .cshtml.css file will only be
applied to that specific view or page. ASP.NET Core achieves
CSS isolation by rewriting the CSS selectors as part of the
build so that they only match markup rendered by that view
or page. ASP.NET Core then bundles together all the rewrit-
ten CSS files and makes the bundle available to the app as
a static Web asset at the path [PROJECT NAME].styles.css.

IAsyncDisposable
You can now implement IAsyncDisposable on controllers, page
models, and view components to asynchronously dispose of

What’s New in ASP.NET Core in .NET 6

www.codemag.com 41codemag.com

sembly build tools support relinking the runtime to re-
move unused features. For example, if you use invariant
globalization, tooling can remove a bunch of globaliza-
tion code from the runtime.

•	 Smaller JavaScript files: Thanks to some great con-
tributions for the .NET community, the JavaScript files
that ship as part of ASP.NET Core and Blazor are much
better optimized for size.

Smaller download sizes mean that your published Blazor
WebAssembly apps load faster, especially on slower networks.
It also mitigates the size impact of WebAssembly AOT compila-
tion because you’re already starting with a smaller app.

Error Boundaries
Blazor error boundaries provide a convenient way to handle
exceptions within a component hierarchy. To define an er-
ror boundary, wrap the desired content with the new Er-
rorBoundary component. The ErrorBoundary component
normally renders its child content, but when an unhandled
exception is thrown, the ErrorBoundary renders some error
UI instead.

For example, you can add a Counter component wrapped
in an error boundary to the home page of a default Blazor
app like this:

<ErrorBoundary>
 <Counter />
</ErrorBoundary>

The app continues to function as before but now the error
boundary will handle unhandled exceptions. For example,
you can update the Counter component to throw an excep-
tion if the count gets too big:

private void IncrementCount()
{
 if (currentCount >= 10)
 {
 throw new InvalidOperationException(
 "I've run out of fingers!");
 }
 currentCount++;
}

Now, if you click the counter too much, an unhandled excep-
tion is thrown, which gets handled by the error boundary
by rendering some default error UI, as shown in Figure 3.

client-side Web UI framework included with ASP.NET Core
that enables full stack Web development with .NET. .NET 6
includes support for both Blazor Server and Blazor WebAs-
sembly apps, as well as new support for building hybrid
native client apps using Blazor components. Regardless
of how you decide to host your Blazor component, .NET
6 includes loads of new Blazor features that you can take
advantage of.

WebAssembly Ahead-of-Time Compilation
Blazor WebAssembly now supports ahead-of-time (AOT)
compilation, which compiles your .NET code directly to
WebAssembly for a significant runtime performance boost.

Most Blazor WebAssemby apps today run using a .NET IL in-
terpreter implemented in WebAssembly. Because the .NET
code is interpreted, it generally runs much slower than it
would on a normal .NET runtime. .NET WebAssembly AOT
compilation addresses this runtime performance issue. The
runtime performance improvement from WebAssembly AOT
compilation can be quite dramatic for CPU intensive tasks.
In some cases, code runs five to ten times faster than when
interpreted!

.NET WebAssembly AOT compilation requires additional build
tools that are installed as an optional .NET SDK workload. To
install the .NET WebAssembly build tools, run the following
command from an elevated command prompt:

dotnet workload install wasm-tools

To enable WebAssembly AOT compilation for your Blazor
WebAssembly project, add the following property to your
project file:

<RunAOTCompilation>true</RunAOTCompilation>

WebAssembly AOT compilation is performed when the proj-
ect is published and generally takes a while: several minutes
on small projects and potentially much longer for larger
projects. Your app gets compiled to WebAssembly and bun-
dled into the dotnet.wasm runtime bundle.

The download size of the published app with AOT compila-
tion enabled is generally larger than the interpreted ver-
sion, about two times bigger. .NET IL contains high-level
instructions that must be expanded into native WebAssem-
bly code. So, using WebAssembly AOT compilation trades
off some load time performance for better runtime perfor-
mance. Whether this tradeoff is worth it depends on your
app. Many apps run interpreted just fine without the need
for AOT compilation. Blazor WebAssembly apps that are par-
ticularly CPU-intensive will benefit the most from AOT com-
pilation.

Smaller Download Size
Published Blazor WebAssembly apps are much smaller in
.NET 6. In .NET 5, a minimal Blazor WebAssembly is about
1.7 MB when published. In .NET 6, it’s now only 1.1 MB. This
is thanks to some great new optimizations:

•	 Smarter .NET IL trimming: NET IL trimming is much
improved in .NET 6, and the core framework libraries
are more trimming friendly.

•	 Runtime relinking: In .NET 5, the .NET WebAssembly
runtime was a fixed size. In .NET 6, the new .NET WebAs- Figure 3: Default error UI provided by an error boundary.

What’s New in ASP.NET Core in .NET 6

www.codemag.com42 codemag.com

<Grid Items="@GetSales">
 <Column TItem="SaleRecord" Name="Product" />
 <Column TItem="SaleRecord" Name="Sales" />
</Grid>

In .NET 6, Blazor can now infer generic type parameters from
ancestor components. Ancestor components opt-in to this be-
havior by cascading a named type parameter to descendants
using the [CascadingTypeParameter] attribute. This attribute
allows generic type inference to work automatically with de-
scendants that have a type parameter with the same name.

For example, you can define Grid.razor components that
look like this:

@typeparam TItem
@attribute [CascadingTypeParameter(
 nameof(TItem))]

...

@code {
 [Parameter]
 public IEnumerable<TItem>? Items
 { get; set; }

 [Parameter]
 public RenderFragment? ChildContent
 { get; set; }
}

And you can define Column.razor components that look like this:

@typeparam TItem

...

@code {
 [Parameter]
 public string? Title { get; set; }
}

You can then use the Grid and Column components without
specifying any type parameters, like this:

<Grid Items="@GetSales()">
 <Column Title="Product" />
 <Column Title="Sales" />
</Grid>

Faster JavaScript Interoperability for Binary Data
Blazor is all about writing client Web apps using .NET. But
sometimes you still need to use a little JavaScript. Maybe
you want to reuse an existing JavaScript library or cus-
tomize some low-level browser behavior. Blazor supports
JavaScript interoperability (JS interop), and .NET 6 im-
proves how JS interop works with binary data.

Blazor no longer base64-encodes binary data when doing
JS interop, which makes transferring binary data across the
interop boundary much more efficient. Blazor also now sup-
ports streaming binary data through JS interop using the
new IJSStreamReference interface.

var dataRef = await JS
 .InvokeAsync<IJSStreamReference>("getData");

By default, the ErrorBoundary component renders an empty div
with a blazor-error-boundary CSS class for its error content. The
colors, text, and icon for this default UI are all defined using CSS
in the app, so you’re free to customize them. You can also change
the default error content by setting the ErrorContent property.

<ErrorBoundary>
 <ChildContent>
 <Counter />
 </ChildContent>
 <ErrorContent>
 <p class="my-error">
 Something broke. Sorry!
 </p>
 </ErrorContent>
</ErrorBoundary>

Preserve Prerendered State
Blazor apps can be prerendered from the server to speed up
the perceived load time of the app. The prerendered HTML
can immediately be rendered while the app is set up for in-
teractivity in the background. Blazor is deeply integrated
into ASP.NET Core, so Blazor components can be preren-
dered from any MVC View or Razor Page using the built-in
component tag helper. The ability to run Blazor components
on the client or the server is one of Blazor’s key strengths.

However, any state that was used during prerendering on the
server is generally lost and must be recreated when the app is
loaded on the client. If any state is set up asynchronously on
the client, the UI may flicker as the prerendered UI is replaced
with temporary placeholders and then fully rendered again.

To solve this problem, you need a way to persist state used dur-
ing prerendering and transfer it to the client for reuse. That’s
what the new preserve-component-state tag helper is for.

<component type="typeof(App)"
 render-mode="ServerPrerendered" />
<persist-component-state />

In your app, you control what state you want the preserve-
component-state tag helper to persist by registering a
callback with the new PersistentComponentState service.
Your registered callback is called when state is about to be
persisted into the prerendered page so that you can add to
the persisted state. You then retrieve any persisted state
when initializing your components. Listing 2 shows an
implementation of the FetchData component that uses per-
sisted state for prerendering some weather data.

By initializing your components with the same state used
during prerendering, any expensive initialization steps
only need to be executed once. The newly rendered UI also
matches the prerendered UI, so no flicker occurs.

Infer Generic Component Types from Ancestors
When using a generic Blazor component, like a Grid<TItem>
or ListView<TItem>, Blazor can typically infer the generic type
parameters based on the parameters passed to the component,
so you don’t have to explicitly specify them. In more sophis-
ticated components, you might have multiple generic compo-
nents that get used together where the type parameters are
intended to match, like Grid<TItem> and Column<TItem>. In
these composite scenarios, generic type parameters often need
to be specified explicitly on child components, like this:

What’s New in ASP.NET Core in .NET 6

www.codemag.com 43codemag.com

[Parameter]
[EditorRequired]
public int IncrementAmount { get; set; }

If the user doesn’t specify the required parameter when us-
ing the component, they’ll get a build warning indicating
that the parameter is missing. This isn’t enforced at run-
time, so you’ll still need to deal with the possibility that the
parameter wasn’t set in your component implementation.
But specifying required parameters does improve compo-
nent usability.

Select Multiple
Blazor now provides the array of selected elements via
ChangeEventArgs when handling the onchange event for
a select element with the multiple attribute applied. Also,
you can bind array values to the value attribute of a select
element with the multiple attribute. The built-in InputSelect
component also infers the multiple attribute when bound
to an array.

DynamicComponent
DynamicComponent is a new built-in Blazor component that
can be used to dynamically render a component specified
by type.

<DynamicComponent Type="typeof(Counter)" />

Parameters can be passed to the rendered component using
a dictionary:

<DynamicComponent Type="typeof(Counter)"
 Parameters="parameters" />

@code {
 Dictionary<string, object> parameters =
 new() { { "IncrementAmount", 10 } };
}

using var dataRefStream = await dataRef
 .OpenReadStreamAsync();

// Write JS Stream to disk
var outputPath = Path.Combine(
 Path.GetTempPath(), "file.txt");
using var outputFileStream =
 File.OpenWrite(outputPath);
await dataRefStream
 .CopyToAsync(outputFileStream);

Streaming data through JS interop is particularly useful in
Blazor Server apps when you want to upload lots of data
to the server. The InputFile component was updated to
use these JS interop improvements to support much larger
(>2GB) and faster file uploads.

Working with Query Strings
Blazor components can now receive parameters from the query
string. To specify that a component parameter can come from
the query string, apply the [SupplyParameterFromQuery] at-
tribute in addition to the normal [Parameter] attribute:

[Parameter]
[SupplyParameterFromQuery]
public int? Page { get; set; }

You can also update the query string of the browser URL
with new query string parameters using the new helper
methods on NavigationManager:

var newUri = NavigationManager
 .GetUriWithQueryParameter("page", 3);
NavigationManager.NavigateTo(newUri);

Required Component Parameters
To indicate that a component parameter is required, apply
the [EditorRequired] attribute:

@page "/fetchdata"

<PageTitle>Weather forecast</PageTitle>

@using BlazorApp1.Data
@inject WeatherForecastService ForecastService
@inject PersistentComponentState PersistentState

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from a service.</p>

@if (forecasts == null)
{
 <p>Loading...</p>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var forecast in forecasts)
 {
 <tr>
 <td>@forecast.Date.ToShortDateString()</td>

 <td>@forecast.TemperatureC</td>
 <td>@forecast.TemperatureF</td>
 <td>@forecast.Summary</td>
 </tr>
 }
 </tbody>
 </table>
}

@code {
 private WeatherForecast[]? forecasts;
 PersistingComponentStateSubscription persistingSubscription;

 protected override async Task OnInitializedAsync()
 {
 persistingSubscription = PersistentState
 .RegisterOnPersisting(PersistForecasts);
 if (!PersistentState.TryTakeFromJson<WeatherForecast[]>
("fetchdata", out forecasts))
 {
 forecasts = await ForecastService
 .GetForecastAsync(DateTime.Now);
 }
 }

 private Task PersistForecasts()
 {
 PersistentState.PersistAsJson("fetchdata", forecasts);
 return Task.CompletedTask;
 }
}

Listing 2: FetchData with persisted state from prerendering

What’s New in ASP.NET Core in .NET 6

www.codemag.com44 codemag.com

options.RootComponents
 .RegisterForAngular<Counter>();

options.RootComponents
 .RegisterForReact<Counter>();

When the project gets built, it generates Angular and Re-
act components based on your Blazor components. You can
use the generated Angular and React components like you
would normally:

// Angular
<counter [incrementAmount]="incrementAmount">
</counter>

// React
<Counter incrementAmount={incrementAmount}>
</Counter>

Hopefully this captures your imagination about what’s
now possible with Blazor components in JavaScript. Micro-
soft is excited to see what the community does with this
feature!

Modify HTML Head Content
Blazor now has built-in support for modifying HTML head-
element content from components, including setting the
title and adding meta elements.

To specify the page’s title from a component, use the new
PageTitle component.

<PageTitle>Counter</PageTitle>

To add other content to the head element, use the new
HeadContent component:

<HeadContent>
 <meta name="description" content="@content">
</HeadContent>

To enable the functionality provided by PageTitle and Head-
Content, you need to add a HeadOutlet root component
to your app that appends to the head element. In Blazor
WebAssembly, you can register the HeadOutlet component
like this:

builder.RootComponents
 .Add<HeadOutlet>("head::after");

In Blazor Server, the setup is slightly more involved. To sup-
port prerendering, the App root component needs to be ren-
dered before the HeadOutlet. This is typically accomplished
using MVC-style layouts. Check out the updated Blazor Serv-
er template in .NET 6 to see how to set this up.

.NET MAUI Blazor Apps
Blazor enables building client-side Web UI with .NET, but
sometimes you need more than what the Web platform offers.
Sometimes you need full access to the native capabilities of
the device. You can now host Blazor components in .NET MAUI
apps to build cross-platform native apps using Web UI. The
components run natively in the .NET process and render Web
UI to an embedded Web view control using a local interop
channel. This hybrid approach gives you the best of native

DynamicComponent is useful when you want to determine
what component to render at runtime.

Render Root Components from JavaScript
What if you want to dynamically render a component at
runtime from JavaScript? For example, you might want to
add Blazor components to an existing JavaScript app. Top-
level component in Blazor are called root components, and
in earlier releases Blazor root components had to render
when the app started up. In .NET 6, you can now dynami-
cally render root components from JavaScript whenever
you want.

To render a Blazor component from JavaScript, first register
it for JavaScript rendering and assign it an identifier:

options.RootComponents
 .RegisterForJavaScript<Counter>(
 identifier: "counter");

You can then render the component from JavaScript into
a container element using the registered identifier passing
component parameters as needed:

let containerElement =
 document.getElementById('my-counter');
await Blazor.rootComponents.add(
 containerElement,
 'counter',
 { incrementAmount: 10 });

The ability to render root components from JavaScript en-
ables all sorts of interesting scenarios, including building
standards-based custom elements with Blazor. Experimen-
tal support for building custom elements is available us-
ing the Microsoft.AspNetCore.Components.CustomElements
NuGet package. With this package installed, you can regis-
ter root components as customer elements:

options.RootComponents
 .RegisterAsCustomElement<Counter>(
 "my-counter");

You can then use this custom element with any other Web
framework you’d like. For example, here’s how you would
use this Blazor counter custom element in a React app:

<my-counter increment-amount={incrementAmount}>
</my-counter>

You can also now generate framework-specific JavaScript
components from Blazor components for frameworks like
Angular or React. The JavaScript component generation
sample on GitHub shows how this can be done (see https://
aka.ms/blazor-js-components). In this sample, you can at-
tribute Blazor components to generate Angular or React
component wrappers:

@*Generate an Angular component*@
@attribute [GenerateAngular]

@*Generate an React component*@
@attribute [GenerateReact]

You also register the Blazor components as Angular or React
components:

What’s New in ASP.NET Core in .NET 6

www.codemag.com 45codemag.com

.NET 6 introduces preview support for HTTP/3 in Kestrel, the
built-in ASP.NET Core Web server. HTTP/3 support in ASP.NET
Core is a preview feature because the specification is be-
ing standardized. Kestrel also doesn’t support the network
transitions feature of HTTP/3 in .NET 6, but Microsoft will
explore adding it in a future .NET release.

To try out HTTP/3 with Kestrel, first enable support for
preview features in your project by setting the following
property:

<EnablePreviewFeatures>
 True
</EnablePreviewFeatures>

Then configure Kestrel to use HTTP/3:

using Microsoft.AspNetCore.Server.Kestrel.Core;

var builder =
 WebApplication.CreateBuilder(args);

builder.WebHost
 .ConfigureKestrel((context, options) =>
{
 options.ListenAnyIP(5001, listenOptions =>
 {
 listenOptions.UseHttps();
 listenOptions.Protocols =
 HttpProtocols.Http1AndHttp2AndHttp3;
 });
});

Browsers are finicky about connecting to localhost over
HTTP/3, so you’ll need to deploy the server to a separate
computer to try it out.

And All the Rest
There are many more ASP.NET Core features and improve-
ments in .NET 6:

•	 Support for Bootstrap 5
•	 Collocate JavaScript modules with views, pages, and

components (.cshtml.js, .razor.js)
•	 Support for custom event arguments in Blazor
•	 Support for native dependencies in Blazor WebAssembly
•	 Blazor JavaScript initializers
•	 WebSocket compression
•	 HTTP and W3C logging
•	 Shadow-copying with IIS
•	 gRPC client support for load balancing and retries
•	 Etc.

Be sure to check the .NET 6 release notes for the full list of
everything that’s new. You can also find additional details
on all these new features in the ASP.NET Core docs: https://
docs.asp.net.

I hope you’ve enjoyed learning about all the great new func-
tionality in ASP.NET Core now available with .NET 6. On be-
half of the ASP.NET team, we look forward to hearing about
your experiences with this momentous release.

and the Web. Your components can access native functionality
through the .NET platform, and they render standard Web UI.
.NET MAUI Blazor apps can run anywhere .NET MAUI can (Win-
dows, Mac, iOS, and Android). If you’re not using .NET MAUI
yet, you can also add Blazor components to your Windows
Forms and WPF apps to start building UI in your Windows
desktop apps that can be reused in .NET MAUI apps or on the
Web. Check out Ed Charbeneau’s article “Blazor Hybrid Web
Apps with .NET MAUI” elsewhere in this magazine for all the
details on how .NET MAUI and Blazor can be used together.

ASP.NET Core Runtime Improvements
Under the hood, ASP.NET Core apps are powered by versatile
runtime that provides performance, reliability, and security.
ASP.NET Core in .NET 6 includes many runtime improvements
that will help to supercharge your Web apps.

Performance
Performance is an important part of every ASP.NET Core re-
lease. Better performance means better server resource uti-
lization and reduced hosting costs. .NET 6 includes perfor-
mance improvements at every level of the framework. ASP.
NET Core in .NET 6 is the fastest Web framework Microsoft
has ever shipped!

Here are some examples of the ASP.NET Core performance
improvements in .NET 6.

•	 Middleware request throughput is ~5% faster in .NET 6.
•	 MVC on Linux is ~12%, thanks to faster logging.
•	 The new minimal APIs offer twice the throughput of

API controllers without compromising on features.
•	 HTTPS connections use ~40% less memory, thanks to

zero byte reads.
•	 Protobuf serialization is ~20% faster with .NET 6.

ASP.NET Core in .NET 6 is
the fastest Web framework
Microsoft has ever shipped!

HTTP/3
HTTP/3 is the third and upcoming major version of HTTP.
HTTP/3 has the same semantics as earlier HTTP versions,
but introduces a new transport based on UDP called QUIC.
HTTP/3 is still in the process of being standardized but has
already gained significant adoption.

HTTP/3 and QUIC have several benefits compared to older
HTTP versions:

•	 Faster initial response time: HTTP/3 and QUIC re-
quires fewer roundtrips to establish a connection, so
the first request reaches the server faster.

•	 Avoid head-of-line blocking. HTTP/2 multiplexes
multiple requests on a TCP connection, so packet loss
affects all requests on a given connection. QUIC pro-
vides native multiplexing, so lost packets only impact
requests with lost data.

•	 Transition between networks. HTTP/3 allows the app
or Web browser to seamlessly continue when a net-
work changes.

� Daniel Roth
�

What Are Custom
Elements?

Custom elements are part
of the HTML standard and
“provide a way for authors
to build their own fully-
featured DOM elements.”
Because custom elements
are based purely on open
Web standards, they can be
used with any modern Web
framework. The ability to build
custom elements with Blazor
means you can reuse your
Blazor and .NET investments
across all your Web projects.

What’s New in ASP.NET Core in .NET 6

www.codemag.com46 codemag.com

ONLINE QUICK ID 2111072

EF Core 6: Fulfilling the Bucket List

EF Core 6: Fulfilling the Bucket List
Ahh another year, another update to EF Core. Lucky us! Remember when Microsoft first released Entity Framework in 2008 and
many worried that it would be yet another short-lived data access platform from Microsoft? (Note that ADO.NET is still widely used,
maintained, and supported!) Well, it’s been 13 years, including EF’s transition to EF Core, and it just keeps getting better and better.

You may have heard me refer to EF Core 3 as the “breaking
changes edition.” In reality, those breaking changes set EF
Core up for the future, as I relayed in “Entity Framework
Core 3.0: A Foundation for the Future” (http://codemag.
com/Article/1911062), covering the highlights of those
changes. The next release, EF Core 5 (following the number-
ing system of .NET 5), built on that foundation. I also wrote
about this version in “EF Core 5: Building on the Founda-
tion” (codemag.com/Article/2010042/EF-Core-5-Building-
on-the-Foundation).

And now here comes EF Core 6. My perspective on it is that
the team has been working on their (and your) bucket list!
Digging into improvements to EF Core that they’ve been
wanting to get to for quite a long time but there were more
pressing features and fixes to focus on. But they didn’t only
work on their own goals. In advance of planning, the team
put out a survey to gauge usage of existing versions of EF
and EF Core and what they should focus on going forward.
They presented the results from about 4000 developers in
this January 2021 Community Standup: https://www.you-
tube.com/watch?v=IiAS61uVDqE. The survey was available
before EF Core 5 was released and into only its first few
months. So it was not surprising that EF Core 5 trailed be-
hind EF Core 3 and EF 6. There were a substantial number
of devs still using EF6. This makes a lot of sense to me for
the many legacy apps out there: If it ain’t broke, don’t fix it.

The team has again been incredibly transparent about their
goals and progress. In the docs (https://docs.microsoft.
com/en-us/ef/core/what-is-new/ef-core-6.0/plan), they
shared their high-level plan, updates of what’s new for each
preview, and their (very short) list of breaking changes.
Late in the development cycle, it was sad to see the team
come to grips with some plans they had to give up on for
this version of EF Core 6 and change their GitHub milestones
to “punted for EF Core 6.” But as developers, we all under-
stand how this goes. The GitHub repo tracks every issue with
detail and tags which preview/version the issue is tied to.
There are also detailed bi-weekly status updates at https://
github.com/dotnet/efcore/issues/23884. And triggered by
the lockdown, the team got online every few weeks with
the EF Core Community Standups, showing us what they’re
working on and inviting guests to share their additions to
the EF Core ecosystem. Here’s a shortcut to the full playlist
of their standups where you can also keep up with upcoming
shows (https://bit.ly/EFCoreStandups).

There were monthly releases of preview builds available on
NuGet (https://www.nuget.org/packages/Microsoft.Entity-
FrameworkCore) And GitHub repository’s readme (https://
github.com/dotnet/efcore#readme) led to detailed instruc-
tions on how to work with daily builds if you wanted to do that.

Although there have been a lot of small changes, this ar-
ticle will cover some of the most notable and most impactful
changes that you’ll find in EF Core 6.

Huge Gains in Query Performance
Top on the EF Core wish list for so many developers and
the EF team was query performance. This has always been
a criticized problem with EF and EF Core even though it has
dramatically improved over the years. Jon P Smith, EF Core
book author and a real expert, explains that the work he
does for performance tuning is “not because EF Core is bad
at performance, but because real-world application has a lot
of data and lots of relationships (often hierarchical), and
it takes some extra work to get the performance the client
needs.“ Even with lots of great strategies for perf tuning
EF, the team set out to really raise the bar on performance
with EF Core 6 with laser-like focus and with Shay Rojansky
leading up the effort.

An early step was to set a goal to improve EF Core’s standing
in a commonly known software industry standard bench-
mark for measuring the performance—the TechEmpower
Web Framework Benchmarks (https://www.techempower.
com/benchmarks/). The benchmark comes with tweakable
source code and is used by hundreds of frameworks, includ-
ing ASP.NET and EF Core. Among the comparisons are some
that focus on data access and one in particular, called For-
tunes, which “exercises the ORM, database connectivity, dy-
namic-size collections, sorting, server-side templates, XSS
countermeasures, and character encoding.” I was more than
surprised to discover that there are almost 450 ORMs on
the list—although only 30 are .NET ORMs! The TechEmpower
benchmark provides a very specific set of standards (and
source code) for how to set up and run the tests, including
standard hardware requirements. The version that the ASP.
NET team uses is on GitHub at https://github.com/aspnet/
Benchmarks.

For EF Core 6, most of the performance improvements were
aimed at non-tracking queries, although tracked queries
certainly benefited. Rojansky tells me that they hope to
deepen their focus on change-tracked queries in EF Core 7.

EF Core is often compared in performance to Dapper, a
widely used micro-ORM for .NET built by the folks over at
StackOverflow. At the start, there was a 55% gap between
Dapper’s rows returned per second and that of EF Core 5.
There was a series of categories for improvements. Before
even looking at the EF Core APIs, it turned out that the
benchmark itself was begging for some tweaks to make
comparisons more equitable. Tuning EF’s DbContext pooling
(23% improvement), PostgreSQL connection pooling (2.8%
improvement), and requiring results rather than wasting
time with null checks (1.7% improvement) already had a
significant impact. Another interesting benefit was switch-
ing the benchmark app to use .NET 6 instead of .NET 5 (9.8%
improvement). Finally, it was time to dig into fine tuning EF
Core itself. Changes were made to how logging works, how
related data is tracked, changing concurrency detection to
Opt-In and a few other tweaks added up to another sig-

Julie Lerman
@julielerman
thedatafarm.com/contact

Julie Lerman is a Microsoft
Regional director, Docker
Captain, and a long-time
Microsoft MVP who now
counts her years as a coder
in decades. She makes
her living as a coach and
consultant to software
teams around the world.
You can find Julie presenting
on Entity Framework,
Domain-Driven Design and
other topics at user groups
and conferences around
the world. Julie blogs at
thedatafarm.com/blog,
is the author of the highly
acclaimed “Programming
Entity Framework” books,
and many popular videos
on Pluralsight.com.

www.codemag.com 47codemag.com EF Core 6: Fulfilling the Bucket List

The PowerShell version of the command for use in Visual
Studio’s Package Manager Console is

Optimize-DbContext

By default, this creates a CompiledModels folder and gener-
ates the compiled model files in that folder. You can specify
your own folder name with the –outputdir parameter, if
you prefer. There are files for each entity describing all its
configurations in one place, a file for the model itself, and
a file that exposes the logic for building that particular
model with its entities. In my case, those files are named
AddressEntityType, PersonEntityType, PersonContextModel,
and PersonContextModelBuilder.

Now, all of these new classes are part of your project. The
last puzzle piece is to let the DbContext know to just use a
compiled model instance rather than go through the process
of reading all of the various sources of info it normally uses to
build up its understanding of the model. You’ll do this in the
context’s OnConfiguring class the DbContextOptionsBuilder.
UseModel, passing in the type defined in those final two files.

optionsBuilder
 .UseModel(PeopleContextModel.Instance)
 .UseSqlite("Data Source=MyDatabase.db");

This essentially short circuits the OnModelCreating method.
The parameter is the Instance property of the generated
model file. Internally, EF Core calls the Initialize method
and triggers the fast runtime creation of the model using
the streamlined classes.

You can watch Vickers demo his own sample app (https://
github.com/ajcvickers/CompiledModelsDemo) in the Com-
munity Standup from EF Core team (https://youtu.be/Xd-
hX3iLXAPk). This is where I initiated my own education on
compiled models. Additionally, you can hear team members
Rojansky and Andriy Svyrid talk about additional benefits,
starting at about 40 minutes, in the video.

Update Databases with Stand-Alone
Executable Migrations
Migrations has been a key feature for EF’s “code first” sup-
port since the early days. You define the domain models for
your software and migrations and then determine how to
apply those models and changes to the database schema.
The API for migrations is dependent on EF and .NET APIs.
Executing them in your CI/CD pipeline or just outside of
development is tricky. You do have runtime methods to
run migrations, such as the Database.Migrate() method.
However, this comes with a critical caveat. If your app is
a Web or serverless app (or API) where you may have mul-
tiple instances that point to a common database, there’s a
chance of hitting some damaging race conditions if mul-
tiple instances are concurrently attempting to migrate that
database. The same problem exists if you’re using Docker
containers to manage application load.

A typical path for solving this problem is to let migrations
generate SQL for you and use another mechanism for ex-
ecuting the SQL, for example, on production databases.

Migrations Bundles were introduced in EF Core 6 to provide
another tool in the DevOps quiver to solve this problem.

nificant gain. (Let’s not forget shout outs to Nino Floris and
Nikita Kazmin for contributions to this work.)

In the end, the gap between EF Core and Dapper was re-
duced from 55% to 4.5% and the overall speed of EF Core’s
queries based on the Fortunes benchmark improved by 70%.

This is truly commendable work and the team is thrilled to
finally have had time to focus on this. You can read a de-
tailed blog post by Rojansky at https://devblogs.microsoft.
com/dotnet/announcing-entity-framework-core-6-0-pre-
view-4-performance-edition/ and see how all of this was
put together in this GitHub issue: https://github.com/dot-
net/efcore/issues/23611.

Improved Startup Performance
with Compiled Models
Another area for performance improvement that was high-
lighted by the survey was the need to pre-compile the mod-
els described by a DbContext. This goes all the way back to
the very first version of Entity Framework; there were some
mechanisms for this over the years in EF but not in EF Core.
And “startup” is not exactly the correct word. The basic
workflow about how EF gets going in an application hasn’t
changed much over the years. At runtime, EF has to read
the DbContext and relevant entities along with any data
annotations and fluent configurations to build an in-mem-
ory version of the data model. This doesn’t happen when
you first instantiate that context, but the first time you ask
the context to do something. And that only happens once
per application instance. How many people have “tested”
EF performance by creating an app that instantiates a con-
text, does ONE thing, and then exits? And then writes a rant
about the terrible performance of EF? Well, that’s because
they’re incurring the startup cost of that context every
single time.

With a small model in an application—or perhaps a variety
of small models—that initial startup cost will most likely be
undetectable. But you may realize some benefit from com-
piled models in serverless apps with multiple instances, on
devices with minimal resources or even when repeatedly de-
bugging your app while you’re working on it.

The EF team ran a variety of performance tests using a rath-
er large and complex model with not only a lot of entities,
but a lot of relationships and a lot of non-conventional con-
figurations. In one of the EF Community Standups, Arthur
Vickers demoed an app that leverages BenchmarkDotNet
(https://benchmarkdotnet.org) to iterate the calls, then
gather and report the timings. The startup time for that first
use of a DbContext ran a little more than 10 times faster
when using the compiled model than when simply allowing
EF Core to work out the model at runtime.

I’ll show you how easy it is to pre-compile a model and have
your app use that. There are two steps: compiling the model
and then using the compiled model.

Compiling your model is simply a matter of running a CLI
command against your DbContext.

In the CLI, the command is:

dotnet ef dbcontext optimize

www.codemag.com48 codemag.com

In your production or CI/CD pipeline you’ll more likely want
to pass in the --connection parameter.

./efbundle --connection "DataSource=xyz.db"

This example is still calling a build from the command line.
But you can extrapolate to your DevOps tool of choice, like
calling efbundle from, for example, a Dockerfile that’s get-
ting its connection string from a Docker env variable.

Support for Temporal Tables
Support for what? Yep, I’d literally never heard of (or per-
haps remembered hearing of) temporal tables until this fea-
ture bubbled up in the EF Core 6 plans. But now that I’m
aware of them, I can see why this was a highly requested
feature for EF Core! Temporal tables are described in the
SQL standards and have implementations in several data-
bases, such as MariaDB, Oracle, PostgreSQL, and SQL Server.
Interestingly, IBM DB2 implemented their own twist on
temporal tables. SQL Server has supported them since SQL
Server 2016 and refers to them as “system-versioned tem-
poral tables.”

Temporal tables are an automated way for a database to
provide audit trails. When you designate a table as a tempo-
ral table, every time any data is changed in that table, the
data that it’s replacing is automatically stored in something
that’s akin to a sub-table, which is the temporal table’s his-
tory component. The temporal table must include two date
columns (in SQL Server, these must be datetime2) that sig-
nify the start and end moments when the values in that row
were true. They are a demarcated as “System Time” columns.
Not only will those always be tracked in the main table, but
it’s transferred to the history table as well. You can learn
more about temporal tables from the SQL Server perspective
at docs.microsoft.com/en-us/sql/relational-databases/
tables/temporal-tables. And thanks to EF Core, you don’t
have to worry about setting this up! Migrations will take
care of it, as you’ll read further on.

The main table always has the current state and is no dif-
ferent than any other table in that regard. But it’s possible
to query that table and include results from the historical
data. This means you can find out what the state of data is
at any given point in time. In SQL Server, there’s a FOR_SYS-
TEM_TIME clause with a number of sub-clauses that triggers
SQL Server to involve the history table.

EF Core 6 supports temporal tables in two ways. The first
is for configuration. If you flag an entity as mapping to a
temporal table, this triggers migrations to create the extra
table columns and history table.

The mapping is configured as a parameter of the ToTable
mapping with an IsTemporal method:

modelBuilder.Entity<Person>()
 .ToTable(tb => tb.IsTemporal());

The migration created based on this automatically adds in
the datetime2 properties (PeriodEnd and PeriodStart) as
shadow properties, along with a number of relevant an-
notations. There’s also a set of annotations on the table,
including one for specifying a history table. You can see the
migration file in the article’s downloads.

A Migration Bundle is a self-contained executable that can
be run on a variety of CLIs: PowerShell, Docker, SSH, and
more. It only requires that the .NET Runtime be available,
but you don’t have to install the SDK or any of the EF Core
packages. Further, you have the option of creating a to-
tally standalone version. Therefore, you can run it outside
of your application and have it as an explicit step in your
pipelines.

Creating the bundles is fairly simple, and, in fact, is merely
another command in the Migrations API.

In the dotnet CLI, the command extends from migrations.

dotnet ef migrations bundle

In Visual Studio’s Package Manager Console it’s:

Bundle-Migration

The command has additional parameters to force the run-
time to be included in the exe (making it truly self-con-
tained) as well as familiar parameters to specify the DbCon-
text, project, and startup project to use.

The resulting file is an executable named efbundle (with an
extension driven by the operating system you’re running
on) and is dropped into project’s path. You can specify the
name of the resulting file with the -o/--output parameter.

The bundle file is idempotent. It includes all of the migra-
tions, but it checks the database and doesn’t run any of the
migrations that have already been applied.

Your first test will most likely be directly on your develop-
ment computer after creating the bundle. In my case, that
was initially in the CLI on my MacBook where I had just
called the migrations bundle CLI command—in my project’s
folder. On macOS, in the directory where the bundle and
the project live, you’ll run the bundle by typing ./efbundle.
That tells the OS to run it from the current directory, not by
traversing the system’s PATH file. In Windows, you can just
run bundle.

Bundle, in this case, will be able to find the connection
string for the database as if I were running dotnet ef da-
tabase update whether it’s defined in a DbContext file,
a startup configuration, or appsettings file. In fact, ef-
bundle is running the database update command on your
behalf.

DECLARE @historyTableSchema sysname = SCHEMA_NAME()
EXEC(N'CREATE TABLE [People] (
 [Id] uniqueidentifier NOT NULL,
 [FirstName] nvarchar(max) NULL,
 [LastName] nvarchar(max) NULL,
 [MiddleName] nvarchar(max) NULL,
 [PeriodEnd] datetime2 GENERATED ALWAYS AS ROW END NOT NULL,
 [PeriodStart] datetime2 GENERATED ALWAYS AS ROW START
 NOT NULL,
 CONSTRAINT [PK_People] PRIMARY KEY ([Id]),
 PERIOD FOR SYSTEM_TIME([PeriodStart], [PeriodEnd])
) WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = [' + @historyTableSchema + N'].
[PersonHistory]))');
GO

Listing 1: TSQL created by a migration defining a temporal table

EF Core 6: Fulfilling the Bucket List

www.codemag.com 49codemag.com

SELECT [p].[Id], [p].[FirstName],
 [p].[LastName], [p].[MiddleName],
 [p].[PeriodEnd], [p].[PeriodStart]
FROM [People]
FOR SYSTEM_TIME
 AS OF '2021-08-19T18:19:00.0000000'
AS [p]

The result contained the same data I saw before, including
the row that had subsequently been deleted and the original
data prior to any edits.

This support makes it fairly easy to leverage temporal ta-
bles, thanks to migrations creating the proper schema and
LINQ creating the relevant SQL. I can see why those who’ve
been using temporal tables for years had surfaced this as
one of the more highly requested features for EF Core.

There are a few important notes to keep in mind. First, to
avoid side effects, some of EF Core’s temporal LINQ meth-
ods inject AsNoTracking into the query because, as Rojan-
sky explains, it’s impossible to track multiple instances
of the same data. However, the TemporalAsOf method is
able to return tracked results. Second, these methods are
only available on DbSet. Third, EF Core will treat the Perio-
dEnd and PeriodStart details as shadow properties allow-
ing you to always force them to return using EF.Property()
in a query. And finally, the TemporalAsOf method will
propagate to any related entities (mapped to temporal
tables) in a query for example if they are included or
projected.

Bulk Conventions and Bulk Value
Conversions
Specifying a convention for a particular type in your model
has been possible but a little cumbersome and not at all
discoverable. You had to drill into the model’s metadata in
the OnModelBuilding method.

Listing 1 shows the TSQL for generated by the migration,
which creates the People temporal table. Note that by the
final release of EF Core 6, there may be a slight change
to this, with the PeriodStart an PeriodEnd columns being
flagged as HIDDEN, thereby a SELECT * query would not re-
turn those columns.

Letting migrations create the table, you can see how it
works in Figure 1. The People table is tagged as a “System-
Versioned” table and it contains a sub-table called Person-
History, which is tagged as a History table. The columns
(not shown) in the history table are an exact match of the
People table columns. Having migrations set this all up for
you is truly a convenience.

Also note that the names for the tracking columns and his-
tory table are defaults. There are additional mappings that
let you configure the column and table names as well.

Now, onto the data. As you update or delete data from the
People table, SQL Server sets the values of the PeriodStart
and PeriodEnd columns accordingly and adds a new row
to PeopleHistory with the state of the data before those
changes. It also sets the PeriodStart and PeriodEnd columns
in the history table.

Queries that involve temporal data are referred to as “time
travel” queries. Note that you don’t explicitly query that
History table. Instead, SQL Server includes it as needed.

Here’s a simple TSQL query example for you, where I’m also
explicitly pulling in the temporal data columns because I’m
a curious cat:

SELECT TOP (1000) [Id],[FirstName],[LastName],
 [MiddleName], [PeriodEnd],[PeriodStart]
FROM [TemporalTest].[dbo].[People]
FOR System_Time AS OF '2021-08-19 18:19:00'

When the main table data is more recent than the System_
time I requested, SQL Server also looks in the history table.
Fiddling with different System_Time predicate values, I can
see different variations of the results data as I add and edit
them along the way. I can even see data that was deleted
after the AS OF date.

And now to EF Core’s queries. There are new LINQ methods
and expressions to support temporal tables.

•	 TemporalAsOf
•	 TemporalAll
•	 TemporalBetween
•	 TemporalFromTo
•	 TemporalContainedIn

The following query uses TemporalAsOf to return the People
data as of the same time as I did using SQL, time traveling
back to the state as of August 19, 2021 at 18:19:00 UTC.

var date=DateTime.Parse("2021-08-19 18:19:00");
var result=
 _context.People.TemporalAsOf(date).ToList();

The log shows that EF Core and the provider transformed
this into the following TSQL, essentially the same that I had
hand-coded.

Figure 1: The schema of a temporal table as displayed in
Azure Data Studio

EF Core 6: Fulfilling the Bucket List

www.codemag.com50 codemag.com

 .HasConversion(c=>c.ToString(),
 s=>Color.FromName(s));

The first persists an enum (AddressType) as a string rather
than the conventional mapping of an integer, e.g., “Home”
instead of 1. The second persists a property that’s a Sys-
tem.Drawing.Color as the string name of the color and then
transforms that string back to a Color type when it’s read
from the database. Having such an easy way to persist Color
was a revelation when value converters were first intro-
duced.

Now with configuration builders, you can be sure that any
AddressType enum found throughout your model will get
persisted as a string.

configurationBuilder.Properties<AddressType> ()
 .HaveConversion<string> ();

The signature I used for transforming the color, where I pass
in an expression describing how to save the data and an-
other for how to materialize the data from the database,
isn’t valid with HaveConversion. And that’s for an interest-
ing reason, as explained to me by EF team member, Andriy
Svyryd. Even if the API exposed it, the precompiled model
feature won’t be able to read it. Instead, you need to use a
more explicit path, which means building a custom Value-
Converter. I’ll include the code for my custom ColorToString-
Converter class in the article’s download.

With that class in play, I can now add another configuration
to ConfigureConventions to leverage the new ColorToString-
Converter class, ensuring that all Color properties through-
out the model will be persisted as strings.

configurationBuilder.Properties<Color>()
 .HaveConversion<ColorToStringConverter>();

If you have a particular property that shouldn’t follow the
that bulk conversion rule, you can specify it as a null conver-
sion in this way:

modelBuilder.Entity<Address>()
 .Property(ad=>ad.SomeProperty)
 .HasConversion((ValueConverter?)null);

Be sure not to do that in the case of properties like Color
that have no conventional way to map to data types.

I’ll share one last note about type mapping for a less com-
mon use case. The case is when you’re building a query us-
ing a custom type that EF Core can’t map to a data type.
The DefaultTypeMapping method helps solve this. For
an example of how to use this, check out the test named
“Can_use_custom_converters_without_prop” in this func-
tional test class (https://bit.ly/TypeMapTest) in the EF Core
GitHub repository.

More EF6 Parity for Fans of
GroupBy in Queries
The team is working to narrow the gap between EF6 and
EF Core to make it easier for developers to transition old
applications if needed or apply their existing knowledge
to new ones. In the category of querying, GroupBy has
not been given quite as much love since the early days of

foreach (var e in
 modelBuilder.Model.GetEntityTypes())
{
 foreach (var prop in e.GetProperties ()
 .Where (p => p.ClrType == typeof (string)))
 {
 prop.SetColumnType ("nvarchar(100)");
 }
}

The team revamped how models are configured under the
covers, referred to as pre-convention model configuration
(https://github.com/dotnet/efcore/issues/12229). In do-
ing so, they were able to simplify your interaction with the
APIs. With that change, you now have a way to define “bulk”
conventions that’s so much simpler that I literally found it
heart-warming.

Note that custom conventions didn’t make it into EF Core 6
but we’re likely to get them in the next version. Read more
in this GitHub issue: https://github.com/dotnet/efcore/is-
sues/214.

The revamped model builder gives DbContext a new virtual
method called ConfigureConventions along with a Model-
ConfiguratonBuilder class. This new class has methods for
bulk configurations for properties, as well as some other
methods such as IgnoreAny. ModelConfigurationBuilder.
Properties exposes a number of configurations similar to
ones you have via ModelBuilder.Entity().Properties.

You need to override the ConfigureConventions method, as
you do with OnModelBuilding and OnConfiguring. In this
case, I’ll use Properties.HaveColumnType, which works like
HasColumnType but more generically.

protected override void ConfigureConventions
 (ModelConfigurationBuilder configurationBuilder)
{
 configurationBuilder.Properties<string>()
 .HaveColumnType ("nvarchar(100)");
}

The other methods for configuring properties are AreFixed-
Length, AreUnicode, HaveAnnotation, HaveConverson,
HaveMaxLength, HavePrecision and UseCollation.

From that list, I want to call out the HaveConversion meth-
od. This is related to Value Converters that were introduced
in EF Core 2.1. In fact, I wrote about them in my CODE Fo-
cus article about EF Core 2.1 (https://www.codemag.com/
article/1807071). Value converters allow you to configure
mappings for CLR (or even your own) types that don’t have
direct translations to data types. There are a number of ways
to express a conversion, but one frustrating drawback has
been that you could only define a conversion for a single
property. If you have many properties of the same type
throughout your model, you have to write an explicit con-
version for every single one. For comparison, here are two
examples for converting individual properties.

modelBuilder.Entity<Address>()
 .Property(a=>a.AddressType)
 .HasConversion<string>();
modelBuilder.Entity<Address>()
 .Property(ad=>ad.StructureColor)

EF Core 6: Fulfilling the Bucket List

www.codemag.com 51codemag.com

tion to the Cosmos provider even back then was “wow, it’s
so much easier to use than the SDK!”. Another interesting
data point from the survey was that MongoDB was the most
requested provider. By investing in the Cosmos provider,
the team is also paving the way for other non-relational
providers. Yes, these are interesting points, but more inter-
esting is that some of the new support for the provider in
EF Core 6 better supports smart modeling for document
database storage.

Richer Logging Details
First, I want to point out the new and improved support
for logging events on the CosmosDB database. People re-
quested details that would help them gain better insight
into their resource use.

For example, Listing 2 shows logging output (filtered on
LogLevel.Informaton) in EF Core 6 for a query executed with
the CosmosDB provider.

The first section showing the QueryExecutionPlanned event
is the same as in EF Core 5. However, the following two sec-
tions showing the database command are new. EF Core 6
is more closely aligned with the logging we’ve come to ex-
pect from the other relational providers. But looking more
closely, notice the ReadNext details. That includes not only
the total round-trip time on your database but also the RUs
(resource units) that are key to how your Azure bill is cal-
culated.

The provider has additional new capabilities, such as raw
queries with CosmosFromSQL, as well as some fixes to its be-
havior. And I happen to agree with Jeremy Likness about two
other favorites: implicit ownership and support for primitive

EF Core. But there are now three additional query capa-
bilities involving GroupBy and aggregates that are part of
EF Core 6.

The first is that if you have navigations defined on our enti-
ties and you want to drill into those navigation objects after
grouping, EF Core was unable to achieve that. The work-
around was to break your query up and then pull the results
together after the fact. Now it’s possible to achieve that.
For example, imagine that you have a model with authors
and books with a one-to-many relationship between an au-
thor and their multiple books. (There are no co-authors in
this case).

You might want to see if there’s a pattern between author
first names and their likelihood to write about .NET. There-
fore, you want to write a query of authors, include books,
and see how many of their books have the word “.NET” in
the title.

The query:

var groupedAuthors=
 _context.Authors.Include(a=>a.Books)
 .GroupBy(a=>a.FirstName)
 .Select(g=>new
 {g.Key,AuthorCount=g.Count(),
 dotNetBooks=g.Sum(a=>a.Books
 .Count(b=>b.Title.Contains(".NET")))
 }).ToList();

This query fails in earlier versions of EF Core because the
GroupBy would not have provided the properties of the re-
lated data (Books) to be used by the Select method. The
exception suggests revising the query to perform some of
the work in a client-side query. In EF Core 6, it will now suc-
ceed. And the results of this query may highlight a surpris-
ing number of authors named Scott who have quite a few
books on .NET.

There are two other GroupBy features that were possible in
EF6 but haven’t been in EF Core until now.

•	 The ability to select Top N from a group.
•	 Using FirstOrDefault on groups.

You can read details of these in this GitHub issue if you’re in-
terested (https://github.com/dotnet/efcore/pull/25495).
Or just go forth and group!

A More Intuitive CosmosDB Provider
I’ve saved the best for last because this was fun to explore.
Improvements to the provider for accessing Cosmos DB were
high on the wish list from the community. We’ve had the
Cosmos provider since EF Core 3, so in case you’re asking
yourself “but why does an ORM need to work with a non-
relational data store?” I answered that question in the EF
Core 3 article referenced above. However, developers have
asked why this non-relational provider got more love in this
version than any of the relational providers. One reason,
shared by Jeremy Likness, Sr. Program Manager for .NET
Data at Microsoft, is that the Cosmos DB team gets “in-
undated with requests” for features in the Azure SDK from
developers who prefer the EF Core APIs. In fact, if you look
back at that EF Core 3 article, you’ll see that my first reac-

dbug: 08/25/2021 14:22:18.213 CoreEventId.QueryExecutionPlanned[10107] (Microsoft.
EntityFrameworkCore.Query)
 Generated query execution expression:
 'queryContext => new QueryingEnumerable<Person>(
 (CosmosQueryContext)queryContext,
 SqlExpressionFactory,
 QuerySqlGeneratorFactory,
 [Cosmos.Query.Internal.SelectExpression],
 Func<QueryContext, JObject, Person>,
 PeopleContext,
 null,
 False,
 True
)'
info: 08/25/2021 14:22:18.273 CosmosEventId.ExecutingSqlQuery
 [30100] (Microsoft.EntityFrameworkCore.Database.Command)
 Executing SQL query for container 'PeopleContext' in
 partition '?' [Parameters=[]]
 SELECT c
 FROM root c
 WHERE (c["Discriminator"] = "Person")
info: 08/25/2021 14:22:19.292 CosmosEventId.ExecutedReadNext
 [30102] (Microsoft.EntityFrameworkCore.Database.Command)
 Executed ReadNext (983.9663 ms, 2.86 RU) ActivityId=
 '5b500af5-77eb-4513-a14c-bd5a00d45c4c',
 Container='PeopleContext', Partition='?', Parameters=[]
 SELECT c
 FROM root c
 WHERE (c["Discriminator"] = "Person")
dbug: 08/25/2021 14:22:22.535 CoreEventId.ContextDisposed[10407] (Microsoft.
EntityFrameworkCore.Infrastructure)
 'PeopleContext' disposed.

Listing 2: Logging output from EF Core 6’s Cosmos provider

EF Core 6: Fulfilling the Bucket List

www.codemag.com52 codemag.com

 LastName = last;
 }
 public string FullName
 => $"{FirstName.Trim()}
 {LastName.Trim()}";
}

There’s no identity key and I have no reason at all to create
a relationship between the two types. PersonName is a prop-
erty of Person as well as some other classes. With a rela-
tional database provider, I’d have to configure PersonName
as an Owned Entity of every type in which it’s a property.
When using the Cosmos provider (and let’s just assume that
this will resolve to future document database providers), I
don’t have to provide the configuration. PersonName will
always be nested within a Person document.

{
 "Id": "18369f48-c9c9-41e0-a6c1-427dcca4816b",
 "Discriminator": "Person",
 "id": "Person|
 18369f48-c9c9-41e0-a6c1-427dcca4816b",
 "Name": {
 "FirstName": "Andriy",
 "LastName": "Svyryd"
 }
}

You can also get nested documents with related entities—
related types that do have identity keys—but only in a par-
ticular scenario.

In my little model of people and addresses (where only one
person can live at a given address), the Person class has an
Addresses property:

public List<Address> Addresses { get; set; }

The address type is a true entity with a key property. There-
fore, I have a one-to-many relationship between Person and
Addresses.

In my first business rule scenario, I know that I’ll never in-
teract with addresses directly—only as part of a person ob-
ject—and therefore I haven’t defined a DbSet for Addresses
in the DbContext.

Because of these two attributes of my model, I can only cre-
ate or modify addresses in code as part of a Person object.
And the Cosmos provider automatically stores all address-
es as nested objects within person objects, as shown in
Figure 2.

In my second business scenario, I want my app to be able to
retrieve and persist addresses separately from their related
Person documents. Therefore, I’ve defined a DbSet<Address>
in the DbContext. In response to this, EF Core convention
stores addresses as separate documents.

A third scenario is this: I don’t want to have a
DbSet<Address> defined in my DbContext, but I still prefer
to have the Addresses persisted separately from the Person
objects for other apps to access directly. In this case, you
can explicitly configure the container for the Address type.
But it doesn’t have to get stored in a separate container.
If you explicitly specify the same container, the Addresses

collections and dictionaries. So I’ll show you these two fea-
tures and you can read about other Cosmos enhancements
with this filtered GitHub search: https://bit.ly/EFC6Github.

Conventionally Nested Documents aka Implicit Ownership
In document databases such as Cosmos DB, nested types are
expressed naturally in the stored JSON structure. EF Core 6
recognizes this for what is otherwise known as owned enti-
ties, as well as certain relationships in your model.

Owned entities are EF Core’s mechanism for identifying and
persisting complex data types that are properties of enti-
ties. What differentiates these classes is that they don’t
have their own key property. With relational databases, it’s
tricky to store and retrieve data that’s shaped this way and
you’re required to explicitly configure this relationship via
the OwnsOne and OwnsMany mappings. In doing so, EF Core
knows to infer key properties for the sake of persistence.
Otherwise, EF Core assumes that the types are related but
you forgot to specify a key property.

In the case of Cosmos DB where it’s easy to store nested
objects, it feels redundant to have to configure this rela-
tionship when it’s the obvious way to shape it. This is where
the new “implicit ownership” feature comes into EF Core 6.
However, it goes beyond the types that you currently define
as owned types. In EF Core 6, related dependents will also
be stored as sub documents in Cosmos DB. Let’s first look at
the complex types, which may also be value objects in your
system design.

There’s not much to it. Let’s say I have a type called Person-
Name where I have defined First and Last properties and a
method to concatenate these properties.

public class PersonName
{
 public string FirstName { get; private set;}
 public string LastName { get; private set; }
 public PersonName(string first, string last)
 {
 FirstName = first;

Figure 2: Addresses are nested within Person because there’s no DbSet<Address> defined.

EF Core 6: Fulfilling the Bucket List

www.codemag.com 53codemag.com

When querying for that data, it’s resolved as the original
List and Dictionary in the resulting objects.

There’s So Much More to EF Core 6
It’s never possible to share every new feature and improve-
ment in an article like this. Therefore, I’ve stuck to some of
the most impactful features of EF Core 6 that will be inter-
esting to most users. But there are still so many interest-
ing things brought to EF Core in this version. For example,
in the Cosmos provider, some other improvements are raw
SQL support, support for the Distinct operator (with limi-
tations) in queries, and scaffolding many-to-many rela-
tionships from existing databases. Thanks to community
member Willem Meints, there’s now support for String.
Concat in queries. Free text search in queries is now more
flexible thanks to JSON value converters. The EF Core in-
memory database now throws an exception if an attempt
is made to save a null value for a property marked as re-
quired.

There are hundreds of improvements. Some you will never
need, some are subtle and you may not notice, but each one
will have a subset of developers who will experience a seri-
ous benefit from its existence.

The What’s New document in the EF Core docs details more
of these higher impact changes (https://docs.microsoft.
com/en-us/ef/core/what-is-new/ef-core-6.0).

Although the collective bucket lists of desires for EF Core both
from the EF Core team and the community may be vast, EF
Core 6 goes a long way to checking off so many of those items.

get stored alongside the Person objects in the same data-
base container.

Here is the configuration I’ve used for that specific use
case.

modelBuilder.Entity<Address> ()
 .ToContainer(this.GetType().Name);

With the addresses stored separately, you can still interact
with them through the Set<Address> method, if needed.

Intelligently Storing Collections and Dictionaries
of Primitives
This is another feature that speaks to how differently docu-
ment databases store their data from relational databases.
And this capability also enhances how you model your enti-
ties when persisting them in a document database.

Here are two new properties in my person class: a list of
strings to store all of a person’s nicknames and a dictionary
where I can schedule what type of chocolate to eat on each
weekday.

public List<String> Nicknames{get;set;}
public Dictionary<string,string>
 DailyChocolate {get;set;}

EF Core has no way of conventionally persisting these prop-
erties. You’ll be told that the type List<String> and the type
Dictionary<Datetime,int> need keys defined. Well, you can’t
really do that! They aren’t entities! You can use a compli-
cated value converter to do the trick. Check out how in this
section of the EF Core docs (https://bit.ly/ConvertList-
String). Surely there’s a way to create a value converter for
a Dictionary as well.

Storing these into a document database is very natural, so
the new Cosmos provider handles it handily for you and by
convention, so there are no mappings required.

I’ve set some nicknames and the chocolate schedule in
code:

person.Nicknames = new List<string>
 { "Shay", "Roji", "Postgres Guy" };
person.DailyChocolate =
 new Dictionary<string, string>
 { { "Monday", "Dark Chocolate" },
 { "Tuesday", "Salted Milk Chocolate" }
 };

And then I call SaveChanges. Here’s how that resolves in the
stored document:

"Id": "429e66c1-f5e9-4750-98f9-c1de2b8a3758",
 "DailyChocolate": {
 "Monday": "Dark Chocolate",
 "Tuesday": "Salted Milk Chocolate"
 },
 "Discriminator": "Person",
 "Nicknames": [
 "Shay",
 "Roji",
 "Postgres Guy"
],

� Julie Lerman
�

SPONSORED SIDEBAR:

Need FREE Project
Advice? CODE Can Help!

Get no strings, free
advice on new or existing
software development
projects. CODE Consulting
experts have experience
in cloud, Web, desktop,
IoT, mobile, microservices,
containers, and DevOps
projects. Schedule
your free hour of CODE
consulting call with our
expert consultants today.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

EF Core 6: Fulfilling the Bucket List

www.codemag.comcodemag.com

ONLINE QUICK ID 2111082

54 An Introduction to .NET MAUI

An Introduction to .NET MAUI
Have you ever done any mobile development in the Microsoft ecosystem? Then you might’ve heard about Xamarin. The
technique, at this point synonymous with the company that originally built it, goes back all the way to 2011. It’s been Microsoft’s
main mobile development offering since 2016, when they acquired the company. Xamarin allows developers to use C# code

Steven Thewissen
www.thewissen.io
@devnl

Steven Thewissen is a
freelance .NET developer
from the Netherlands with
a focus on mobile and Web
development. He started
working with Xamarin in
2014 and has been in love
with it ever since. He also
enjoys spending time on
OSS projects, writing blogs,
and kicking a ball around
a soccer field.

to develop applications for iOS, Android, and UWP primarily,
using Visual Studio. It does all of this from a shared code-
base, meaning that unless you want to do something that’s
platform-specific, you can achieve most of what you want
from a single shared library.

The advent of Xamarin.Forms provided an additional ab-
straction layer on top of that shared codebase with which
you can define your user interface in a shared fashion
through XAML. To improve the development experience, Mi-
crosoft created a lot of additional tooling over the years,
making Xamarin a complete offering for mobile developers.
The natural next step of that effort was introduced at Build
2020 in the form of the .NET Multi-platform App UI (.NET
MAUI). In this article, I’ll dive deeper into what it is, and
what the biggest changes are compared to Xamarin.Forms.

What is .NET MAUI?
.NET MAUI is the evolution of what is currently Xamarin.Forms.
There’s now a single .NET 6 Base Class Library (BCL) where the
different types of workloads, such as iOS and Android, are now
all part of .NET. It effectively abstracts the details of the un-
derlying platform away from your code. If you’re running your
app on iOS, macOS, or Android, you can now rely on that com-
mon BCL to deliver a consistent API and behavior. On Windows,
CoreCLR is the .NET runtime that takes care of this.

Even though this BCL allows you to run the same shared
code on different platforms, it doesn’t allow you to share
your user interface definitions. The need for an additional
layer of UI abstraction is the problem that .NET MAUI will
solve, while simultaneously branching out towards various
additional desktop scenarios.

Looking at it from an architectural perspective, most of the
code you write will interact with the upper two layers of the
diagram shown in Figure 1. The .NET MAUI layer handles
communication with the layers below it. However, it won’t
prevent you from calling into these layers if you need access
to a platform-specific feature.

Making the move to .NET MAUI is also an opportunity for
the Xamarin.Forms team to rebuild the eight-year-old tool-
kit from the ground up and tackle some of the issues that
have been lingering at a lower level. Redesigning for per-
formance and extensibility is an integral part of this effort.
Companies all over the world use Xamarin extensively, so
making these changes in the current toolkit quickly becomes
nearly impossible. If you’ve previously used Xamarin.Forms
to build cross-platform user interfaces, you’ll notice many
similarities when starting to look into .NET MAUI. There are
a few differences worth exploring though.

The New Handlers Infrastructure
If you’ve ever done any Xamarin.Forms development, you
might be aware of the concept of a renderer. This is a piece
of code that takes care of rendering a specific control to
the screen in a consistent way across each platform. As a
developer, you can create a custom renderer that allows
you to target a specific type of control on a specific platform
and override its built-in behavior. For example, if you want
to remove the underline beneath an Android input field, you
could write a single custom renderer that would apply to all
your Entry fields and do just that.

In .NET MAUI the concept of renderers becomes obsolete,
but bringing your current renderers to .NET MAUI can be
done through the compatibility APIs. Moving forward, han-
dlers will replace renderers entirely. But why? There are a
few underlying architectural issues within the current Xama-
rin.Forms implementation that have spurred the develop-
ment of an alternative approach.

•	 The renderer and control are tightly coupled to one
another from within Xamarin.Forms, which isn’t ideal.

•	 You register your custom renderers on an assembly
level. This means that for every control, the platform
performs an assembly scan to find out if a custom ren-
derer should be applied while starting up your app.
This can be a rather slow process, relatively speaking.
The Xamarin.Forms platform renderers also inject ad-
ditional view elements that impact performance.

•	 Xamarin.Forms is an abstraction layer on top of multi-
ple different platforms. Because of this abstraction, it
can sometimes be quite difficult to reach the platform-
specific code you’re looking to change from within the
confines of a renderer. Private methods could block
your way to the thing you want to customize. The Xa-
marin.Forms team built additional constructs, such as
the platform-specifics API to get around this, but its
usage is typically not obvious to users.

•	 Creating a custom renderer isn’t very intuitive. You
need to inherit from a base renderer type that isn’t
well-known, and you can say the same for the meth-
ods that you need to override. When you only want
your custom renderer to apply to a specific instance
of a control, you need to create a custom type (e.g., a Figure 1: The architecture behind .NET MAUI

www.codemag.comcodemag.com 55An Introduction to .NET MAUI

In this sample, you use the generic ViewHandler to reach
the background color, because each view has a background
color property. Depending on the detail level you need, you
can use a more specific handler, such as the ButtonHandler.
This exposes the native button control directly, eliminating
the need to cast it. The existing built-in platform-specifics
API becomes obsolete because of this new mapper diction-
ary. Next, let’s take a look at how you can change an exist-
ing custom renderer into a handler to see how the overhead
that currently exists has been improved.

Differences Between Renderers and Handlers
The Xamarin.Forms renderer implementation is fundamen-
tally a platform-specific implementation of a native control.
To create a renderer, you perform the following steps:

•	 Subclass the control you want to target. Although not
required, this is a good convention to adhere to.

•	 Create any public-facing properties you need in your
control.

•	 Create a subclass of the ViewRenderer derived class
responsible for creating the native control.

•	 Override OnElementChanged to customize the control.
This method is called when the control is created on screen.

•	 Override OnElementPropertyChanged when wanting
to target when a specific property changed its value.

•	 Add the ExportRenderer assembly attribute to make
it scannable.

•	 Consume the new custom control in your XAML file.

Let’s see how you can create something similar using .NET
MAUI. The process to create a handler is as follows:

•	 Create a subclass of the ViewHandler class responsible
for creating the native control.

•	 Override the CreateNativeView method that renders
the native control.

•	 Create the mapper dictionary to respond to property
changes.

•	 Register the handler in the startup class.

Although similarities exist between the two, the .NET MAUI
implementation is a lot leaner. A lot of the technical bag-
gage that came with the custom renderers has also been
cleaned up, in part due to changes within the .NET MAUI
internals. You can find the architecture for the handler in-
frastructure outlined in Figure 3. This sample indicates the
layers a button goes through to render to the device screen.

CustomButton), target the renderer at that, and use
that control instead of just a regular Button. This adds
a lot of unnecessary code overhead.

Although those all sound like good reasons to improve, why
change now? With this opportunity of reshaping the plat-
form comes the chance for some fundamental rethinking
of concepts like these that have been a bit of a sore spot.
On the renderers side alone, the benefits are huge when it
comes to performance, API simplification, and homogeniza-
tion.

Reshaping the Underlying Infrastructure
The first step in reshaping the underlying infrastructure
is to make sure to remove the current tight coupling with
the controls. The .NET MAUI team achieved this by putting
them behind an interface and having all the individual com-
ponents interact with the interface. That way, it becomes
easy to make different implementations of something like
an IButton, while making sure the underlying infrastructure
handles all these implementations in the same way. Figure
2 shows how that looks from a conceptual perspective.

To prevent the need for assembly scanning with reflection,
the team decided to change the way handlers are regis-
tered. Instead of registering them on an assembly level
through attributes, handlers are explicitly registered by the
platform, and you can now explicitly register any custom
handlers in your startup code. I’ll touch upon how to do
this later in this article, but this eliminates the need for the
assembly scanning penalty that you get on startup.

When it comes to making things hidden deep inside the na-
tive platform more easily reachable, the team has taken the
approach of defining a mapper dictionary. The mapper is a
dictionary with the properties (and actions) defined in the
interface of a specific control that offers direct access to
the native view object. Casting this native view object to the
right type gives you instant access to platform-specific code
from your shared code. The following sample shows how you
can call into the mapper dictionary for a generic view and
set its background color through a piece of platform-specific
code. It also shows how to reach the native view.

#if __ANDROID__
ViewHandler
 .ViewMapper[nameof(IView.BackgroundColor)] =
 (h, v) => (h.NativeView as AView)
 .SetBackgroundColor(Color.Green);

var textView = label.Handler.NativeView;

#endif

Figure 2: Abstracting away the tight coupling to the
control implementations Figure 3: The .NET MAUI handler architecture

www.codemag.comcodemag.com

public static void MapText(MyButtonHandler handler,
 IMyButton button)
{
 handler.NativeView?.SetTitle(button.Text,
 UIControlState.Normal);
}

The last thing left to do to make this handler provide cus-
tom behavior to your button is to register it. As you recall,
.NET MAUI doesn’t use assembly scanning anymore. You
need to manually register the handler on startup. The next
section covers how you can do that.

Adopting the .NET Generic Host
Coming from the ASP.NET Core space, you may already be
aware of the .NET Generic Host model. It provides a clean
way to configure and start up your apps. It does so by stan-
dardizing things like configuration, dependency injection,
logging and more. The object is commonly referred to as
encapsulating all of this as the host, and it’s typically con-
figured through the Main method in a Program class. Alter-
natively, a Startup class can also provide an entry point to
configuring the host. This is what the out-of-the-box ge-
neric host in ASP.NET Core looks like:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder
 CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Because .NET MAUI will also use the .NET Generic Host mod-
el, you’ll be able to initialize your apps from a single loca-
tion moving forward. It also provides the ability to configure
fonts, services, and third-party libraries from a centralized
location. You do this by creating a MauiProgram class with a
CreateMauiApp method. Every platform invokes this meth-
od automatically when your app initializes.

using Microsoft.Maui;
using Microsoft.Maui.Hosting;

public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureFonts(fonts =>
 {
 fonts.AddFont("ComicSans.ttf",
 "ComicSans");
 });

Implementing a Handler
To implement a custom handler, start by creating a control-
specific interface. You want loose coupling between control and
handlers, as mentioned earlier. To avoid holding references to
cross-platform controls, you need an interface for your control.

public interface IMyButton : IView
{
 public string Text { get; }
 public Color TextColor { get; }
 void Completed();
}

By having your custom control implement this interface, you
can target this specific type of control from your handler.

public class MyButton : View, IMyButton
{

}

Next, create a handler targeting the interface you defined
earlier on each platform where you want to create platform-
specific behavior. In this sample, you target Apple’s UIButton
control, which is the native button implementation on iOS.

public partial class MyButtonHandler :
 ViewHandler<IMyButton, UIButton>
{

}

Because this handler inherits from ViewHandler, you need
to implement the CreateNativeView method.

protected override UIButton CreateNativeView()
{
 return new UIButton();
}

You can use this method to override default values and in-
teract with the native control before it’s created. That way,
you can set a lot of the things that you would previously
do in a custom renderer. Additional methods exist to tackle
different scenarios, but I won’t go into that in this article.

Working with the Mapper
I mentioned the mapper earlier in this article. It’s the replace-
ment of the OnElementChanged method in Xamarin.Forms,
which makes it responsible for handling property changes in
the handler. This is also the place where you can hook into
these changes with your custom code. Here’s what the property
mapper for the IMyButton you created earlier would look like:

public static PropertyMapper<IMyButton,
 MyButtonHandler> MyButtonMapper =
 new PropertyMapper<IMyButton, MyButtonHandler>
 (ViewHandler.ViewMapper)
{
 [nameof(ICustomEntry.Text)] = MapText,
 [nameof(ICustomEntry.TextColor)] = MapTextColor
};

The dictionary maps properties to static methods that you
can use to handle the property changes and customize the
behavior:

56 An Introduction to .NET MAUI

www.codemag.comcodemag.com

 };

#endif

This sample uses compiler directives to indicate that the
handler code should only run on the Android platform be-
cause it uses APIs that are unavailable on other platforms.
If you’re doing a lot of platform-specific code, you might
want to consider using other multi-targeting conventions
instead of littering your code with compiler directives. This
essentially means separating your platform-specific code
into platform-specific files suffixed with the platform name.
By using conditional statements in your project file, you can
then ensure that only the platform-specific files are includ-
ed when compiling for those specific platforms.

Using Existing Xamarin.Forms Custom Renderers
If you’re looking to migrate an existing Xamarin.Forms
app to .NET MAUI, you might already have written custom
renderers to handle some of the functionality of your app.
These are usable in .NET MAUI without too much adjust-
ment, but it’s advisable to port them over to the handler
infrastructure. To use a Xamarin.Forms, custom renderer
register it in the MauiProgram class.

var builder = MauiApp.CreateBuilder();

#if __ANDROID__

 builder.UseMauiApp<App>()
 .ConfigureMauiHandlers(handlers =>
 {
 handlers.AddCompatibilityRenderer(
 typeof(Microsoft.Maui.Controls.BoxView),
 typeof(MyBoxRenderer));
 });

#endif

return builder;

Using the AddCompatibilityRenderer method, you can hook
up a custom renderer to a .NET MAUI control. You need to do
this on a per-platform basis, so if you have multiple platforms,
you’ll need to add the renderer for each platform individually.

Moving Resources to a Single Project
One of the common pet peeves with Xamarin.Forms is the need
to copy a lot of similar resources across multiple projects. If,
for example, you have a specific image you want to use in your
app, you must include it in all the separate platform projects,
and preferably provide it in all the different device resolutions
you’d like your app to support. Other types of resources, such
as fonts and app icons suffer from a similar issue.

The new Single Project feature in .NET MAUI unifies all these
resources into a shared head project that can target every
supported platform. The .NET MAUI build tasks will then make
sure that these resources end up in the right location when
compiling down to the platform-specific artifacts. The single
project approach will also improve experiences such as edit-
ing the app manifest and managing NuGet packages. Figure
4 shows a mockup of what the single project experience could
look like in Visual Studio. The same project that also contains
your other shared logic will also contain the shared resources.

 return builder.Build();
 }
}

The bare minimum this MauiProgram class needs to do is to
build and return a MauiApp. The Application class, refer-
enced as App in the UseMauiApp method, is the root object
of your application. This defines the window in which it runs
when startup has completed. The App is also where you de-
fine the starting page of your app.

using Microsoft.Maui;
using Microsoft.Maui.Controls;

public partial class App : Application
{
 public App()
 {
 InitializeComponent();
 MainPage = new MainPage();
 }
}

I covered the new concept of handlers earlier in this article. If
you’re looking to hook into this new handler architecture, the
MauiProgram class is where you register them. You do this by
calling the ConfigureMauiHandlers method and calling the
AddHandler method on the current collection of handlers.

using Microsoft.Maui;
using Microsoft.Maui.Hosting;

public static class MauiProgram
{
 public static MauiApp CreateMauiApp()
 {
 var builder = MauiApp.CreateBuilder();

 builder
 .UseMauiApp<App>()
 .ConfigureMauiHandlers(handlers =>
 {
 handlers.AddHandler(typeof(MyEntry),
 typeof(MyEntryHandler));
 });

 return builder.Build();
 }
}

In this sample, you’re applying the MyEntryHandler to all in-
stances of MyEntry. The code in this handler will therefore run
against any object of type MyEntry in your mobile app. This is
the preferred solution for when you want to target a completely
new control with your handler. If all you want to do is change a
property on an out-of-the-box control, you can do this straight
from the MauiProgram class as well, or really anywhere you
know your code will run prior to the control being used.

#if __ANDROID__

Microsoft.Maui.Handlers.ButtonHandler
 .ButtonMapper["MyCustomization"] = (handler, view)
 => {
 handler.NativeView
 .SetBackgroundColor(Color.Green);

Figure 4: The new Single Project
experience in Visual Studio

57An Introduction to .NET MAUI

www.codemag.comcodemag.com

By using extensive logging, as shown in Figure 5, you’ll be
able to know all the steps the tool has taken to upgrade
your project. This will also help you debug potential issues
during your migration.

During the early days of .NET MAUI, there might not yet be
adequate support for some of your NuGet packages. The
.NET Upgrade Assistant works with analyzers to go through
and validate whether these packages can be safely removed
or upgraded to a different version.

Although it’s not 100% able to upgrade your project, it
does take away a lot of the tedious renaming and repeat-
ing steps. As a developer, you’ll have to upgrade all your
dependencies accordingly and manually register any of your
compatibility services and renderers. Microsoft has stated
that they will try to minimize the effort this takes as much
as possible. Additional documentation on the exact process
will be made available closer to release.

Check out the .NET Upgrade Assistant at: https://dotnet.
microsoft.com/platform/upgrade-assistant

Conclusion
Developers who’ve worked with Xamarin.Forms in the past
will find a lot of things in .NET MAUI to be familiar. The un-
derlying changes to infrastructure, broader platform scope,
and overall unification into .NET 6 also make it appealing to
people new to the platform. Centralizing a lot more resourc-
es and code into the shared library using the single project
feature greatly simplifies solution management. Additional
performance improvements through using handlers gives
the seasoned Xamarin developer something to explore.

Although the version of .NET MAUI in .NET 6 is highly antici-
pated, it’s also only the first version of the platform. I per-
sonally expect a lot of additional features coming soon, and
best of all; the entire platform is open source. This means
that you and everyone else in the .NET ecosystem can con-
tribute to improve and enhance the platform. I’m certainly
curious to see what the future holds!

If you want to try out .NET MAUI for yourself, you can check
out the GitHub repository (https://github.com/dotnet/maui)
and the Microsoft Docs (https://docs.microsoft.com/dotnet/
maui/), which already provide content on getting started.

What Will Happen to Other Popular
Libraries?
A lot of publicly maintained libraries will need to be ported
over to .NET MAUI by their creators. .NET Standard librar-
ies without any Xamarin.Forms types will likely work with-
out any updates. Other libraries will need to adopt the new
interfaces and types and recompile as .NET 6-compatible
NuGets. Some of these have already started this process
by releasing early alpha/beta versions of their libraries. If
you’ve ever developed a Xamarin application in the past,
you’ve most likely also used Xamarin.Essentials and/or the
Xamarin Community Toolkit.

Essentials now ships as part of .NET MAUI and resides in the
Microsoft.Maui.Essentials namespace.

Just like Xamarin.Forms is evolving into .NET MAUI, the
Xamarin Community Toolkit is evolving as well and will be
known as the .NET MAUI Community Toolkit moving forward.
It will still be the fully open-source, community-supported
library that it is today, but it’s merging with the Windows
Community Toolkit, which allows more efficient code shar-
ing and combining engineering efforts across both toolkits.
The Xamarin Community Toolkit will also receive service up-
dates on the same public schedule as Xamarin.Forms.

Check out the .NET MAUI Community Toolkit at: https://
github.com/CommunityToolkit/Maui

Transitioning Your Existing App
to .NET MAUI
Although Microsoft doesn’t recommend porting your ex-
isting production apps to .NET MAUI right now, providing
an upgrade path once .NET MAUI releases has always been
a priority. Due to the existing similarities between Xama-
rin.Forms and .NET MAUI, the migration process can be
straightforward. The .NET Upgrade Assistant is a tool that
currently exists to help you upgrade from .NET Framework
to .NET 5. With the help of an extension on top of the .NET
Upgrade Assistant, you’re able to automate migrating your
Xamarin.Forms projects to a .NET MAUI SDK-style project
while also performing some well-known namespace changes
in your code. It does so by comparing your project files to
what they need to be in order to be compatible with .NET
MAUI. The .NET Upgrade Assistant then suggests the steps
to take to automatically upgrade and convert your proj-
ects. It also maps specific project properties and attributes
to their new versions, while stripping out obsoleted ones.

Figure 5: Informational output from the .NET Upgrade Assistant for .NET MAUI

� Steven Thewissen
�

SPONSORED SIDEBAR:

Ready to Modernize
a Legacy App?

Need FREE advice on
migrating yesterday’s
legacy applications
to today’s modern
platforms? Get answers
by taking advantage of
CODE Consulting’s years
of experience by
contacting us today to
schedule your free hour
of CODE consulting call.
No strings. No commitment.
Just CODE. For more
information, visit
www.codemag.com/
consulting or email us at
info@codemag.com.

58 An Introduction to .NET MAUI

www.codemag.com 59codemag.com

ONLINE QUICK ID 2111092

Blazor Hybrid Web Apps with .NET MAUI

Blazor Hybrid Web Apps with .NET MAUI
Microsoft has introduced the highly anticipated Blazor framework in ASP.NET Core 3.0. In .NET 5.0, Blazor received significant
updates to its component model, plus speed improvements and pre-rendering capabilities. Blazor’s initial focus was to allow
developers to target the browser using the .NET stack with little or no JavaScript required, all without a single browser plug-in.

Ed Charbeneau
Ed.charbeneau@progress.com
@EdCharbeneau

Ed is a Microsoft MVP and
an international speaker,
writer, online influencer, a
Pr. Developer Advocate for
Progress, and expert on all
things Web development. Ed
enjoys geeking out to cool
new tech, brainstorming
about future technology,
and admiring great design.

Ed has shared his insights
and experiences through
training, live streaming,
and podcasting at many
industry events around the
world including Microsoft
Build, DevReach, Oredev,
and Codemash. He’s a com-
munity builder who regu-
larly live streams on Twitch
and shares knowledge at
meetups. Ed has defined,
architected, and imple-
mented line-of-business
solutions with a touch of
style and UX best practices.
He continues to bring this
level of detail to the Telerik
UI products.

The key to Blazor’s success is its ability to enable .NET devel-
opers by leveraging their existing skills. Using Blazor, .NET
developers can build a full-stack application using only .NET
technologies.

In .NET 6.0, the Blazor framework finds yet another path for
developer success with .NET MAUI. MAUI provides a set of tech-
nologies that enable apps to run on Web, desktop, and mo-
bile. This new pattern is named Blazor Hybrid and, once again,
developers are empowered to use their existing skills to reach
even more ecosystems. With Blazor Hybrid, native desktop on
Android, iOS, macOS, and Windows are now within reach.

.NET MAUI stands for .NET
Multi-platform App UI.

Bringing Blazor to the Desktop
Using Blazor for client-side Web UI with .NET is a fantastic
solution, but sometimes full access to the native capabili-
ties of the device is required and out of reach of Blazor on
the Web. Blazor Hybrid combines Web technologies (HTML,
CSS, and optionally JavaScript) with native in .NET MAUI
Blazor. MAUI is a cross-platform framework for creating na-
tive mobile and desktop apps with C# and XAML. MAUI uses
a single shared code-base to run on Android, iOS, macOS,
and Windows, as illustrated by Figure 1.

Bringing Blazor to the desktop isn’t a new or unique idea.
It’s how .NET MAUI Blazor targets cross-platform develop-
ment that sets it apart from other solutions. To evaluate
.NET MAUI Blazor properly, you need to first understand

what the alternatives offer and what the tradeoffs are for
each. There are two widely accepted methods of running
Blazor on the desktop: Using Blazor as Progressive Web
Applications (PWAs) or using it as an Electron shell.

Progressive Web Applications
Progressive Web Applications (PWAs) are a type of Web appli-
cation that can be installed on an operating system without
the need for additional bundling and distribution systems.
Publishing to an app store, such as the Microsoft Store,
Google Play, or Apple App Store is optional and may re-
quire additional bundling. PWAs are built with Web-standard
technologies including HTML, CSS, JavaScript, and WebAs-
sembly, which work on a standards-compliant browser. PWA
features are supported to varying degrees on both desktop
and mobile with Apple lagging far behind in adoption.

Once a PWA is installed, the browser’s address bar and but-
tons (Chrome) are stripped away. Just as in a native applica-
tion, the PWA has a launch icon and interact natively with
the Windows task bar. A PWA gains an important feature
that further enhances the user experience: Service workers.
Service workers are part of the PWA specification that’s a
type of Web worker. Service workers are JavaScript code that
runs separately from the main browser thread, which can
provide an offline mode (intercepting network requests,
caching, or retrieving resources from the cache), and de-
liver push messages. Although PWAs can’t access operating
system-level APIs, they do feel much more native than a
traditional Web application by mimicking their behavior. An
example can be seen in Figure 2 with the Blazing Coffee
demo app from the Telerik website found at demos.Telerik.
com (https://demos.telerik.com/blazor-coffee/).

Blazor WebAssembly applications can easily take advantage
of PWA features by simply meeting the installation criteria
of a PWA. Therefore, a PWA option is already available for
Blazor when starting a new project from a template. Al-
though Blazor PWA apps can easily be created, there are
tradeoffs. Because there’s no .NET API support for service
workers, all functionalities must be done in JavaScript. And
because one of Blazor’s attractions is C#, this deters some
developers from venturing too deep into service workers.

Electron
Electron is an open-source framework for building native
desktop applications with Web technologies like JavaScript,
HTML, and CSS. Electron uses an embedded Chromium
wrapper that’s powered by Node.js. Electron allows you to
maintain one JavaScript codebase and create cross-plat-
form apps that work on Windows, macOS, and Linux. Many
popular desktop apps are essentially Electron Web apps. Vi-
sual Studio Code, Microsoft Teams, Slack, and Figma are all
electron apps that developers use daily.

Electron is more than just a Web wrapper as the framework
also provides a custom set of JavaScript APIs to interact with Figure 1: An expanded view of the MAUI platform

www.codemag.com60 codemag.com

running in interpreted mode, which is less performant than
its native desktop equivalent. Using Electron’s APIs using .NET
is done through Electron.NET, a wrapper around a JavaScript-
based Electron application with an embedded ASP.NET Core
application. Via an Electron.NET IPC bridge, Electron APIs are
invoked from the Blazor application. A block diagram of the
architecture is shown in Figure 3.

Although Blazor apps can be successful using Electron and
Electron.NET, there are tradeoffs. Electron is only for desk-
top applications, not mobile. Blazor apps rely on multiple
frameworks from different vendors and communities and
performance is not that of .NET running on the native oper-
ating system. In addition, API access is restricted to what’s
provided within the Electron and Electron.NET frameworks.

Introducing the Blazor Hybrid
Architecture
MAUI is the evolution of Xamarin.Forms, which initially
targeted iOS and Android, and with MAUI, expanded into
desktop. Using MAUI, you’ll write cross-platform applica-
tions in a single solution with the option of writing plat-
form-specific code as needed. Because MAUI is full-stack
.NET, sharing code, logic, testing, and tooling across the
solution is possible. The Blazor Hybrid pattern is built upon
MAUI and implemented through the BlazorWebView, a
MAUI component used to render an embedded Blazor Web
view using the WebView2 runtime.

.NET MAUI uses a single API to unify Android, iOS, macOS,
and Windows APIs into a write-once run-anywhere develop-
er experience. MAUI apps provide deep access into each na-
tive platform. .NET 6 introduces a series of platform-specific
frameworks: .NET for Android, .NET for iOS, .NET for macOS,
and Windows UI (WinUI) Library. The .NET 6 Base Class Li-
brary is shared among all the platforms while abstracting
the individual characteristics of each platform from your
code. The .NET runtime is used for the execution environ-
ment for MAUI applications, even though the underlying
implementations of the runtime may be different, depend-
ing on the host. For example, on Android, iOS, and macOS,
the environment is impended by Mono (a .NET runtime), and
on Windows, WinRT provides the environment with optimi-
zations for the Windows platform.

In a .NET MAUI app, you write code that primarily inter-
acts with the .NET MAUI API, shown in Figure 4 (1). .NET
MAUI then directly consumes the native platform APIs, as
in Figure 4 (3). In addition, app code may directly exercise
platform APIs, shown in Figure 4 (2), if required.

MAUI is more than an abstract BCL to share common busi-
ness logic on different platforms—it also unifies user in-
terface (UI) development too. .NET MAUI provides a single
framework for building the UIs for mobile and desktop
apps. Because each platform has their own models and ele-
ments used to describe their UI, using individual platform-
specific frameworks would be difficult to maintain. In-
stead, MAUI provides a common multi-platform framework
for creating user interfaces, while having the flexibility to
target specific platforms as needed. In addition to native
UI frameworks, MAUI also introduces the BlazorWebView.
Through a BlazorWebView component, MAUI apps can use
the Blazor Web framework creating a .NET MAUI Blazor
application.

the host operating system. These modules control native
desktop functionality, such as menus, dialogs, and tray icons.
Although the API does surface some native desktop function-
ality, it isn’t raw access to the full platform; instead, these
are a select set of common features between platforms. APIs
include access to the filesystem, running processes outside of
the browser sandbox, kiosk mode, screen recording, system-
tray support for minimized apps, and more.

Because Electron works by leveraging Web standard technolo-
gies via Chrome, it supports WebAssembly. This means that a
Blazor WebAssembly app can be embedded in an Electron shell
and transformed into a desktop application. Such applications
use the .NET runtime in the context of Blazor WebAssembly

Figure 2: The Telerik Blazing Coffee demo app installed as a PWA

Figure 3: A block diagram of a Blazor Electron app

Figure 4: A block diagram of the MAUI platform

Blazor Hybrid Web Apps with .NET MAUI

www.codemag.com 61codemag.com Blazor Hybrid Web Apps with .NET MAUI

app types. Some key differences are the duality of the hybrid
scenario where there’s overlap between the concepts of root-
level component views and routing. Let’s examine some of
the files to get an understanding of the purpose of each.

At the time of writing, the project uses .NET 6 preview 7.
Some of the project structure, files, and code may differ
from the final .NET 6 release. The MAUI.WinUI project will
likely consolidate under the /Platforms folder and isn’t
mentioned exclusively in the examples.

Startup.cs
Like most .NET apps, Startup is the entry point of the applica-
tion. As Startup is initialized, the application is constructed
and services are registered, the application is configured,
and despondency injection is resolved. In the following code
snippet, an application builder (appBuilder) is used to add
application features. You can see the Blazor Web applica-
tion registered in the first item with the method Register-
BlazorMauiWebView. Further down, the UseMauiApp<App>
method initializes the App application root. The App class
specifies the application’s MainPage, which is initialized to
the MainPage class. The remainder of the appBuilder registers
and configures services that are used with dependency injec-
tion (DI) throughout the entire application.

public class Startup : IStartup
{
 public void Configure(IAppHostBuilder appBuilder)
 {
 appBuilder
 .RegisterBlazorMauiWebView()
 .UseMicrosoftExtensionsServiceProviderFactory()
 .UseMauiApp<App>()
 .ConfigureFonts(fonts =>
 {

 fonts.AddFont("OpenSans-Regular.ttf",
"OpenSansRegular");
 })

	 .ConfigureServices(services =>
 {
 services.AddBlazorWebView();
 services

BlazorWebView and .NET MAUI Blazor
The Blazor Hybrid pattern uses a BlazorWebView component
that enables Blazor within a MAUI application, creating a
.NET MAUI Blazor application. .NET MAUI Blazor enables
both native and Web UI in a single application and they can
co-exist in a single view. With .NET MAUI Blazor, applica-
tions can leverage Blazor’s component model (Razor Com-
ponents), which uses HTML, CSS, and the Razor syntax. The
Blazor part of an app can reuse components, layouts, and
styles that are used in an existing regular Web app. Blazor-
WebView can be composed alongside native elements; ad-
ditionally, they leverage platform features and share state
with their native counterparts.

In .NET MAUI Blazor apps, all code, both for the native
UI parts and the Web UI parts, runs as .NET code on the
platform’s runtime using a single process. There’s no local
or remote Web server and no WebAssembly (WASM) in the
Blazor Hybrid pattern. The native UI components run as the
device’s standard UI components (button, label, etc.) and
the Web UI components are hosted in a Web view. The com-
ponents can share state using standard .NET patterns, such
as event handlers, dependency injection, or anything else
you’re already using in your apps today.

Creating a .NET MAUI Blazor
Application
Creating your first .NET MAUI Blazor Application is familiar,
yet new, territory for most developers. Although .NET tech-
nologies like Xamarin.Forms and Blazor have been around
for some time, using them together is a new experience. The
best way to ensure success is to install the latest updates for
all the technologies involved. Thankfully, there are install-
ers for the required SDKs and the version of Visual Studio
2022 with support for MAUI is just a few clicks away. Once
the prerequisites are installed, I’ll look at the .NET MAUI
Blazor template and get an understanding of how the proj-
ect is structured. Let’s install everything now.

Installing .NET MAUI
On Windows, from the Visual Studio Installer for Visual Stu-
dio 2022, select the new .NET MAUI workload. This MAUI
workload includes the .NET 6 SDK, the MAUI SDK, and MAUI
templates. For non-Windows users, choose your develop-
ment computer’s .NET 6 SDK installer from https://dotnet.
microsoft.com/, and then use the command line tool to in-
stall the MAUI workload by running dotnet workload install
maui. When the installation is complete, MAUI will be avail-
able from Visual Studio or the command line.

With the prerequisites installed, a new .NET MAUI Blazor app
is created using the MAUI-Blazor template. From Visual Stu-
dio, this is as simple as choosing the template from the File
> New dialog. For all other platforms, use the CLI command
dotnet new maui-blazor. Once the template has created a new
project, you can see how a .NET MAUI Blazor app is structured.

A .NET MAUI Blazor app shares some similarities with a tra-
ditional Blazor app with the addition of MAUI features, such
as a platform-specific feature folder and XAML files. Let’s ex-
amine the project and identify the importance of each part. A
newly constructed .NET MAUI Blazor app is shown in Figure 5.

At first glance, some familiar concepts may appear in Table
1, as .NET MAUI Blazor apps use patterns found in many .NET

Figure 5: A newly created
.NET MAUI Blazor app created
from the template

File or Folder Purpose
/Pages Razor component-based pages or features that will be rendered

within a WebView component.

/Platforms Platform-specific files, including resources, configurations, native
business logic, or native UI components.

/Resources Global application resources and static files.

/Shared Common Razor components and Layout components used in Blazor
WebViews.

/wwwroot Web resources used in Blazor Webviews. Ex: CSS, fonts, and images.

_imports.razor Global Using statements for Razor components and Pages.

App.xaml(.cs) The root-level application view.

Main.razor The root-level Blazor view and router.

MainPage.xaml The default view rendered by the root (App.xaml).

Startup.cs Application entry point, bootstrapping, and configuration.

/Pages/Counter.razor A sample component that counts button click events.

/Pages/FetchData.razor A sample component that fetches and displays data.

Table 1: A breakdown of .NET MAUI Blazor project folders and files

www.codemag.com62 codemag.comBlazor Hybrid Web Apps with .NET MAUI

 .AddSingleton<WeatherForecastService>();
 });
 }
}

MainPage.xaml(.cs)
In the MainPage shown in the snippet below, you can see
the first introduction of Blazor as a BlazorWebView. The
MainPage wraps the BlazorWebView directly within a Con-
tentPage, essentially creating a full-page Blazor view inside
of the application’s UI shell.

<ContentPage …>

 <b:BlazorWebView HostPage="wwwroot/index.html">
 <b:BlazorWebView.RootComponents>
 <b:RootComponent Selector="app"
 ComponentType="{x:Type local:Main}" />
 </b:BlazorWebView.RootComponents>
 </b:BlazorWebView>

</ContentPage>

The BlazorWebView uses a HostPage parameter to identify
the HTML page, which will bootstrap the Blazor application.
In the index.html shown in Listing 3, you’ll find the root
document that hosts the Blazor application within the view.
Unlike Blazor WebAssembly, this HTML file initializes Blazor
using blazor.webview.js instead of blazor.webassembly.js.
The distinction here is that Blazor isn’t using WebAssem-
bly, but rather, the .NET runtime of the host application.

Counter.razor
The Counter page is a simple component decorated with the
page directive. This component demonstrates the basic com-
position of a Razor Component (aka Blazor) including rout-
ing, data binding, and event binding/handling. Each portion
of component composition is highlighted in Figure 6.

The counter component uses a basic HTML button to incre-
ment a counter field that’s displayed within a paragraph
tag. Updates to the BlazorWebView’s DOM are handled by
the Blazor framework though data binding. You can see the
rendering of the counter component in Figure 7.

FetchData.razor
In the .NET MAUI Blazor project type, the Fetch Data page is a
component that uses data from a service. The Fetch Data com-
ponent demonstrates dependency injection and basic Razor
template concepts. This version of Fetch Data is very similar
to the example found in other Blazor application templates.

In Listing 1, at the top of the component following the
routing directive, dependency injection is declared. The @
inject directive instructs Blazor to resolve an instance of
ForecastService. The WeatherForecast is then used by the
component’s logic to fetch data and bind to an array of
WeatherForecast objects. Displaying the WeatherForecast
data is done by iterating over the forecasts collection and
binding the values to an HTML table.

Figure 6: The composition of the counter component has directives, markup, and logic
connected by data binding.

Figure 7: The Counter component
rendered in .NET MAUI Blazor

@inject WeatherForecastService ForecastService

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data...</p>

@if (forecasts == null)
{
 <p>Loading...</p>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>

 <tbody>
 @foreach (var forecast in forecasts)
 {
 <tr>
 <td>@forecast.Date.ToShortDateString()</td>
 <td>@forecast.TemperatureC</td>
 <td>@forecast.TemperatureF</td>
 <td>@forecast.Summary</td>
 </tr>
 }
 </tbody>
 </table>
}

@code {
 private WeatherForecast[] forecasts;
 protected override void OnInitialized()
 {
 forecasts = ForecastService.GetForecast();
 }
}

Listing 1: FetchData.razor

www.codemag.com 63codemag.com Blazor Hybrid Web Apps with .NET MAUI

nology are coming in .NET 6 with Ahead of Time Compilation
(AOT), it remains a tradeoff when choosing WebAssembly.
Similarly, Blazor server has tradeoffs as well. Although
Blazor Server gains the ability to run .NET natively on the
server, it requires a constant connection to the client and
the performance is indicative of the client’s latency.

As seen in Table 2, a .NET MAUI Blazor app has a unique posi-
tion in the Blazor ecosystem where it can eliminate these trad-
eoffs by running the .NET runtime supplied by the native plat-
form. Unlike Blazor WebAssembly, .NET MAUI Blazor doesn’t
use interpreted mode and performs as a device-native app.
Because .NET MAUI Blazor is processed locally, the tradeoffs
of Blazor Server are also circumvented. Although there are
nuances to each platform’s execution of the .NET runtime, as
noted in Table 2 footnotes 1-4, .NET MAUI Blazor’s execution
is “closer to the metal” than that of WebAssembly.

In addition to performance, .NET MAUI Blazor also has the
greatest potential for sharing a single codebase while target-
ing cross platform development. This includes the ability to
publish applications to all the major app stores with the added
ability to receive a mobile home screen icon or desktop icon.

Running .NET MAUI Blazor
When running the application from Visual Studio, you immedi-
ately see the cross-platform nature of MAUI, as shown in Figure
8. Choosing to “run” from Visual Studio involves selecting from
emulators and/or physical connected devices. Thankfully, mak-
ing connections to emulators and devices is made easy through
Visual Studio, a feature that has evolved from many years of
supporting Xamarin. When the application launches, you can
see the Blazor application running in a native shell, all without
needing a Web browser, or plug-in. In the sample provided, the
Blazor Web UI is used for all navigation, routing, and views in
the application. Included are the familiar counter and fetch
data examples, which are routine to Blazor Web projects.

The template is just a glimpse into how a Blazor application is
integrated with MAUI to form a .NET MAUI Blazor app. There
is much more to Blazor Hybrid than just a BlazorWebView
component.

Blazor Hybrid’s Superpowers
When Blazor was introduced for the Web, one of the primary
goals was to enable developers to build Web application UIs
using .NET. Blazor has been successful in this regard. Blazor
allows existing .NET code to work by using the .NET runtime
via WebAssembly. With Blazor Hybrid, the primary goal has
shifted slightly by extending the capabilities of .NET develop-
ers beyond the Web into the desktop and mobile space while
reusing HTML and CSS skills in addition to .NET. The Blazor
Hybrid pattern with .NET MAUI Blazor offers some unique
abilities that are not available with Web centric development.

Minimizing Tradeoffs by Running Native .NET
Blazor WebAssembly and Blazor Server come with tradeoffs.
You gain the capabilities of .NET in place of JavaScript at the
cost of abstraction. When using WebAssembly, the .NET run-
time operates in interpreted mode and isn’t as performant
as .NET running natively. Although advances to this tech-

Figure 8: The run dialog for a MAUI app in Visual Studio 2022

Feature Blazor Hybrid Blazor Electron Blazor PWA
Installable Yes Yes Yes

Publish to Store Yes Yes No

Access Native APIs via MAUI [1][2][3][4] via Electron.NET No

WebAssembly No [1][2][3][4] Yes Yes

HTML/CSS Yes Yes Yes

Desktop Yes Yes Yes

Android Yes No Yes

iOS Yes No Limited

macOS Yes Yes No

[1] Android apps built using .NET MAUI compile from C# into intermediate language (IL),
which is then just-in-time (JIT) compiled to a native assembly when the app launches.

[2] iOS apps built using .NET MAUI are fully ahead-of-time (AOT) compiled from C# into
native ARM assembly code.

[3] macOS apps built using .NET MAUI use Mac Catalyst, a solution from Apple that brings
your iOS app built with UIKit to the desktop and augments it with additional AppKit and
platform APIs, as required.

[4] Windows apps built using .NET MAUI use Windows UI Library (WinUI) 3 and WinRT
execution to create native apps that can target the Windows desktop and the Universal
Windows Platform (UWP).

Table 2: Comparing .NET MAUI Blazor capabilities with Electron and PWAs

www.codemag.com64 codemag.comBlazor Hybrid Web Apps with .NET MAUI

WebView2

The Microsoft Edge WebView2
control allows embedded
Web technologies (HTML, CSS,
and JavaScript) in native apps.
The WebView2 control uses
Microsoft Edge (Chromium) as
the rendering engine to display
the Web content in native apps.

With WebView2, Web code can
be embedded in different parts
of your native app, or a single
WebView instance can be used
to wrap the entirety of the app.

Distributing WebView2 with
an application can be resolved
in two ways. An “Evergreen
distribution” approach can be
used, which relies on an up-to-
date version of Chromium with
regular platform updates and
security patches. Alternatively, a
“Fixed Version” distribution can
be used by packaging a specific
version of the Chromium bits in
the app.

WebView2 is supported by
a wide range of Windows
versions from 7 and up, and
serves as a vehicle for migrating
legacy applications. Through
WebView2, an app can be
transitioned from an existing
technology to Web components
using a piece-by-piece strategy.

Leveraging APIs
.NET MAUI Blazor applications aren’t restricted to the same Web
sandbox that Blazor WebAssembly is. .NET MAUI Blazor apps
use the .NET 6 Base Class Library (BCL), which is implemented
across all platforms. .NET MAUI unifies cross-platform APIs into
a single API that allows a write-once run-anywhere developer
experience, while additionally providing deep access to every
aspect of each native platform. .NET MAUI also provides MAUI
Essentials, a cross-platform API for native device features.

Examples of functionality provided by .NET MAUI essentials
include:

•	 Access to sensors, such as the accelerometer, com-
pass, and gyroscope on devices

•	 Ability to check the device’s network connectivity
state and detect changes

•	 Information is provided about the device the app is
running on

•	 Copying and pasting text to the system clipboard be-
tween apps

•	 Picking single or multiple files from the device
•	 Storing data securely as key/value pairs
•	 Using built-in text-to-speech engines to read text

from the device
•	 Initiating browser-based authentication flows that lis-

ten for a callback to a specific app registered URL

In the sample code of Listing 2, you can read a CSV file
from disk using System.IO.StreamReader from the BCL. The
WeatherForecastService is a class that can be injected into
any MAUI view or a BlazorWebView. When the GetForecasts
method is called from the WeatherForecastService, a file from
disk is loaded into an array of WeatherForecast. The service
uses a cross-platform path for files Environment.Special-
Folder.LocalApplicationData to ensure device compatibility.
Once the path is established, the file is read into a stream
reader and processed using the open-source CSV reader,
CsvHelper. In the FetchData component, the WeatherFore-
castService is injected and the GetForecast method is called.
Once the data has been read from disk, the Razor syntax is
used to iterate over the data using HTML and CSS, as shown in
Listing 1. The view code is identical to that of the Blazor Maui
template because, only the service internals have changed.

public WeatherForecast[] GetForecast()
{
 string fileName = Path.Combine(
 Environment.GetFolderPath(
 Environment.SpecialFolder.LocalApplicationData)
 , "temp.csv");

 WeatherForecast[] weather;
 using (var reader = new StreamReader(fileName))
 using (var csv = new CsvReader(
 reader, CultureInfo.InvariantCulture))
 {
 weather = csv.GetRecords<WeatherForecast>()
 .ToArray();
 }
 return weather;
}

Listing 2: WeatherForecastService.cs

Figure 9: A .NET MAUI Blazor app fetching weather data
from disk, and running on mobile

Figure 10: A .NET MAUI Blazor app fetching data weather from disk, running Windows

www.codemag.com 65codemag.com Blazor Hybrid Web Apps with .NET MAUI

Running the app either on the desktop or mobile provides
the same experience. The CSV data read from disk is dis-
played in the hybrid view, shown in Figure 9 for mobile.

The CSV data read from disk is displayed in the hybrid view,
shown in Figure 10 for Windows desktop.

The examples provided are just one approach to using the
BlazorWebView with MAUI. In this scenario, Blazor is used
exclusively within the application shell providing the com-
plete UI and navigation by the Main component, which is
specified in the ComponentType parameter. Overtaking the
entire app with a BlazorWebView component is optional;
it can be added ad hoc to any XAML view and even mixed
with native UI components. Mixed UIs can share application
state and fully interact, as shown in Figure 11.

Hybrid Ecosystem
.NET 6 will further strengthen the developer ecosystem that
surrounds MAUI and Blazor. Since the very beginning when
Blazor was just an experiment, libraries supporting the app
model started springing up. The same excitement can be
seen with MAUI as well. Telerik, a brand synonymous with
.NET developers for nearly 20 years, has already announced
Telerik UI for MAUI (https://www.telerik.com/maui-ui).
Telerik has a dedicated MAUI solution and a dedicated
Blazor UI offering with 85+ components, embracing a future
where developers have the choice of using platform-native
UIs with MAUI and XAML, Blazor with HTML, or both UI
component libraries working together seamlessly. The key
takeaway here is that developers have choices as to how to
implement UI that is unprecedented in .NET development.

As the Blazor ecosystem continues to grow and flourish, it will
be further enhanced with packages enabled by MAUI via na-

Figure 11: A .NET MAUI Blazor app with mixed Native and
Web UI using a shared state.

html, body {
 font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}

.valid.modified:not([type=checkbox]) {
 outline: 1px solid #26b050;
}

.invalid {
 outline: 1px solid red;
}

.validation-message {
 color: red;
}

#blazor-error-ui {

 background: lightyellow;
 bottom: 0;
 box-shadow: 0 -1px 2px rgba(0, 0, 0, 0.2);
 display: none;
 left: 0;
 padding: 0.6rem 1.25rem 0.7rem 1.25rem;
 position: fixed;
 width: 100%;
 z-index: 1000;
}

 #blazor-error-ui .dismiss {
 cursor: pointer;
 position: absolute;
 right: 0.75rem;
 top: 0.5rem;
 }

Listing 4: app.css

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width,
initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
 <title>Blazor app</title>
 <base href="/" />
 <link href="{PROJECT NAME}.styles.css" rel="stylesheet" />
 <link href="app.css" rel="stylesheet" />
</head>

<body>
 <div id="app"></div>

 <div id="blazor-error-ui">
 An unhandled error has occurred.
 Reload

 </div>

 <script src="_framework/blazor.webview.js"></script>
</body>
</html>

Listing 3: Index.html

@using Microsoft.AspNetCore.Components.Web

<h1>Counter</h1>

<p>The current count is: @currentCount</p>
<button @onclick="IncrementCount">Count</button>

@code {
 int currentCount = 0;

 void IncrementCount()
 {
 currentCount++;
 }
}

Listing 5: Counter.razor

www.codemag.com66 codemag.comBlazor Hybrid Web Apps with .NET MAUI

Expectations are high here as developer options increase
due to the expanding reach of MAUI and Blazor Hybrid,
while new libraries and frameworks emerge to provide new
and unique solutions.

Migration Paths
If the Blazor Hybrid pattern using .NET MAUI Blazor seems
interesting but you’re currently developing for WPF or Win-
dows Forms, then hybrid feels out of reach. Traditionally,
migrating an existing app to a new platform requires a lot
of manually rewriting code, but the .NET team has provided
a transitional pathway. In .NET 6, a BlazorWebView com-
ponent was added to both WPF and Windows Forms. This
means that existing projects using .NET can be upgraded
to .NET 6.0, and, with a few steps, enable BlazorWebView.

By enabling BlazorWebView in WPF and Windows Forms, it’s pos-
sible to start decoupling UI investments from WPF and Windows
Forms. These Blazor-enabled projects only target the Windows
platform, unlike MAUI. This is a great way to modernize existing
desktop apps in a way that can be brought forward onto .NET
MAUI or used on the Web. By using Blazor to modernize exist-
ing Windows Forms and WPF apps, existing investments can be
leveraged with a transitional Blazor Hybrid application.

To use the new BlazorWebView controls, you first need to make
sure that you have WebView2 runtime installed. This is the same
WebView2 runtime used by Blazor Hybrid for .NET MAUI Blazor.

The following requirements must be met to add Blazor func-
tionality to an existing Windows Forms app:

•	 Update the Windows Forms app to target .NET 6.
•	 Update the SDK used in the app’s project (csproj) file

to Microsoft.NET.Sdk.Razor.
•	 Add a package reference to Microsoft.AspNetCore.

Components.WebView.WindowsForms.
•	 Add the wwwroot/index.html file from Listing 3 to the

project, replacing {PROJECT NAME} with the actual
project name.

•	 Add the app.css file from Listing 4, with some basic
styles to the wwwroot folder.

•	 For all files in the wwwroot folder, set the Copy to Out-
put Directory property to Copy if newer.

•	 Add a root Blazor component Counter.razor from List-
ing 5 to the project.

•	 Add a BlazorWebView control in Listing 6 to the de-
sired form to render the root Blazor component.

•	 Run the app to see your BlazorWebView in action,
shown in Figure 12.

To add Blazor functionality to an existing WPF app, follow the
same steps listed above for Windows Forms apps, except:

•	 Substitute a package reference for Microsoft.AspNet-
Core.Components.WebView.Wpf

•	 Add the BlazorWebView control in XAML, as shown in
Listing 7.

•	 Set up the service provider as a static resource in the
XAML code-behind file (such as MainWindow.xaml.cs),
as shown in Listing 8.

•	 To satisfy tooling requirements for the WPF runtime,
add an empty partial class from Listing 9 for the com-
ponent in Counter.razor.cs.

•	 Build and run your Blazor based WPF app, shown in
Figure 13.

var serviceCollection = new ServiceCollection();
serviceCollection.AddBlazorWebView();
var blazor = new BlazorWebView()
{
 Dock = DockStyle.Fill,
 HostPage = "wwwroot/index.html",
 Services = serviceCollection.BuildServiceProvider(),
};
blazor.RootComponents.Add<Counter>("#app");
Controls.Add(blazor);

Listing 6: MyForm.cs

<Window x:Class="WpfApp1.MainWindow"
 xmlns="…"
 xmlns:local="clr-namespace:WpfApp1"
 xmlns:blazor="clr-namespace:
Microsoft.AspNetCore.
Components.WebView.Wpf;
assembly=Microsoft.AspNetCore.Components.WebView.Wpf"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800">
 <Grid>
 <blazor:BlazorWebView HostPage="wwwroot/index.html"
Services="{StaticResource services}">
 <blazor:BlazorWebView.RootComponents>
 <blazor:RootComponent Selector="#app"
ComponentType="{x:Type local:Counter}" />
 </blazor:BlazorWebView.RootComponents>
 </blazor:BlazorWebView>
 </Grid>
</Window>

Listing 7: MainWindow.xaml

var serviceCollection = new ServiceCollection();
serviceCollection.AddBlazorWebView();
Resources.Add("services", serviceCollection.BuildServiceProvider());

Listing 8: MainWindow.xaml.cs

<StackLayout>
 <Label FontSize="30"
 Text="@("You pressed " + count + " times")" />
 <Button Text="+1"
 OnClick="@HandleClick" />
</StackLayout>

@code {
 int count;

 void HandleClick()
 {
 count++;
 }
}

Listing 10: Counter.razor (XML)

public partial class Counter { }	

Listing 9: Counter.razor.cs

tive platform integration and runtime execution. Libraries that
may have been hampered by incompatibilities prior to MAUI
find a new niche with Blazor Hybrid. For example, ML.NET, an
open source, cross-platform machine learning (ML) framework
for .NET devs, has seen limitations around WebAssembly. With
Blazor Hybrid, the compatibility problem becomes less relevant
as ML.NET and MAUI push to cover the same execution environ-
ments (https://devblogs.microsoft.com/dotnet/ml-net-june-
updates-model-builder/#ml-net-release).

www.codemag.com 67codemag.com Blazor Hybrid Web Apps with .NET MAUI

What to Expect Next
The Blazor Hybrid pattern and .NET MAUI Blazor marks a huge
milestone for .NET 6 and the work doesn’t end there. .NET 7
is expected in November 2022 and with it, even more Blazor
is anticipated. Another Blazor experiment, Blazor Mobile
Bindings, is likely to ship in the .NET 7 release. Blazor Mobile
Bindings is extension of the Xamarin > MAUI evolution that
uses Razor syntax to define UI components and behaviors. By
enabling the Razor syntax as a replacement for XAML, context
switching becomes almost trivial. In .NET 7 with Blazor Mobile
Bindings, .NET MAUI Blazor apps will have nearly identical
coding patterns whether it’s a native view (XML and Razor) or
Web-based view (HTML and Razor). In Listing 10, a Counter
component is composed of XML using the Razor syntax to cre-
ate a naïve UI. The Counter component looks very similar to
the HTML-based Web component, except for platform-native
StackLayout, Label, and Button components defined in XML.

Just as .NET MAUI Blazor apps using XAML, application UI
logic can be mixed using the BlazorWebView component.
With the Razor, the experience is even more seamless as
Razor directives and code blocks can be used and follow the
same conventions as HTML-based components. In Listing
11, a hybrid view uses both native UI and BlazorWebView to
display a counter while sharing app state among all compo-
nents. The @inject directive is safe to use in the context of
Blazor Mobile Bindings and provides dependency injection
for native components just as it does for Web components.
The similarities continue with Razor data binding on the
Label and Button components. The Web component code,
which will be rendered by the BlazorWebView, looks very
similar regarding syntax, as shown in Listing 12.

Blazor Mobile Bindings looks promising. It continues to blur
the boundaries between native and Web programming, further
extending the usefulness of existing .NET skills. Blazor has
found an audience with Web developers by offering a solution
to a .NET audience where JavaScript was the only player. Blazor
Hybrid and MAUI carry that same tradition with cross-platform
native app development via Blazor Mobile Bindings.

A New Era of Blazor Productivity, Again
When .NET 3.0 was released, it included Blazor for the first
time. At the time, I wrote an article entitled A New Era of Blazor
Productivity (https://codemag.com/Article/1911052/A-New-
Era-of-Productivity-with-Blazor). The sentiment I expressed
there holds true again: “As powerful as it is convenient,
Blazor makes a great choice for new applications. By com-
bining .NET technologies that you’re already using with an
intuitive component model, Blazor has created a new era of
productivity.”

With the Blazor Hybrid pattern, .NET and related tools shorten
the learning curve and makes cross-platform development ap-
proachable. When using a Blazor Hybrid pattern, the tradeoffs
with WebAssembly are reduced. Xamarin evolves to MAUI and
brings native APIs to Android, iOS, macOS, and Windows, while
BlazorWebViews enable Web architecture. As Blazor grows,
the community and ecosystem will continue to grow with so-
lutions for common problems. Blazor’s roadmap shows com-
mitment and promise that Blazor is here to stay by delivering
innovative technologies to help you build modern applications.

Figure 12: A Blazor Hybrid enabled WinForms application

Figure 13: A Blazor Hybrid-enabled WPF application

@inject CounterState CounterState

<ContentView>
 <StackLayout>

 <StackLayout Margin="new Thickness(20)">
 <Label

Text="@($"You pressed {CounterState.CurrentCount} times")"
FontSize="30" />

 <Button Text="Increment from native"
OnClick="@CounterState.IncrementCount" Padding="10" />

 </StackLayout>

 <BlazorWebView ContentRoot="WebUI/wwwroot"
 VerticalOptions="LayoutOptions.FillAndExpand">
 <FirstBlazorHybridApp.WebUI.App />
 </BlazorWebView>

 </StackLayout>
</ContentView>

@code {
 // initialization code
}

Listing 11: Main.razor

@inject CounterState CounterState

<div style="text-align: center; background-color: lightblue;">
 <div>

 You pressed @CounterState.CurrentCount times

 </div>
 <div>
 <button style="margin: 20px;" @onclick="ClickMe">

 Increment from HTML
 </button>

 </div>
</div>

@code
{
 private void ClickMe()
 {
 CounterState.IncrementCount();
 }

 // initialization code
}

Listing 12: App.razor

� Ed Charbeneau
�

www.codemag.com68 codemag.com

ONLINE QUICK ID 2111102

Power Up Your Power Apps with .NET 6 and Azure

Brady Gaster
bradyg@microsoft.com
www.bradygaster.com
@bradygaster

Brady Gaster is a principal
program manager in the
Developer Division at Mi-
crosoft, where he works on
SignalR, microservices, and
HTTP APIs. He collaborates
with teams across Microsoft
in hopes to make it exciting
for developers who work on
.NET apps to party in the
cloud. You can find Brady
on Twitter when he’s not
learning with (or from) his
two sons, tinkering with
code, or making music in
his home office using
various synthesizers
and guitars.

Power Up Your Power Apps
with .NET 6 and Azure
Power Apps are a great way to build business apps quickly and enable a citizen developer, who might be more familiar with
understanding and solving business problems than the technical nuances associated with writing code, to quickly flesh out the
design of an app and specify how it should function. Power Apps supports connectors that can integrate an app with a wide

range of data sources and services that professional devel-
opers can author to enable these users to build specialized
business apps quickly.

This article walks through how you can use .NET 6’s new
ASP.NET Core Minimal APIs to build an HTTP API and publish
it to Azure App Service, then import the API into Azure API
Management so you can integrate your API with multiple
services and third parties, monitor it, and secure it with Mi-
crosoft Identity Platform. With the API imported into API
Management and running nicely in Azure App Service, it
makes a fantastic back-end API for a mobile Power App.

The Business Problem
Some local entrepreneurs I know work in the construction
and civil engineering space, photographing complex work
sites like cellular towers that need reconfiguration. Using
Bing Maps or Google Earth to look at the pictures they get
from their field photographers to ascertain the location in
which they were standing when they took their site pictures
is time consuming. After spending hours reviewing the work
site, mapping software and the images, they can usually—
within a certain degree of success—figure out how to rede-
sign the site’s configuration in their imaging software.

When I heard about this conundrum, I thought what any
app developer thinks: It’s time to build an app to solve
this problem! After learning that most of their customers
use Office 365 for their communication and productivity, a
Power App solution seemed like a great idea, because Power
Apps and Office 365 work so well together. Our team was
nearing the release of ASP.NET Core 6, and I was so excited
about minimal APIs, I thought I’d put the two together to
do some “Fusion Development”—putting .NET, Azure, and
Power Apps together to churn out a useful app quickly.

Prerequisites
To build a minimal API, all you need is .NET 6. If you plan
on building Power Apps that use Azure compute resources,
you’ll need all the items listed below.

•	 .NET 6: You can download .NET at https://dot.net/
download.

•	 An Azure subscription: You can try Azure for free by
signing up at https://azure.microsoft.com.

•	 The Azure CLI: This can be downloaded from https://
docs.microsoft.com/cli/azure/install-azure-cli.

•	 A Power Apps subscription. You can set up your own Pow-
er Apps subscription at https://powerapps.microsoft.com.

•	 Visual Studio 2022: The recommended development
environment for the tasks in this article. You can down-
load it from https://visualstudio.com/preview.

Minimal APIs with ASP.NET Core 6
Minimal APIs, new in .NET 6, are a low-ceremony way to build
Web apps, small microservices, or HTTP APIs using ASP.NET
Core. Minimal APIs hook into all the hosting and routing ca-
pabilities you know in ASP.NET Core, but they’re based on C#
top-level statements from a code-cleanliness perspective.
There are few subtle changes between the process of creating
a minimal API and a Web API, but for getting started with a
new API or for experimentation, minimal can’t be beat.

The first difference you’ll notice is that a minimal API project is
indeed just that: the bare minimum amount of code and con-
figuration you need to get going, and that there’s no Startup.
cs file. Figure 1 shows the simplicity of a minimal API project,
or at least the minimum amount required to get going.

Minimal Means Less Ceremony Required to GET OK
Traditional Web API projects not only require you under-
stand the project layout—Controllers folder, Startup.cs for
some things, Program.cs for others—but there’s a bit of
ceremony involved to get an HTTP API outputting a string
from a Web server. In a traditional Web API project’s Con-
trollers folder, you’d have a HelloWorldController.cs file.
The HelloWorldController.cs file would represent a class in
the compiled app, with a single method that responds when
an HTTP request is made to the server’s “/hello” endpoint.

using Microsoft.AspNetCore.Mvc;

namespace SideBySide.WebApi.Controllers
{
 [Route("hello")]
 [ApiController]
 public class HelloWorldController
 : ControllerBase
 {
 [HttpGet]
 public ActionResult<string> Get()
 {
 return new
 OkObjectResult("Hello World");
 }
 }
}

This Controller wouldn’t even respond without the also-
requisite wire-up in a separate file, Startup.cs, that enables
MVC controllers, which is what Web API is built upon.

public void ConfigureServices(
 IServiceCollection services)
{
 services.AddControllers();
}

www.codemag.com 69codemag.com Power Up Your Power Apps with .NET 6 and Azure

https://github.com/bradygaster/Contoso.Construction/)
includes a Bicep file, deploy.bicep. It also contains a Power-
Shell script, setup.ps1, to run to create the entire Azure to-
pology shown in Figure 2, then build the .NET source code,
package it into a zip file, and publish it to Azure Web Apps.

Contoso’s field app enables their field photographers to
photograph job sites, so the essential technical require-
ments are to store uploaded images taken from a phone
camera, along with some string or numeric data associated
with each photo. From an app data flow perspective:

•	 The user uploads a photo taken by mobile phone camera.
•	 The image is stored in Azure Blob storage.
•	 A URL of image, geographic, and compass metadata asso-

ciated with the image is stored in an Azure SQL Database.

The deploy.bicep file included with this article’s sample
code creates all the Azure resources required to host the
minimal API code securely and enables use of it to the Job
Site Power App, starting with the Azure SQL database and
server, using the username and password parameters passed
in as top-level parameters of the Bicep template file.

Resource sqlServer
 Microsoft.Sql/servers@2014-04-01'
={
 name: '${resourceBaseName}srv'
 location: resourceGroup().location
 properties: {
 administratorLogin: sqlUsername
 administratorLoginPassword: sqlPassword
 }
}

Resource sqlServerDatabase
 'Microsoft.Sql/servers/databases@2014-04-01'
= {
 parent: sqlServer
 name: '${resourceBaseName}db'
 location: resourceGroup().location
 properties: {
 collation: 'SQL_Latin1_General_CP1_CI_AS'
 edition: 'Basic'

This means that you have two files to edit (at a minimum), a
few concepts to have to understand: the project structure,
controllers, routing attributes, and so on. With minimal
APIs, Microsoft has reduced the amount of code you’d need
to write to respond to an HTTP request. Rather than create
a controller file (and a class in your assembly), you simply
build the host and route the traffic to your code.

var builder =
 WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/hello", () => "hello world");

app.Run();

With minimal APIs, you get the same result in four lines ver-
sus 18 lines across multiple files, concepts, and more. With
that introduction and summary of how awesome minimal APIs
are in ASP.NET Core with .NET 6, let’s dive into how it’s going
to be easier for local entrepreneurs—who we’ll call Contoso
Construction for the purpose of this article—to make it easier
for construction and civil engineering site managers to figure
out how to interpret job site photography.

The Contoso Construction API
This app’s API will need to support very few elements of data;
you’ll record the precise geo-coordinates of a job site and the
images taken of that job site from various angles, along with
the compass heading of each photo. With those elements of
data, the site manager can be confident that they know exactly
where each photo was taken. The API you build as a back-end
for the Power App will need to support the following features:

•	 View all job sites.
•	 Create new job sites.
•	 Upload new photos of job sites, complete with the

geographic and compass metadata.
•	 View photos of a job site, along with the geo-location

of the photographer at the time of the shot, because
the site artists value not only knowing the address of
the work site, but the actual geolocation of each photo.

For the purposes of simplicity, I’ll forego the potential advan-
tages of integrating with the Microsoft Identity Platform or Mi-
crosoft Graph API to augment the API with organizational data
for the employees in the Azure Active Directory tenant or to dis-
tribute job sites by user, but that’d be a great follow-up topic.

Creating the Azure Resources Using Azure Bicep
The API allows app users to upload images, which are stored
in Azure blob containers. Metadata about the images—the geo-
coordinates of their location and their compass heading data, to
be specific—will be stored in an Azure SQL Database using Entity
Framework Core. Key Vault securely stores connection strings, so
an Azure Web App, in which my .NET 6 minimal API code will be
hosted, can connect to the storage and database securely (and
so I’ll never accidentally commit secrets to source control).

Bicep, a domain-specific language (DSL) that uses declara-
tive syntax to describe Azure resources, their configura-
tion, and their relationships with one another, offers de-
velopers a syntax more elegant than JSON for creating
and configuring cloud applications. The GitHub repository
containing the sample code for this article (located here:

Figure 1: A minimal Web API project structure

www.codemag.com70 codemag.com

The Fusion Development
Approach

Azure advocates and
engineers across the
Developer Division and
Power Platform at Microsoft
worked together to author an
introductory ebook on Fusion
Development. Download it
from https://docs.microsoft.
com/powerapps/guidance/
fusion-dev-ebook/.

 parent: keyVault
 name: 'ConnectionStrings—
AzureSqlConnectionString'
 properties: {
 value: 'Data Source=
tcp:${sqlServer.properties
 .fullyQualifiedDomainName},
 1433; Initial
 Catalog=${resourceBaseName}db;User
 Id=${sqlUsername};
 Password=${sqlPassword};'
 }
}

Resource storageSecret
 'Microsoft.KeyVault/vaults/secrets
 @2021-06-01-preview' = {
 parent: keyVault
 name: 'AzureStorageConnectionString'
 properties: {
 value: format('DefaultEndpointsProtocol=
 https;AccountName=${storage.name};
 AccountKey=${listKeys(storage.name,
 storage.apiVersion).keys[0].value};
 EndpointSuffix=core.windows.net')
 }
}

A setup script, setup.ps1, wraps up behind the environment
creation and deployment process. Executing setup.ps1 from
the article’s repository, providing the base resource name (in
this article’s case, contosodev), creates the Azure resources
shown in Figure 2. It then compiles the .NET minimal API code,
publishes it into a local self-contained build, and zips it up. The
script then uploads the zip file to Azure Web Apps and starts up.

.\setup.ps1 -resourceBaseName
<your-desired-name>

Now I’ll step through each part of the .NET minimal API
code—all of which you’ll find in the Program.cs file of the
repository for this article—to talk about how each of those
Azure resources will be used by the .NET code.

 maxSizeBytes: '2147483648'
 requestedServiceObjectiveName: 'Basic'
 }
}

The Azure Storage account and blob container get created
once the SQL database server’s creation completes.

Resource storage
 'Microsoft.Storage/storageAccounts@2021-02-01'
 = {
 name: '${resourceBaseName}strg'
 location: resourceGroup().location
 kind: 'StorageV2'
 sku: {
 name: 'Standard_LRS'
 }
}

Resource storageBlobContainer
 'Microsoft.Storage/storageAccounts
 /blobServices/containers@2021-04-01'
= {
 name: format('{0}/default/uploads',
 storage.name)
 dependsOn: [
 storage
]
 properties: {
 publicAccess: 'Blob'
 }
}

Stored as secure secrets in an Azure Key Vault, the SQL and
Storage connection strings can then be read at runtime by the
.NET minimal API code. Because those credentials are stored
in Key Vault, the API connects to SQL and Storage securely,
and you never have to worry about leaking a connection string.

Resource sqlSecret
'Microsoft.KeyVault/vaults/secrets
= {

Figure 2: The Azure resources used by the Contoso Construction app

Power Up Your Power Apps with .NET 6 and Azure

www.codemag.com 71codemag.com

// Add Azure Storage services to the app
builder.Services.AddAzureClients(_ =>
{
 _.AddBlobServiceClient(
 builder.Configuration
 ["AzureStorageConnectionString"]
);
});

Routing HTTP Traffic with Minimal API Methods
With the minimal API configured and connected to Azure re-
sources, the last piece I’ll explore is the routes. Each API
endpoint is routed individually, so you have a 1:1 correlation
between each HTTP endpoint in the API and the code that exe-
cutes to satisfy the request. MapGet denotes that any HTTP GET
request to the /jobs endpoint will be handled by this method.

Minimal is smart enough to know when each route method
parameter should come from the path or from the services col-
lection. You don’t need to add FromServices—it just works. The
Produces method is useful for specifying the shape of the API’s

Connect to Azure Resources via the Azure SDK
The Bicep deployment template creates two secrets in Key
Vault: one for the Azure SQL Database and the other for the
Azure Storage account. The .NET Core Azure Key Vault config-
uration provider reads those two configuration elements that
will be loaded in from the Azure Key Vault, not from appset-
tings.json. If you look at the Azure Key Vault secrets in the
Azure portal after executing the Bicep template against your
subscription, you’ll see the two secrets shown in Figure 3.

The minimal API code starts with host build-up, configura-
tion, and service registration. Much like my traditional Web
API code began with wiring up services in Startup.cs, so
too will I begin my development with minimal APIs. I’ll go
ahead and read the VaultUri environment variable and use
it to connect the minimal API code to the Azure Key Vault.

var builder =
WebApplication.CreateBuilder(args);

// Add Key Vault provider
var uri = Environment
 .GetEnvironmentVariable("VaultUri");

builder.Configuration.AddAzureKeyVault(
 new Uri(uri),
 new DefaultAzureCredential());

Calls to the configuration system for the SQL database and Azure
Storage connection strings are routed to Key Vault, and the mini-
mal API code uses the traditional approach of injecting the Entity
Framework Core DbContext class. See Listing 1 for a look at the
Entity Framework data objects. After the Entity Framework Core
database context is injected into the minimal API’s service collec-
tion it uses the Azure Extensions library’s AddAzureClients meth-
od to add an Azure Storage client to the services collection, too.

// Add the Entity Framework Core DBContext
builder.Services.AddDbContext<JobSiteDb>(_ =>
{
 _.UseSqlServer(
 builder.Configuration
 .GetConnectionString(
 "AzureSqlConnectionString"));
});

Figure 3: The SQL database and Azure Storage connection strings in Azure Key Vault

public class JobSitePhoto
{
 [DatabaseGenerated(
 DatabaseGeneratedOption.Identity)]
 public int Id { get; set; }
 public int Heading { get; set; }
 public int JobId { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public string PhotoUploadUrl { get; set; }
 = string.Empty;
}

public class Job
{
 [DatabaseGenerated(
 DatabaseGeneratedOption.Identity)]
 public int Id { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public string Name { get; set; }
 = string.Empty;
 public List<JobSitePhoto> Photos
 { get; set; } = new List<JobSitePhoto>();

}

class JobSiteDb : DbContext
{
 public JobSiteDb(
 DbContextOptions<JobSiteDb> options)
 : base(options) { }

 public DbSet<Job> Jobs
 => Set<Job>();

 public DbSet<JobSitePhoto> JobSitePhotos
 => Set<JobSitePhoto>();

 protected override void OnModelCreating(
 ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Job>()
 .HasMany(s => s.Photos);

 base.OnModelCreating(modelBuilder);
 }
}

Listing 1: The Entity Framework Core data objects

The OpenAPI
Specification

The OpenAPI Specification
exists as a language-agnostic
interface to RESTful APIs that
allows both humans and
computers to understand a
service’s capabilities without
the need for source code
or documentation. Learn
more about the OpenAPI
Specification at https://
swagger.io/specification/.

Power Up Your Power Apps with .NET 6 and Azure

www.codemag.com72 codemag.com

HTTP 200 when the job site record is found, or an HTTP 404 when
there’s no matching record. This demonstrates a canonical exam-
ple of how multiple Produces calls specify a variety of potential
request/response scenarios based on the API’s business logic.

// Enables GET of a specific job
app.MapGet("/jobs/{id}",
 async (int id, JobSiteDb db) =>
 await db.Jobs
 .Include("Photos")
 .FirstOrDefaultAsync(_ =>
 _.Id == id)
 is Job job
 ? Results.Ok(job)
 : Results.NotFound()
)
 .Produces<Job>(StatusCodes.Status200OK)
 .Produces(StatusCodes.Status404NotFound)
 .WithName("GetJob");

The CreateJob API method accepts an incoming Job object
and uses Entity Framework to create a new record in the
Jobs table, demonstrating the simplicity of handling com-
plex body payloads coming via HTTP POST requests.

// Enables creation of a new job
app.MapPost("/jobs/",
 async (Job job,
 JobSiteDb db) =>
 {
 db.Jobs.Add(job);
 await db.SaveChangesAsync();

 return Results.Created(
 $"/jobs/{job.Id}", job);
 })
 .Produces<Job>(StatusCodes.Status201Created)
 .WithName("CreateJob");

You can mix route parameters, body parameters, even ac-
cept form posts and file uploads. Listing 2 shows the API’s
file-uploading route, which accepts image uploads taken by
a Power App UI with a camera.

response payload and output content type. Minimal API’s With-
Name method is useful when you know you’ll want to integrate
your minimal API using OpenAPI descriptions. The WithName
method sets the value of the OpenAPI operationId attribute,
which is used heavily by code generators and API-consuming
tools and services (like Power Apps, which I’ll explore next).

// Enables GET of all jobs
app.MapGet("/jobs",
 async (JobSiteDb db) =>
 await db.Jobs.ToListAsync()
)
 .Produces<List<Job>>(
 StatusCodes.Status200OK)
 .WithName("GetAllJobs");

Route methods support route arguments or parameters. The Get-
Job API method takes an input parameter and then uses it in a
LINQ expression to query a SQL database using Entity Framework
Core. In the GetJob API method code, the API either returns an

Figure 4: Importing an API into Azure API Management using Bicep and Visual Studio Code

Figure 5: Creating a Power Platform Custom Connector from the API

Power Up Your Power Apps with .NET 6 and Azure

www.codemag.com 73codemag.com

calls the minimal API, clearing and re-filling the collection.
Figure 7 shows how to use the Data tab in Power Apps to
search for a custom connector, as well as the OnStart han-
dler in which the API will be called to load the collection of
job sites. As the app starts, OnStart fires, and the app calls
the API via the JobSiteSurveyAppAPI connector’s GetAll-
Jobs method.

The Power Apps Monitor helps with API debugging, as it
shows the requests and responses going to and from your
API. The monitor, shown in Figure 8, is great to have open
in another tab as build your app against your HTTP API.

Integrating the API in New Ways with OpenAPI
My favorite part of the set up script process in deploy.bicep
is when you import the OpenAPI description from the new-
ly-deployed app service into Azure API management. When
this part of the Bicep script runs, the OpenAPI description
automatically generated from the minimal API endpoints is
imported into Azure API management. Figure 4 shows this
exciting final step in the Bicep deployment process, and
how the Bicep extension for Visual Studio Code provides in-
editor support and assistance. It also comes pre-packaged
with dozens of fantastic snippets, so you don’t have to
guess as you’re learning the Bicep template syntax.

Azure API Management enables you to take all your indi-
vidual APIs running in App Service, in Azure Functions, in
Kubernetes—or even on-premises—and have a single place
to configure, secure, and monitor them. APIs imported into
Azure API Management can be used in a variety of ways, like
being exported to Power Platform as a Power Apps Custom
Connector. Custom Connectors are the “glue” that connects
the Power Platform—Power Automate, Power Apps, Power
BI, and so on—to your APIs running in Azure. In Figure 5
you’ll see how, in the Azure portal, API management en-
ables Power Platform export.

Use the API in a Low-Code Mobile
Power App
The mobile app built for this article within Power Apps has
five screens, two of which are simple maps that plot out job
sites or photographs of those job sites and their point of
origin. Field engineers click pins in the job site map screen
shown in Figure 6 to navigate to a second map showing
clickable icons of each of the job site photos. When users
click an icon in the photos map, photographs pop up in Info
Boxes taken at that specific location. This way, the field en-
gineers can make sure they’ve taken photos of the job sites
from all possible angles.

The job site map screen binds to a Collection named _job-
SiteCollection. In the Power App’s OnStart handler, the app

app.MapPost(
 "/jobs/{jobId}/photos/{lat}/{lng}/{heading}",
 async (HttpRequest req,
 int jobId,
 double lat,
 double lng,
 int heading,
 BlobServiceClient blobServiceClient,
 JobSiteDb db) =>
 {
 if (!req.HasFormContentType)
 {
 return Results.BadRequest();
 }

 var form = await req.ReadFormAsync();
 var file = form.Files["file"];

 if (file is null)
 return Results.BadRequest();

 using var upStream =
 file.OpenReadStream();

 var blobClient = blobServiceClient
 .GetBlobContainerClient("uploads")
 .GetBlobClient(file.FileName);

 await blobClient.UploadAsync(upStream);

 db.JobSitePhotos.Add(new JobSitePhoto
 {
 JobId = jobId,
 Latitude = lat,
 Longitude = lng,
 Heading = heading,
 PhotoUploadUrl =
 blobClient.Uri.AbsoluteUri
 });

 await db.SaveChangesAsync();

 var job = await db.Jobs
 .Include("Photos")
 .FirstOrDefaultAsync(x =>
 x.Id == jobId);

 return Results.Created(
 $"/jobs/{jobId}", job);
 })
 .Produces<Job>(StatusCodes.Status200OK,
 "application/json")
 .WithName("UploadSitePhoto");

Listing 2: A complex API with route and HTTP file parameters

Figure 6: Binding a map to a collection and handling item selection

Power Up Your Power Apps with .NET 6 and Azure

www.codemag.com74 codemag.com

Summary
If the idea of fusing together .NET, Azure, and Power Apps
to get started on your low-code journey sounds appeal-
ing after reading this article, spend some time looking at
the Microsoft Learn topics on fusion and low-code devel-
opment (here: https://docs.microsoft.com/en-us/learn/
paths/transform-business-applications-with-fusion-devel-
opment/). There are a variety of other Learn paths available
that go deeper on the topic of Fusion development.

If you’re less interested in the UI parts of this end-to-end
and mainly want to build APIs, you’re sure to enjoy using
.NET 6 minimal APIs with Bicep to make your API develop-
ment and deployment much simpler than ever before, with
less ceremony. I think experienced API developers are going
to enjoy this new approach and that new API developers will
find it a more graceful way to get started.

Happy coding! Be well!

Figure 7: Adding an API’s Custom Connector as a data source to a Power App

Figure 8: Debugging HTTP calls to an API using the Power Apps Monitor

 v

Nov 2019
Volume 20 Issue 7 (CODE Focus)

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bri Achtman	 Cesar de la Torre
Ed Charbeneau	 Ryan Davis
Benjamin Day	 Mika Dumont
Olia Gavrysh	 Kendra Havens
Julie Lerman	 Dominic Nahous
Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $49.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

 v

Nov 2019
Volume 20 Issue 7 (CODE Focus)

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Bri Achtman	 Cesar de la Torre
Ed Charbeneau	 Ryan Davis
Benjamin Day	 Mika Dumont
Olia Gavrysh	 Kendra Havens
Julie Lerman	 Dominic Nahous
Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $49.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

 v

CODE Focus Nov 2021
Volume 18 Issue 1

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Ed Charbeneau	 Mika Dumont
Brady Gaster	 Rich Lander
Julie Lerman	 Mark Michaelis
Daniel Roth	 Mike Rousos
Steven Thewissen

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions
	 The Mail Group

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $50.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

� Brady Gaster
�

Power Up Your Power Apps with .NET 6 and Azure

 v v v

Back inside cover .NET artwork to come
from MS

Back outside cover .NET artwork to come
from MS

