
co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 8
.9

5
 C

an
 $

 1
1.

95

NOV
2022

Text, Text, Text, Text, Text, Text, Text, Text, Text, Text

MAINTITLE
HERE

Title Title Title Title
Title Title Title

Title Title
Title Title Title

Title Title Title
Title Title Title Title

melan
Highlight
MAUI, EF 7, Minimal APIs, Blazor, C# 11

melan
Highlight
C# Goes to 11

Sailing to MAUI

.NET 7 Performance Deep Dive

Expand the power of Visual Studio
with the most comprehensive set
of dev tools and resources

Put your .NET apps
into high gear with
a Visual Studio
subscription

Do more with the IDE that
you already know and love.

Supercharge .NET development with

integrated debugging, unit testing,

profiling, and performance tooling

with Visual Studio and Visual Studio

for Mac.

Run on the most productive
and cost-efficient cloud
platform for dev/test

Provision fast, lean, and easy dev/test

environments with monthly Azure

credits and access to services like

Microsoft Dev Box and Azure Deployment

Environments.

Keep your skills current
with training resources

 Take your learning to the next level

with access to resources

and subscriptions like Pluralsight,

LinkedIn Learning, DataCamp, and

CODE Magazine (yes, this magazine!)

visualstudio.com/subscriptions

Learn more at:

Build modern, scalable cloud apps
on a cloud platform designed for .NET

More cloud services
Take your cloud app
development farther using
more than 100 Azure services
that support .NET natively.

Visual Studio tools
Take advantage of integrated
Visual Studio developer tools,
get started faster with project
templates, and be more productive
with powerful debugging tools.

Faster, simpler
development
Develop more easily with one-click
deployment in Visual Studio or
set up a CI/CD pipeline for your
app in minutes.

Leverage a fully
managed platform
Build, deploy, and scale your .NET
app with Azure App Service or
use powerful serverless compute
with Azure Functions, without
managing infrastructure, using
the familiar Visual Studio IDE.

Build data-driven,
intelligent apps
From image recognition to
bot services, to databases, take
advantage of Azure data services
and artificial intelligence to create
new experiences that scale.

Fix problems before
your users notice
Intelligent application performance
monitoring tools proactively alert
you when there's a problem with
your application. Built-in advanced
diagnostics help you identify the
root cause faster.

More cloud services
Take your cloud app
development farther using
more than 100 Azure services
that support .NET natively.

Visual Studio tools
Take advantage of integrated
Visual Studio developer tools,
get started faster with project
templates, and be more productive
with powerful debugging tools.

Faster, simpler
development
Develop more easily with one-click
deployment in Visual Studio or
set up a CI/CD pipeline for your
app in minutes.

Leverage a fully
managed platform
Build, deploy, and scale your .NET
app with Azure App Service or
use powerful serverless compute
with Azure Functions, without
managing infrastructure, using
the familiar Visual Studio IDE.

Build data-driven,
intelligent apps
From image recognition to
bot services, to databases, take
advantage of Azure data services
and artificial intelligence to create
new experiences that scale.

Fix problems before
your users notice
Intelligent application performance
monitoring tools proactively alert
you when there's a problem with
your application. Built-in advanced
diagnostics help you identify the
root cause faster.

Azure is the best
cloud for .NET

Start FREE at:

azure.microsoft.com/free/dotnet

Expand the power of Visual Studio
with the most comprehensive set
of dev tools and resources

Put your .NET apps
into high gear with
a Visual Studio
subscription

Do more with the IDE that
you already know and love.

Supercharge .NET development with

integrated debugging, unit testing,

profiling, and performance tooling

with Visual Studio and Visual Studio

for Mac.

Run on the most productive
and cost-efficient cloud
platform for dev/test

Provision fast, lean, and easy dev/test

environments with monthly Azure

credits and access to services like

Microsoft Dev Box and Azure Deployment

Environments.

Keep your skills current
with training resources

 Take your learning to the next level

with access to resources

and subscriptions like Pluralsight,

LinkedIn Learning, DataCamp, and

CODE Magazine (yes, this magazine!)

visualstudio.com/subscriptions

Learn more at:

www.codemag.com4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay $50.99 USD. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill Me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 	 �What’s New in .NET 7

Jon, Bill, and Angelos are so excited about the new release of .NET 7 that
we almost ran out of room in the magazine! Read about some of the great
changes and follow the links for further discussion and more information.
Jon Douglas, Jeremy Likness, and Angelos Petropoulos

22 	 �What’s New in C# 11
If you’re interested in improving productivity, object initialization and
creation, generic math support, and runtime performance, you’re going
to be pretty interested in what Bill has to say about C#’s latest release.
Bill Wagner

26 	 �Highlighted Performance Wins
with .NET 7
There are too many improvements in performance using .NET 7 to cover
here, so Stephen focuses on the three that he thinks are the best.
Stephen Toub

30 	 �Use .NET MAUI for Native,
No-Compromise Apps
It used to be that you had to write code for each platform your users might
use. David tells you how .NET Multi-platform App UI (MAUI) lets you code
once and distribute it to everyone.
David Ortinau

43 	 �Minimal APIS: Stuck in
the Middleware Again
ASP.NET Core lets you use middleware to interact with Minimal APIs
and Shawn shows you how it’s done.
Shawn Wildermuth

47 	 �EF Core 7:
It Just Keeps Getting Better
It’s no surprise that Julie’s excited about the latest EF release.
It’s faster, it allows bulk updates and deletes, it lets you map entity
properties to database JSON columns, and you can map stored procedures
the way you’re used to. There’s more, too!
Julie Lerman

56 	 �Upgrade Tooling for .NET 7
You liked the .NET Upgrade Assistant tool last year, right?
Mike tells you how, with .NET 7, there are even more tooling options
to ease the transition from .NET Framework to .NET 7.
Mike Rousos

64 	 �Using CoreWCF to Move WCF
Services to .NET Core
Sam’s eager to share how you can use CoreWCF to modernize
applications to .NET 7.
Sam Spencer

69 	 �Blazor for the Web and Beyond
in .NET 7
Blazor enables UI development for the web without JavaScript and
using open web standards. Daniel shows you how to author reusable
web UI components that can be used on any modern web browser.
Daniel Roth

Departments
6 	� New in .NET 7

Rod explores the release of .NET 7 and finds out that it meets or
exceeds the hype.
Rod Paddock

32 	 �Advertisers Index

74 	 Code Compilers

www.codemag.com

It’s how you
make
software

VViissuuaall SSttuuddiioo,,
VViissuuaall SSttuuddiioo ffoorr MMaacc,,
VViissuuaall SSttuuddiioo CCooddee
ssuuppppoorrtt ..NNEETT 77

Download at:

Visual Studio Visual Studio for Mac Visual Studio Code

visualstudio.com/download

www.codemag.comcodemag.comEditorial

EDITORIAL

6

New in .NET 7
From the blazing beaches of MAUI, version 7 of .NET turns everything up to 11. How’s that for an opening
line? It seems to me only yesterday that we wrapped up the .NET 6 FOCUS issue of CODE Magazine and
yet here we are, already spreading the news about .NET 7. And great news it is! For those of us who’ve

been using Visual Studio and the .NET Framework
for many years, it’s never been better. The change
to the Core platform has yielded results that many
of us may still find surprising. Let’s take a look at
the wonderful gifts that .NET 7 gives us.

First, let talk about C#11. Each and every ver-
sion of this language has presented developers
with numerous productivity enhancements. One
feature that I’m personally fond of is the addi-
tion of raw string literals. Channeling former
CEO Steve Balmer, developers in the year 2022
might chant: strings, strings, strings! JSON,
YAML, XML, CSV strings are ever-present in to-
day’s development ecosystem and each version
of C# makes this story that much better. You can
now embed long strings into your code without
resorting to loose text files on disk or embedded
resources compiled into your application. This is
just ONE of the features. Read the full article
from Bill Wagner to find out about more wonder-
ful additions to C#.

Developers in the
year 2022 might chant.
“strings, strings, strings!”

Once you’ve whetted your whistle, set sail for the
oasis of cross-platform development using the
new MAUI features in .NET 7. MAUI was originally
slated for shipment in .NET 6 but took more time
to refine and improve than anticipated. The de-
lay was worth the wait. The MAUI development
platform helps .NET developers build applications
capable of supporting macOS, Android, and Win-
dows, all from a single code base. Check out David
Ortinau’s article on MAUI for details on building
applications with this great tool.

.NET 7 continues “blazing” the trail of web assem-
bly-compiled applications with updates to the
Blazor framework. One great story is the capabil-
ity of using components from other frameworks,
like Angular, Vue, or React. Microsoft has adopted
a philosophy of meeting developers where they
are and your investment in these various tools is
secure in the Blazor environment. You also get a

better development experience with Hot Reload,
better debugging, and improved interop. Blaze
your own trail by looking at what Daniel Roth has
written up for you!

Microsoft has
the philosophy of
meeting developers
where they are, to enhance
their investments and
ensure that their hard
work is secure.

Performance, performance, performance… It
seems that every version of .NET has radical
performance improvements and .NET 7 contin-
ues this trend. In the software, every millisec-
ond adds up and .NET 7 fights to remove every
wasted cycle. Steven Toub presents the details
on performance improvements and how they
were achieved.

Data, data, data… The Entity Framework is 15
years old at this point and the EF team hasn’t run
out of cool features to surprise us with. Our resi-
dent EF expert Julie Lerman takes you through
the numerous improvements to EF, including bet-
ter performance, reduced rounds to the database
server, enhancements to stored proc integra-
tion, changes to bulk updates, and many others.
Building data-centric applications has never been
better.

These are just a few highlights presented in this
CODE FOCUS issue. Other topics include tools to
help WCF developers as well as tips and tricks
for converting your existing applications. Check
them out—you won’t be disappointed.

You may think that I’m being a bit over enthu-
siastic about this version of .NET. I don’t think
so. I’ve been a.NET developer since its first beta,
and this version has done nothing but confirm
my decision some 20 years back. Let me tell you

the major reason why: .NET has a great backward-
compatibility story along with a forward-thinking
trajectory, ensuring that your sweat investment
is preserved with minimal rework. This version is
no different.

I hope you enjoy what we’ve created for you!

� Rod Paddock
�

melan
Highlight
Change to "Ballmer" (Two Ls)

www.codemag.com

LEAD Technologies

www.codemag.com8 codemag.comWhat’s New in .NET 7

ONLINE QUICK ID 2211022

What’s New in .NET 7
.NET 7 is officially released and generally available for all major platforms (Windows, Linux, and macOS). This release of .NET 7
introduces many new features and continues to build on themes we introduced last year, including:

•	 Performance: .NET 7 introduces new performance
gains while solidifying the unification of target plat-
forms through investments in the Multi-platform App
UI (MAUI) experience, leveraging exceptional perfor-
mance and high-power efficiency on ARM64 devices
and enhancements to the cloud-native developer ex-
perience, like building container images directly from
the SDK without relying on third-party dependencies.
.NET 7 is fast, the fastest .NET to date.

•	 Simplifies choices for new developers With the addi-
tion of C# 11 and API improvements to .NET libraries,
you’re more productive than ever writing code. You can
deploy your apps directly to Azure Container Apps for a
distributed and scalable cloud-native experience. You
can even query metadata stored in SQL JSON columns
directly using Language Integrated Query (LINQ) and
Entity Framework 7 while handling state-distributed
across multiple microservices instances with Orleans,
also known as Distributed .NET.

•	 Build modern apps: If you’re dealing with legacy
codebases, you can incrementally modernize your
legacy ASP.NET application to ASP.NET Core using an
advanced migration experience that proxies user re-
quests to legacy code and runs two separate websites
behind the scenes, taking care of load-balancing.

•	 .NET is for cloud-native apps: .NET is great for apps
built in the cloud that can run at hyper-scale. Build
faster, more reliably, and easily deploy anywhere.

•	 Microsoft is the best place for .NET developers: Take a
look at other articles in this issue to learn how you can
build modern .NET apps with Microsoft platforms and ser-
vices including Azure, Visual Studio, GitHub, and more.

.NET 7 planning began well before .NET 6 was released in
November 2021. Once the release candidate milestone is
reached, usually the team gathers feedback and starts the
planning for the next major release.

.NET 6 proved to be the fastest .NET ever and unified vari-
ous products to create a platform that runs everywhere from
your mobile iOS or Android phone to Linux, macOS and, of
course, Windows.

In this article, we'll explore what’s new in .NET 7. This re-
lease includes many of your requests and suggestions, so

we’re excited for you to download .NET 7 and give us your
feedback.

You can get started with .NET 7 in just three easy steps:

1.	 Download the .NET 7 SDK here https://dotnet.microsoft.
com/download/dotnet/7.0. If you use Visual Studio or VS
Code, the latest version will support with .NET 7 and the
proper version will be listed on the download page. If you
use another editor, please verify that it supports .NET 7.

2.	 Install the .NET 7 SDK.
3.	 Start a new project or upgrade an existing project.

(Feel free to leave our team feedback on our open
source repos: https://github.com/dotnet/).

This article is focused on the fundamentals of the release,
including the runtime, libraries, and SDK. It’s these funda-
mental features that you interact with every day. The .NET 7
release includes new library APIs, language features, pack-
age management experiences, runtime plumbing, and SDK
capabilities. This article provides a look at only a handful
of improvements and new capabilities. Check out the .NET
Team blog (https://devblogs.microsoft.com/dotnet/) to
learn about the entire release.

Targeting .NET 7
When you target a framework in an app or library, you’re
specifying the set of APIs that you’d like to make available
to the app or library. To target .NET 7, it’s as easy as chang-
ing the target framework in your project.

<TargetFramework>net7.0</TargetFramework>

Apps that target the net7.0 target framework moniker (TFM)
will work on all supported operating systems and CPU archi-
tectures. They give you access to all the APIs in net7.0 plus
a bunch of operating system-specific ones:

•	 net7.0-android
•	 net7.0-ios
•	 net7.0-maccatalyst
•	 net7.0-macos
•	 net7.0-tvos
•	 net7.0-windows

Figure 1: The .NET API catalog

Jeremy Likness
@JeremyLikness
jeremy.likness@microsoft.com
https://devblogs.microsoft.com/
dotnet/author/jeremy-likness/

Jeremy Likness is a Principal
Product Manager at Microsoft
focused on .NET Web Frameworks.

Angelos Petropoulos
@apetrop
angelos.petropoulos@microsoft.com
https://devblogs.microsoft.
com/dotnet/author/angelos-
petropoulos/

Angelos Petropoulos is a
Principal Product Manager at
Microsoft working on .NET,
Azure, and Visual Studio.

Jon Douglas
@_jondouglas
jonathan.douglas@microsoft.com
https://devblogs.microsoft.com/
dotnet/author/jondouglas/

Jon Douglas is a Principal
Product Manager for NuGet
and .NET at Microsoft.

www.codemag.com 9codemag.com What’s New in .NET 7

Mobile applications can now take advantage of a new Map
control for displaying and annotating native maps for An-
droid, iOS, and iPadOS applications, which you can see in
Figure 3. We’ve seen customers use maps to visualize farm-
ing scenarios, oil pipeline servicing jobs, tracking and dis-
playing workouts, travel planning, and more. Map supports
drawing shapes, placing pins, custom markers, and even
geocoding street addresses, latitude, and longitude.

Maps can also be useful on the desktop. The same Apple
control works for macOS, and we’re contributing a browser-
based implementation of the map control for Windows to
the .NET MAUI Community Toolkit.

Performance
We’re focused on improving both your daily productivity as
well as performance of your .NET MAUI applications. Gains
in developer productivity, we believe, should not be at the
cost of application performance. Our goal was for .NET MAUI
to be faster than its predecessor, Xamarin.Forms, and it was
clear that we had some work to do in .NET MAUI itself.

We improved areas like Microsoft.Extensions and Depen-
dencyInjection usage, AOT compilation, Java interop, XAML,
code in .NET MAUI in general, and many more.

Table 1 provides a performance chart of our journey thus far.

The APIs exposed through the net7.0 TFM are designed to
work everywhere. If you’re ever in doubt whether an API is
supported with net7.0, you can always check out https://
apisof.net/. You can see an example of .NET 7 API support
for System.IO in Figure 1.

.NET MAUI

.NET Multi-platform App UI (MAUI) unifies Android, iOS, ma-
cOS, and Windows APIs into a single API so you can write
one app that runs natively on many platforms. .NET MAUI
enables you to deliver the best app experiences designed
specifically by each platform (Android, iOS, macOS, Win-
dows, and Tizen) while enabling you to craft consistent
brand experience through rich styling and graphics. Out of
the box, each platform looks and behaves the way it should
without any additional widgets or styling required.

New Features
Since the release of .NET MAUI, we’ve heard how much you
appreciate the simplicity we’ve introduced to .NET for creat-
ing client applications from a single project. More and more
libraries and services to support you are now available in .NET
to help you quickly add features to your applications, such as
Azure AD authentication, Bluetooth, printing, NFC, online/
offline data sync, and more. In .NET 7, we bring you improved
desktop features, mobile Maps, and a heavy dose of quality
improvements to controls and layouts. You can see how that
looks in Figure 2.

Whether you’re using Blazor hybrid or fully native controls
with .NET MAUI for desktop, there are some native interac-
tions you’ve told us would be very helpful. We’ve added con-
text menus so you can reveal multi-level menus in line with
your content. When the user hovers over a view and you want
to display helpful text, you can now annotate your view with
TooltipProperties.Text and a tooltip control automatically
appears and disappears. You can also now add gestures for
hover and right-clicking to any element using the new Poin-
terGesture and we added masking properties on TapGesture.

Figure 2: The .NET podcasts MAUI reference application

Application Framework Startup Time(ms)
Xamarin.Android Xamarin 306.5

Xamarin.Forms Xamarin 498.6

Xamarin.Forms (Shell) Xamarin 817.7

dotnet new android MAUI GA 182.8

dotnet new maui (No Shell) MAUI GA 464.2

dotnet new maui (Shell) MAUI GA 568.1

.NET Podcast App (Shell) MAUI GA 814.2

Table 1: Xamarin vs. .NET MAUI Startup Time Performance

melan
Highlight
Bad break. Break after "mac" or not at all.

melan
Highlight
Break after "Point"

www.codemag.com10 codemag.com

images, checking security and compliance, and optimizing
the size and performance of said images. We believe there’s
an opportunity to create a better, more streamlined experi-
ence with .NET containers.

You can now create containerized versions of your applica-
tions with just dotnet publish. Container images are now a
supported output type of the .NET SDK:

create a new project and move to its directory
dotnet new mvc -n my-awesome-container-app
cd my-awesome-container-app

add a reference to a (temporary) package that creates the
container
dotnet add package Microsoft.NET.Build.Containers

publish your project for linux-x64
dotnet publish --os linux --arch x64 -p:PublishProfile=Defaul
tContainer

We built this solution with the following goals:

•	 Seamless integration with existing build logic; pre-
venting context gaps

•	 Implemented in C# to take advantage of our own
tooling and benefit from .NET runtime performance
improvements

•	 Part of the .NET SDK, providing a streamlined process
for updates and servicing

Microsoft Orleans
Microsoft Orleans takes familiar concepts like objects, in-
terfaces, async/await, and try/catch extends them to multi-

Cloud Native
What first started as the idea of “lifting and shifting” your
applications from an on-premises environment to the cloud
has now evolved into a set of best practices for building your
applications for the cloud. These best practices include but
aren’t limited to:

•	 Containerization
•	 CI/CD
•	 Orchestration and application definition
•	 Observability and analysis
•	 Service proxy, discovery, and mesh
•	 Networking, policy, and security
•	 Distributed database and storage
•	 Streaming and messaging
•	 Container registry and runtime
•	 Software distribution

There are three major reasons you’d go cloud native. The
first is having resilience and scalability—using the cloud to
reduce risk of outages and increasing availability. The sec-
ond is efficiency. You can architect for the cloud to squeeze
every ounce of performance and cost for your apps. The
third is velocity. It’s much faster to convert your ideas to
code by leveraging the vast resources of the cloud.

Next, we’ll talk about some of the major improvements
building cloud native apps with .NET.

Built-in Container Support
The popularity and practical usage of containers is rising,
and for many companies, they represent the preferred way
of deploying to the cloud. Working with containers adds new
work to a team’s backlog, including building and publishing

Figure 3: New Map control for displaying and annotating native maps for Android, iOS, and iPadOS applications

What’s New in .NET 7

www.codemag.com 11codemag.com

 a.SetTag("key1", "value1");
 a.SetTag("key2", "value2");

 foreach (ref readonly
KeyValuePair<string, object?> tag in
 a.EnumerateTagObjects())
 {
 Console.WriteLine($"{tag.Key},
{tag.Value}");
 }

Expose Performant ActivityEvent and ActivityLink
Tags Enumerator Methods
The exposed methods can be used in performance-critical
scenarios to enumerate the Tag objects without any extra
allocations and with fast items access.

var tags = new List<KeyValuePair<string,
object?>>()
{
 new KeyValuePair<string,
object?>("tag1", "value1"),
 new KeyValuePair<string,
object?>("tag2", "value2"),
};

ActivityLink link = new
ActivityLink(default, new
ActivityTagsCollection(tags));

foreach (ref readonly KeyValuePair<string,
object?> tag in link.EnumerateTagObjects())
{
 // Consume the link tags without any
extra allocations or value copying.
}

ActivityEvent e = new
ActivityEvent("SomeEvent", tags: new
ActivityTagsCollection(tags));

foreach (ref readonly KeyValuePair<string,
object?> tag in e.EnumerateTagObjects())
{
 // Consume the event's tags without any
extra allocations or value copying.
}

Modernization
We’re focused on providing the best developer experience
possible, regardless of what version of .NET you use. This
includes moving off old versions to take advantage of new
features. The .NET Upgrade Assistant was created to make it
easier for developers to migrate legacy .NET apps to current
.NET releases, including .NET 7. It supports multiple project
types including:

•	 ASP.NET MVC
•	 Windows Forms
•	 Windows Presentation Foundation (WPF)
•	 Console apps
•	 Class libraries
•	 Xamarin.Forms
•	 Universal Windows Platform (UWP)

server environments. It helps developers experienced with
single-server applications transition to building resilient,
scalable cloud services and other distributed applications.
For this reason, Orleans has often been referred to as Dis-
tributed .NET.

Orleans was created by Microsoft Research and introduced
the Virtual Actor Model as a novel approach to building a
new generation of distributed systems for the Cloud era. The
core contribution of Orleans is its programming model that
tames the complexity inherent to highly parallel distributed
systems without restricting capabilities or imposing onerous
constraints on the developer.

Alongside .NET 7.0, we'll be shipping the latest update to
Orleans. Orleans 4.0 gives developers better performance
(as high as 50% in some lab performance tests), offers sup-
port for OpenTelemetry (https://opentelemetry.io/), and
reduces the complexity developers face when building Or-
leans Grains, the distributed primitive complementing the
ASP.NET object model and enabling distributed state persis-
tence in cloud-native environments.

Observability
The goal of observability is to help you better understand
the state of your application as it scales and technical
complexity increases. .NET has embraced OpenTelemetry
(https://opentelemetry.io/) and the following improve-
ments were made in .NET 7.

•	 Activity.Current change event
•	 Performant activity properties enumerator methods
•	 Performant ActivityEvent and ActivityLink tags enu-

merator methods

Introducing Activity.Current Change Event
A typical implementation of distributed tracing uses
an AsyncLocal<T> to track the “span context” of managed
threads. Changes to the span context are tracked by using
the AsyncLocal<T> constructor that takes the valueChanged-
Handler parameter. However, with Activity becoming the
standard to represent spans as used by OpenTelemetry, it’s
impossible to set the value-changed handler because the
context is tracked via Activity.Current. The new change event
can be used instead to receive the desired notifications.

Activity.CurrentChanged += CurrentChanged;

void CurrentChanged(object? sender,
ActivityChangedEventArgs e)
 {

 Console.WriteLine($"Activity.Current
value changed from Activity:
{e.Previous.OperationName} to
Activity: {e.Current.OperationName}");

 }

Expose Performant Activity Properties
Enumerator Methods
The exposed methods can be used in performance-critical
scenarios to enumerate the Activity Tags, Links, and Events
properties without any extra allocations and with fast items
access.

 Activity a = new Activity("Root");

What’s New in .NET 7

www.codemag.com12 codemag.com

could not be fetched from the OS or the machine’s BIOS.
Now we can better approximate core counts per L3 cache
sizes. See Table 2 to see a precise mapping.

Next came our understanding of LSE atomics. Which, if
you’re not familiar, provides atomic APIs to gain exclusive
access to critical regions. In CISC architecture x86-x64 ma-
chines, read-modify-write (RMW) operations on memory can
be performed by a single instruction by adding a lock prefix.

However, on RISC architecture machines, RMW operations are
not permitted, and all operations are done through registers.
Hence, for concurrency scenarios, they have pair of instruc-
tions. "Load Acquire" (ldaxr) gains exclusive access to the
memory region such that no other core can access it and "Store
Release" (stlxr) releases the access for other cores to access.
Between these pairs, the critical operations are performed.
If the stlxr operation failed because some other CPU operated
on the memory after you load the contents using ldaxr, there’s
a code to retry (cbnz jumps back to retry) the operation.

ARM introduced LSE atomics instructions in v8.1. With these
instructions, such operations can be done in less code and
faster than the traditional version. When we enabled this
for Linux and later extended it to Windows, we saw a per-
formance win of around 45%. See Figure 6 of LSE atomics
performance enhancements on Windows for lock scenarios.

Library Improvements
To optimize libraries for ARM64 using intrinsics, we added
new cross-platform helpers to enable as good performance
as x64. These include helpers for Vector64, Vector128, and
Vector256. These vectorization algorithms are now unified
by removing hardware-specific intrinsics and instead us-
ing hardware-agnostic intrinsics. This process is known as
Vectorization in which operations are applied to whole ele-
ments instead of individual ones for performance benefits.

Rewriting APIs such as EncodeToUtf8 and DecodeFromUtf8
from a SSE3 implementation to a Vector-based one can pro-
vide up to 60% improvements. See Figure 7 regarding text
processing improvements with Vector-based implementations.

Similarly converting other APIs such as NarrowUtf16To-
Ascii() and GetIndexOfFirstNonAsciiChar() can prove
a performance win of up to 35%. See Figure 8 regarding
Span<Byte>.Reverse() improvements with Vector-based
implementations.

In addition to providing a guided step-by-step experience,
the upgrade assistant now supports advanced scenarios, in-
cluding bringing your UWP apps to the Windows Apps SDK
(WinUI) and migrating from Xamarin to .NET MAUI.

ASP.NET to ASP.NET Core Migration
Due to the popularity and size of ASP.NET projects, there is
also the option to upgrade “in place” using a special proxy.
See Figure 4 for a better understanding of how requests will
flow using this proxy.

This means that you can migrate portions of your website so
that it runs a hybrid combination of legacy and new code.
The two versions are transparent to the end user because
routes are mapped to the appropriate versions that use
shared state. Figure 5 shows how you can migrate your in-
dividual models, views, and controllers to .NET Core.

ARM64
We’re focused on making ARM a great platform to run .NET
applications. Both x64 and ARM64 are based on different
architectures (CISC vs. RISC) and each has different char-
acteristics. The instruction set architecture (ISA) is thus
different for each of them and this difference surfaces in
the form of performance numbers. Although this variability
exists between the two platforms, we wanted to understand
how performant .NET is when running on ARM64 platforms
compared to x64 and what can be done to improve its ef-
ficiency. Our continued goal is to match the parity of perfor-
mance of x64 with ARM64 to help our customers move their
.NET applications to ARM.

Runtime Improvements
One challenge we had with our investigation of x64 and
ARM64 was finding out that the L3 cache size wasn’t be-
ing correctly read from ARM64 machines. We changed our
heuristics to return an approximate size if the L3 cache size

Figure 5: The Visual Studio ASP.NET MVC migration experience

Core count L3 cache size
1 ~ 4 4 MB

5 ~ 16 8 MB

17 ~ 64 16 MB

65+ 32 MB

Table 2: L3 cache size per machine core count

What’s New in .NET 7

www.codemag.com 13codemag.com

C# 11
The newest addition to the C# language is C# 11. C# 11
adds many features such as generic math, object initializa-
tion improvements, auto-default structs, numeric IntPtr,
raw string literals, and many more. We’ll cover a few below,
but invite you to read the What’s new in C# 11 documenta-
tion found at (https://docs.microsoft.com/en-us/dotnet/
csharp/whats-new/csharp-11).

Performance Impact
With our work in .NET 7, many MicroBenchmarks improved
by 10-60%. As we started .NET 7, the requests per second
(RPS) was lower for ARM64, but slowly overcame parity of
x64. See Figure 9 for the TechEmpower benchmark.

Similarly for latency (measured in milliseconds), we would exceed
parity of x64. See Figure 10 for the TechEmpower benchmark.

Figure 6: LSE atomics performance enhancements on Windows for lock scenarios

Figure 7: Text processing improvements with Vector-based implementations

Figure 8: Span<Byte>.Reverse() improvements with Vector-based implementations

What’s New in .NET 7

www.codemag.com14 codemag.com

stracts in interfaces and the new interfaces now being ex-
posed in .NET, you can now write mathematical operators on
generic types of code, as shown in Listing 1.

This is made possible by exposing several new static ab-
stract interfaces that correspond to the various operators
available to the language and by providing a few other in-
terfaces representing common functionality, such as pars-
ing or handling number, integer, and floating-point types.

With Generic Math, you can take full advantage of operators and
static APIs by combining static virtuals and the power of generics.

Raw String Literals
There is now a new format for string literals. Raw string lit-
erals can contain arbitrary text, including whitespace, new
lines, embedded quotes, and other special characters with-
out requiring escape sequences. A raw string literal starts
with at least three double-quote (“””) characters and ends
with the same number of double-quote characters.

String longMessage = “””
 This is a long message.
 It has several lines.
 Some are indented
 more than others.
 Some should start at the first column.
 Some have “quoted text” in them.
 “””;

Numeric IntPtr and UintPtr
The nint and nuint types now alias System.IntPtr and System.
UintPtr, respectively. These are two native-sized integers that
depend on the platform and is computed at runtime. Figure
11 shows the various C# types/keywords, including nint and
nuint.

.NET Libraries
Many of .NET’s first-party libraries have seen significant
improvements in the .NET 7 release. There’s new support
for nullable annotations for Microsoft.Extensions, polymor-
phism for System.Text.Json, new APIs for System.Compo-
sition.Hosting, adding Microseconds and Nanoseconds to
date and time structures, and new Tar APIs, to name a few.

Next you can read about the many changes to .NET libraries.

Nullable annotations for Microsoft.Extensions
All of the Microsoft.Extensions.* libraries now contain the C#
8 opt-in feature that allows for the compiler to track reference
type nullability in order to catch potential null dereferences.
This helps you minimize the likelihood that your code causes
the runtime to throw a System.NullReferenceException.

System.Text.Json Polymorphism
System.Text.Json now supports serializing and deserializing
polymorphic type hierarchies using attribute annotations:

[JsonDerivedType(typeof(Derived))]
public class Base
{
 public int X { get; set; }
}

public class Derived : Base

Figure 9: TechEmpower RPS x64 vs. ARM64 (higher the better) benchmark

Figure 10: TechEmpower x64 vs. ARM64 latency (the lower the better)

Figure 11: C# types/keywords. including nint and nuint

Generic Math
One long-requested feature in .NET is the ability to use
mathematical operators on generic types. Using static ab-

What’s New in .NET 7

www.codemag.com 15codemag.com

System.Composition.Hosting
A new API has been added to allow a single object instance
to the System.Composition.Hosting container providing
similar functionality to the legacy interfaces as System.
ComponentModel.Composition.Hosting through the API Co
mposeExportedValue(CompositionContainer, T).

namespace System.Composition.Hosting
{
 public class ContainerConfiguration
 {
 public ContainerConfiguration
 WithExport<TExport>(TExport
exportedInstance);
 public ContainerConfiguration
 WithExport<TExport>(TExport
exportedInstance, string contractName =
null, IDictionary<string, object> metadata =
null);

 public ContainerConfiguration
WithExport(Type contractType, object
exportedInstance);
 public ContainerConfiguration
WithExport(Type contractType, object
exportedInstance, string contractName =
null, IDictionary<string, object> metadata =
null);
 }
}

Adding Microseconds and Nanoseconds to TimeStamp,
DateTime, DateTimeOffset, and TimeOnly
Before .NET 7, the lowest increment of time available in the
various date and time structures was the “tick” available in
the Ticks property. For reference, a single tick is 100ns. De-
velopers have traditionally had to perform computations on
the “tick” value to determine microsecond and nanosecond
values. In .NET 7, we’ve introduced both microseconds and
nanoseconds to the date and time implementations. Listing
2 shows the new API structure.

Microsoft.Extensions.Caching
We added metrics support for IMemoryCache, which is a
new API of MemoryCacheStatistics that holds cache hits,
misses, and estimated size for IMemoryCache. You can get

{
 public int Y { get; set; }
}

This configuration enables polymorphic serialization
for Base, specifically when the runtime type is Derived:

Base value = new Derived();
JsonSerializer.Serialize<Base>(value); // { "X" :
0, "Y" : 0 }

Note that this does not enable polymorphic deserializa-
tion because the payload would be roundtripped as Base:

Base value = JsonSerializer.Deserialize<Base>(@"{
""X"" : 0, ""Y"" : 0 }");
value is Derived; // false

To enable polymorphic deserialization, users need to specify
a type discriminator for the derived class:

[JsonDerivedType(typeof(Base), typeDiscriminator:
"base")]
[JsonDerivedType(typeof(Derived),
 typeDiscriminator: "derived")]
public class Base
{
 public int X { get; set; }
}

public class Derived : Base
{
 public int Y { get; set; }
}

This now emits JSON along with type discriminator metadata:

Base value = new Derived();
JsonSerializer.Serialize<Base>(value); // {
"$type" : "derived", "X" : 0, "Y" : 0 }

That can be used to deserialize the value polymorphically:

Base value = JsonSerializer.Deserialize<Base>(@"{
 ""$type"" : ""derived"", ""X"" : 0, ""Y"" : 0 }");
value is Derived; // true

public static TResult Sum<T, TResult>(IEnumerable<T> values)
 where T : INumber<T>
 where TResult : INumber<TResult>
{
 TResult result = TResult.Zero;

 foreach (var value in values)
 {
 result += TResult.Create(value);
 }

 return result;
}

public static TResult Average<T, TResult>(IEnumerable<T> values)
 where T : INumber<T>
 where TResult : INumber<TResult>
{
 TResult sum = Sum<T, TResult>(values);
 return TResult.Create(sum) / TResult.Create(values.Count());
}

public static TResult StandardDeviation<T, TResult>(IEnumerable<T> values)
 where T : INumber<T>
 where TResult : IFloatingPoint<TResult>
{
 TResult standardDeviation = TResult.Zero;

 if (values.Any())
 {
 TResult average = Average<T, TResult>(values);
 TResult sum = Sum<TResult, TResult>(values.Select((value) => {
 var deviation = TResult.Create(value) - average;
 return deviation * deviation;
 }));
 standardDeviation = TResult.Sqrt(sum
/ TResult.Create(values.Count() - 1));
 }

 return standardDeviation;
}

Listing 1: Mathematical operators on generic types

What’s New in .NET 7

www.codemag.com16 codemag.com

[System.Runtime]
 CPU Usage (%) 0
 Working Set (MB) 28
[Microsoft-Extensions-Caching-MemoryCache]
 cache-hits 269

System.Formats.Tar APIs
We added a new System.Formats.Tar assembly that con-
tains cross-platform APIs that allow reading, writing, ar-
chiving, and extracting of Tar archives. These APIs are even
used by the SDK to create containers as a publishing target.

Listing 4 provides a couple of examples of how you might use
these APIs to generate and extract contents of a tar archive.

Type Converters
There are now exposed type converters for the newly added
primitive types DateOnly, TimeOnly, Int128, UInt128, and Half.

namespace System.ComponentModel
{
 public class DateOnlyConverter :
System.ComponentModel.TypeConverter
 {
 public DateOnlyConverter() { }
 }

 Public class TimeOnlyConverter :
System.ComponentModel.TypeConverter
 {
 public TimeOnlyConverter() { }
 }

 public class Int128Converter :
System.ComponentModel.BaseNumberConverter
 {
 public Int128Converter() { }
 }

an instance of MemoryCacheStatistics by calling GetCur-
rentStatistics() when the flag TrackStatistics is enabled.

The GetCurrentStatistics() API allows app developers to
use event counters or metrics APIs to track statistics for one
or more memory cache. Listing 3 shows how you can get
started using this API for one memory cache:

You can then view stats below with dotnet-counters tool:

Press p to pause, r to resume, q to quit.
 Status: Running

namespace System {
 public struct DateTime {
 public DateTime(int year, int month,
int day, int hour, int minute, int second,
int millisecond, int microsecond);
 public DateTime(int year, int month,
int day, int hour, int minute, int second,
int millisecond, int microsecond,
System.DateTimeKind kind);
 public DateTime(int year, int month,
int day, int hour, int minute, int second,
int millisecond, int microsecond,
 System.Globalization.Calendar calendar);
 public int Microsecond { get; }
 public int Nanosecond { get; }
 public DateTime
AddMicroseconds(double value);
 }
 public struct DateTimeOffset {
 public DateTimeOffset(int year, int
month, int day, int hour, int minute, int
second, int millisecond, int microsecond,
 System.TimeSpan offset);
 public DateTimeOffset(int year, int
month, int day, int hour, int minute, int
second, int millisecond, int microsecond,
System.TimeSpan offset,
System.Globalization.Calendar calendar);
 public int Microsecond { get; }

 public int Nanosecond { get; }
 public DateTimeOffset
AddMicroseconds(double microseconds);
 }
 public struct TimeSpan {
 public const long
TicksPerMicrosecond = 10L;
 public const long NanosecondsPerTick
= 100L;
 public TimeSpan(int days, int hours,
int minutes, int seconds, int milliseconds,
int microseconds);
 public int Microseconds { get; }
 public int Nanoseconds { get; }
 public double TotalMicroseconds {
get; }
 public double TotalNanoseconds {
get; }
 public static TimeSpan
FromMicroseconds(double microseconds);
 }
 public struct TimeOnly {
 public TimeOnly(int hour, int
minute, int second, int millisecond, int
microsecond);
 public int Microsecond { get; }
 public int Nanosecond { get; }
 }
}

Listing 2: Microseconds and Nanoseconds in DateTime, DateTimeOffset, and TimeOnly

// when using
`services.AddMemoryCache(options =>
options.TrackStatistics = true);` to
instantiate

 [EventSource(Name = "Microsoft-Extensions-Caching-Memory")]
 internal sealed class CachingEventSource
: EventSource
 {
 public CachingEventSource(IMemoryCache memoryCache)
{ _memoryCache = memoryCache; }
 protected override void
OnEventCommand(EventCommandEventArgs
command)
 {
 if (command.Command ==
EventCommand.Enable)
 {
 if (_cacheHitsCounter ==
null)
 {
 _cacheHitsCounter = new
PollingCounter("cache-hits", this, () =>
 _memoryCache.GetCurrentStatistics().CacheHits)
 {
 DisplayName = "Cache
hits",
 };
 }
 }
 }
 }

Listing 3: Get started with MemoryCacheStatistics

What’s New in .NET 7

www.codemag.com 17codemag.com

make some changes that influence serialization, like re-
moving properties, changing how numbers get serialized,
and how an object is created. They are frequently forced to
either write wrappers or custom converters, which is not
only a hassle but also makes serialization slower.

JSON contract customization gives users more control over
what and how types get serialized or deserialized.

Developers can use DefaultJsonTypeInfoResolver and add their
modifiers. All modifiers will then be called serially, like this:

JsonSerializerOptions options = new()
{
 TypeInfoResolver = new
DefaultJsonTypeInfoResolver()
 {
 Modifiers =
 {
 (JsonTypeInfo jsonTypeInfo) =>
 {
 // your modifications here, i.e.:
 if (jsonTypeInfo.Type == typeof(int))
 {
 jsonTypeInfo.NumberHandling =
JsonNumberHandling.AllowReadingFromString;
 }
 }
 }
 }
};

Point point =
JsonSerializer.Deserialize<Point>(@"{""X"":"
"12"",""Y"":""3""}", options);
Console.WriteLine($"({point.X},{point.Y})");
// (12,3)

public class Point
{
 public int X { get; set; }
 public int Y { get; set; }
}

.NET SDK
The .NET SDK continues to add new features to make you
more productive than ever. In .NET 7, we improve your expe-

 public class UInt128Converter :
System.ComponentModel.BaseNumberConverter
 {
 public UInt128Converter() { }
 }

 public class HalfConverter :
System.ComponentModel.BaseNumberConverter
 {
 public HalfConverter() { }
 }
}

These are helpful converters to easily convert to more primi-
tive types.

TypeConverter dateOnlyConverter =
TypeDescriptor.GetConverter(typeof(DateOnly)
);
// produce DateOnly value of DateOnly(1940,
10, 9)
DateOnly? date =
dateOnlyConverter.ConvertFromString("1940-
10-09") as DateOnly?;

TypeConverter timeOnlyConverter =
TypeDescriptor.GetConverter(typeof(TimeOnly)
);
// produce TimeOnly value of TimeOnly(20,
30, 50)
TimeOnly? time =
timeOnlyConverter.ConvertFromString("20:30:5
0") as TimeOnly?;

TypeConverter halfConverter =
TypeDescriptor.GetConverter(typeof(Half));
// produce Half value of -1.2
Half? half =
halfConverter.ConvertFromString(((Half)(-
1.2)).ToString()) as Half?;

TypeConverter Int128Converter =
TypeDescriptor.GetConverter(typeof(Int128));
// produce Int128 value of Int128.MaxValue
which equal
170141183460469231731687303715884105727
Int128? int128 =
Int128Converter.ConvertFromString("170141183
460469231731687303715884105727") as Int128?;

TypeConverter UInt128Converter =
TypeDescriptor.GetConverter(typeof(UInt128))
;
// produce UInt128 value of UInt128.MaxValue
Which equal
340282366920938463463374607431768211455
UInt128? uint128 =
UInt128Converter.ConvertFromString("34028236
6920938463463374607431768211455") as
UInt128?;

JSON Contract Customization
In certain situations, developers serializing or deserializ-
ing JSON find that they don’t want to or cannot change
types because they either come from an external library
or it would greatly pollute the code, but they may need to

// Generates a tar archive where all the
entry names are prefixed by the root
directory 'SourceDirectory'
TarFile.CreateFromDirectory(sourceDirectoryN
ame: "/home/dotnet/SourceDirectory/",
destinationFileName:
"/home/dotnet/destination.tar",
includeBaseDirectory: true);

// Extracts the contents of a tar archive
into the specified directory, but avoids
overwriting anything found inside
TarFile.ExtractToDirectory(sourceFileName:
"/home/dotnet/destination.tar",
destinationDirectoryName:
"/home/dotnet/DestinationDirectory/",
overwriteFiles: false);

Listing 4: Using System.Formats.Tar APIs

What’s New in .NET 7

www.codemag.com18 codemag.com

 list <template-name> Lists templates
containing the specified template name. If
no name is specified, lists all templates.

The dotnet CLI has supported tab completion for quite a
while with popular shells like PowerShell, bash, zsh, and
fish to name a few. It’s up to individual dotnet commands
to implement meaningful completions, however. For .NET
7, the dotnet new command learned how to provide tab
completion. You can see what that looks like in Figure 12.

This can be helpful for you to make choices when creating new
.NET projects to know what options and arguments are avail-
able to you. You can see what that looks like in Figure 13.

And additionally, what common options and arguments are
commonly mistaken or not supported for the given com-
mand. Instead, you are only shown what’s supported in the
current version of the .NET CLI, as shown in Figure 14.

Template Authoring
.NET 7 adds the concept of constraints to .NET Templates.
Constraints let you define the context in which your tem-
plates are allowed, which helps the template engine deter-
mine what templates it should show in commands like dot-
net new list. For this release, we’ve added support for three
kinds of constraints:

•	 Operating System: Limits templates based on the op-
erating system of the user

•	 Template Engine Host: Limits templates based on
which host is executing the template engine. This is
usually the .NET CLI itself, or an embedded scenario
like the New Project Dialog in Visual Studio or Visual
Studio for Mac.

•	 Installed Workloads: Requires that the specified .NET
SDK workload is installed before the template will be-
come available.

In all cases, describing these constraints is as easy as add-
ing a new constraints section to your template’s configura-
tion file:

 "constraints": {
 "web-assembly": {
 "type": "workload",
 "args": "wasm-tools"
 },
 }

We’ve also added a new ability for choice parameters. This
is the ability for a user to specify more than one value in a
single selection. This can be used in the same way a Flags-
style enum might be used. Common examples of this type of
parameter might be:

•	 Opting into multiple forms of authentication on
the web template

•	 Choosing multiple target platforms (iOS, Android,
web) at once in the maui templates

Opting-in to this behavior is as simple as adding "allow-
MultipleValues": true to the parameter definition in your
template’s configuration. Once you do, you’ll get access to
several helper functions to use in your template’s content
as well to help detect specific values that the user choses.

riences with the .NET CLI, authoring templates, and manag-
ing your packages in a central location.

CLI Parser and Tab Completion
The dotnet new command has been given a more consis-
tent and intuitive interface for many of the subcommands
that users know and love. There’s also support for tab com-
pletion of template options and arguments. Now the CLI
gives feedback on valid arguments and options as the user
types.

Here’s the new help output as an example:

> dotnet new --help
Description:
 Template Instantiation Commands for .NET
CLI.

Usage:
 dotnet new [<template-short-name>
[<template-args>...]] [options]
 dotnet new [command] [options]

Arguments:
 <template-short-name> A short name of the
template to create.
 <template-args> Template specific
options to use.

Options:
 -?, -h, --help Show command line help.

Commands:
 install <package> Installs a
template package.
 uninstall <package> Uninstalls a
template package.
 update Checks the
currently installed template packages for
update, and install the updates.
 search <template-name> Searches for the
templates on NuGet.org.

Figure 12: The dotnet new command provides tab completion.

Figure 13: The options and arguments that are available

Figure 14: Supported options in the .NET CLI

What’s New in .NET 7

www.codemag.com 19codemag.com

Get .NET 7 Help for Free

How does a FREE hour-long
CODE Consulting virtual
meeting with our expert .NET
consultants sound? Yes, FREE.
No strings. No commitment.
No credit cards. Nothing to
buy. For more information,
visit www.codemag.com/
consulting or email us
at info@codemag.com.

the methods quickly at first and then transition to more op-
timized versions when those methods are called frequently
through tiered compilation or have long-running loops
through OSR.

OSR improves startup time. Almost all methods are now ini-
tially jitted by the quick JIT. We have seen 25% improvement
in startup time in jitting-heavy applications like Avalonia
“IL” spy, and the various TechEmpower benchmarks we track
show 10-30% improvements in time to first request. Figure
15 is a chart showing when OSR was enabled by default.

OSR can also improve performance of applications, and, in par-
ticular, applications using Dynamic PGO, as methods with loops
are now better optimized. For example, the Array2 microben-
chmark showed dramatic improvement when OSR was enabled.
Refer to Figure 16 to see an example of this benchmark.

Profile-Guided Optimization (PGO)
Profile-Guided Optimization (PGO) has been around for a
long time in a number of languages and compilers. The ba-
sic idea is that you compile your app, asking the compiler
to inject instrumentation into the application to track vari-
ous pieces of interesting information. You then put your app
through its paces, running through various common scenar-
ios, causing that instrumentation to “profile” what happens
when the app is executed, and the results of that are then
saved out. The app is then recompiled, feeding those instru-
mentation results back into the compiler, and allowing it to
optimize the app for exactly how it’s expected to be used.

This approach to PGO is referred to as “static PGO,” as the
information is all gleaned ahead of actual deployment, and
it’s something .NET has been doing in various forms for years.
The interesting development in .NET is “dynamic PGO,” which
was introduced in .NET 6, but turned off by default.

Dynamic PGO takes advantage of tiered compilation. The JIT
instruments the tier-0 code to track how many times the
method is called, or in the case of loops, how many times
the loop executes. Tiered compilation can instrument a va-
riety of possibilities. For example, it can track exactly which
concrete types are used as the target of an interface dis-
patch, and then, in tier-1, specialize the code to expect the
most common types (this is referred to as “guarded devir-

Central Package Management
Dependency management is a core feature of NuGet. Manag-
ing dependencies for a single project can be easy. Manag-
ing dependencies for multi-project solutions can prove to
be difficult as they start to scale in size and complexity.
In situations where you manage common dependencies for
many different projects, you can leverage NuGet’s central
package management features to do all of this from the ease
of a single location.

To get started with central package management, you can
create a Directory.Packages.props file at the root of your
solution and set the MSBuild property ManagePackageVer-
sionsCentrally to true.

Inside, you can define each of the respective package
versions required of your solution using <PackageVer-
sion /> elements that define the package ID and version.

<Project>
 <PropertyGroup>
 <ManagePackageVersionsCentrally>true</ManagePacka
geVersionsCentrally>
 </PropertyGroup>

 <ItemGroup>
 <PackageVersion Include="Newtonsoft.Json"
Version="13.0.1" />
 </ItemGroup>
</Project>

Within a project of the solution, you can then use the re-
spective <PackageReference /> syntax you know and love,
but without a Version attribute to infer the centrally man-
aged version instead.

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" />
 </ItemGroup>
</Project>

Performance
Performance has been a big part of every .NET release. Every
year, the .NET team publishes a blog on the latest improve-
ments. If you haven’t already, do check out “Performance
improvements in .NET 7” post by Stephen Toub (https://
devblogs.microsoft.com/dotnet/performance_improve-
ments_in_net_7/). We’ll provide a short summary of some
of the performance improvements to the JIT compiler from
Stephen Toub’s article.

On Stack Replacement (OSR)
On Stack Replacement (OSR) allows the runtime to change
the code executed by currently running methods in the mid-
dle of method execution, although those methods are active
“on stack.” It serves as a complement to tiered compilation.

OSR allows long-running methods to switch to more opti-
mized versions mid-execution, so the runtime can JIT all

Figure 15: Time to first response when OSR is enabled

What’s New in .NET 7

melan
Highlight
Add "Sponsored Sidebar"

www.codemag.com20 codemag.com

With PGO disabled, you get the same performance through-
put for .NET 6 and .NET 7, as shown in Table 3.

But the picture changes when you enable dynamic PGO in a
.csproj via <TieredPGO>true</TieredPGO> or environment
variable of DOTNET_TieredPGO=1. .NET 6 gets ~14% faster,
but .NET 7 gets ~3x faster, as shown in Table 4.

Native AOT
To many people, the word “performance” in the context of
software is about throughput. How fast does something ex-
ecute? How much data per second can it process? How many
requests per second can it process? And so on. But there are
many other facets to performance. How much memory does
it consume? How fast does it start up and get to the point of
doing something useful? How much space does it consume
on disk? How long does it take to download?

And then there are related concerns. To achieve these goals,
what dependencies are required? What kinds of operations
does it need to perform to achieve these goals, and are all
of those operations permitted in the target environment? If
any of this paragraph resonates with you, you’re the target
audience for the Native AOT support now shipping in .NET 7.

.NET has long had support for AOT code generation. For exam-
ple, .NET Framework had it in the form of ngen, and .NET Core
has it in the form of crossgen. Both of those solutions involve
a standard .NET executable that has some of its IL already com-
piled to assembly code, but not all methods will have assembly
code generated for them, various things can invalidate the as-
sembly code that was generated, external .NET assemblies with-
out any native assembly code can be loaded, and so on, and,
in all those cases, the runtime continues to use a JIT compiler.
Native AOT is different. It’s an evolution of CoreRT, which itself
was an evolution of .NET Native, and it’s entirely free of a JIT.

The binary that results from publishing a build is a com-
pletely standalone executable in the target platform’s
platform-specific file format (e.g., COFF on Windows, ELF on
Linux, Mach-O on macOS) with no external dependencies
other than that one is standard to that platform (e.g., libc).
And it’s entirely native: no IL in sight, no JIT, no nothing.

tualization,” or GDV). You can see this in this little example.
Set the DOTNET_TieredPGO environment variable to 1, and
then run it on .NET 7:

class Program
{
 static void Main()
 {
 IPrinter printer = new Printer();
 for (int i = 0; ; i++)
 {
 DoWork(printer, i);
 }
 }

 static void DoWork(IPrinter printer, int
i)
 {
 printer.PrintIfTrue(I == int.MaxValue);
 }

 interface iPrinter
 {
 void PrintIfTrue(bool condition);
 }

 class Printer : iPrinter
 {
 public void PrintIfTrue(bool condition)
 {
 if (condition)
Console.WriteLine“"Print”");
 }
 }
}

The tier-0 code for DoWork ends up looking like Listing 5.
The tier-1 code for DoWork ends up looking like Listing 6.

The main improvement you get with PGO is that it now works
with OSR in .NET 7. This means that hot-running methods
that do interface dispatch can get these devirtualization/
inlining optimizations.

Figure 16: The Array2 microbenchmark with OSR enabled

Table 3: Dynamic PGO disabled in .NET 6 and .NET 7

Method Runtime Mean Ratio
DelegatePGO .NET 6.0 1.665 us 1.00
DelegatePGO .NET 7.0 1.659 us 1.00

Method Runtime Mean Ratio
DelegatePGO .NET 6.0 1,427.7 ns 1.00
DelegatePGO .NET 7.0 539.0 ns 0.38

Table 4: Dynamic PGO enabled in .NET 6 and .NET 7

What’s New in .NET 7

www.codemag.com 21codemag.com

on ARM64 devices, or best-in-class cloud native apps, .NET
7 has got you covered.

Download .NET 7 by visiting https://dotnet.microsoft.com/
download and get started today building your first .NET 7 app!

All required code is compiled and/or linked into the execut-
able, including the same GC that’s used with standard .NET
apps and services, and a minimal runtime that provides ser-
vices around threading and the like.

All of that brings great benefits: super-fast startup time, small
and entirely self-contained deployment, and the ability to run
in places JIT compilers aren’t allowed (because memory pages
that were writable can’t then be executable). It also brings
limitations: No JIT means no dynamic loading of arbitrary as-
semblies (e.g., Assembly.LoadFile) and no reflection emit
(e.g., DynamicMethod), and with everything compiled and
linked into the app, that means more functionality is used (or
might be used) and the larger your deployment can be. Even
with those limitations, for a certain class of application, Native
AOT is an incredibly exciting and welcome addition to .NET 7.

Today, Native AOT is focused on console applications, so
let’s create a console app:

dotnet new console -o nativeaotexample

You now have a “Hello World” console application. To enable
publishing the application with Native AOT, edit the .csproj to
include the following in the existing <PropertyGroup>:

<PublishAot>true</PublishAot>

The app is now fully configured to be able to target Native AOT.
All that’s left is to publish. If you wanted to publish to the
Windows x64 runtime, you might use the following command:

dotnet publish -r win-x64 -c Release

This generates an executable in the output publish directory:

 Directory:
C:\nativeaotexample\bin\Release\net7.0\win-
x64\publish

Mode LastWriteTime Length
Name
---- ------------- ------

-a--- 8/27/2022 6:18 PM 3648512
nativeaotexample.exe
-a--- 8/27/2022 6:18 PM 14290944
nativeaotexample.pdb

That ~3.5MB .exe is the executable, and the .pdb next to it
is debug information, which isn’t needed deploying the app.
You can now copy that nativeaotexample.exe to any 64-bit
Windows machine, regardless of what .NET may or may not
be installed anywhere on the box, and the app will run.

Summary
As you can see above, .NET 7 includes performance gains,
C# 11, improvements for the runtime, library, Native AOT,
MAUI/Blazor enhancements and more.

It's a huge release that improves your .NET developer quality
of life by improving fundamentals like performance, func-
tionality, and usability. Our goal with .NET is to empower
you to build any application, anywhere. Whether that’s mo-
bile applications with .NET MAUI, high-power efficient apps

G_M000_IG01: ;; offset=0000H
 55 push rbp
 4883EC30 sub rsp, 48
 488D6C2430 lea rbp, [rsp+30H]
 33C0 xor eax, eax
 488945F8 mov qword ptr [rbp-08H], rax
 488945F0 mov qword ptr [rbp-10H], rax
 48894D10 mov gword ptr [rbp+10H], rcx
 895518 mov dword ptr [rbp+18H], edx

G_M000_IG02: ;; offset=001BH
 FF059F220F00 inc dword ptr [(reloc 0x7ffc3f1b2ea0)]
 488B4D10 mov rcx, gword ptr [rbp+10H]
 48894DF8 mov gword ptr [rbp-08H], rcx
 488B4DF8 mov rcx, gword ptr [rbp-08H]
 48BAA82E1B3FFC7F0000 mov rdx, 0x7FFC3F1B2EA8
 E8B47EC55F call CORINFO_HELP_CLASSPROFILE32
 488B4DF8 mov rcx, gword ptr [rbp-08H]
 48894DF0 mov gword ptr [rbp-10H], rcx
 488B4DF0 mov rcx, gword ptr [rbp-10H]
 33D2 xor edx, edx
 817D18FFFFFF7F cmp dword ptr [rbp+18H], 0x7FFFFFFF
 0F94C2 sete dl
 49BB0800F13EFC7F0000 mov r11, 0x7FFC3EF10008
 41FF13 call [r11]iPrinter:PrintIfTrue(bool):this
 90 nop

G_M000_IG03: ;; offset=0062H
 4883C430 add rsp, 48
 5D pop rbp
 C3 ret

Listing 5: Tier-0 code for DoWork

G_M000_IG02: ;; offset=0020H
 48B9982D1B3FFC7F0000 mov rcx,
0x7FFC3F1B2D98
 48390F cmp qword
ptr [rdi], rcx
 7521 jne SHORT
G_M000_IG05
 81FEFFFFFF7F cmp esi,
0x7FFFFFFF
 7404 je SHORT
G_M000_IG04

G_M000_IG03: ;; offset=0037H
 FFC6 inc esi
 EBE5 jmp SHORT
G_M000_IG02

G_M000_IG04: ;; offset=003BH
 48B9D820801A24020000 mov rcx,
0x2241A8020D8
 488B09 mov rcx,
gword ptr [rcx]
 FF1572CD0D00 call
[Console:WriteLine(String)]
 EBE7 jmp SHORT
G_M000_IG03

Listing 6: Tier-1 code for DoWork

�Jon Douglas and Jeremy Likness and Angelos Petropoulos
�

What’s New in .NET 7

melan
Highlight
Change to "Jon Douglas, Jeremy Likness, and Angelos Petropoulos"

www.codemag.com22 codemag.comWhat’s New in C# 11

ONLINE QUICK ID 2211032

Bill Wagner
wiwagn@microsoft.com
@billwagner

Bill is a member of the .NET
Content team at Microsoft,
responsible for docs and
learning content covering
the C# language. He’s also
a member of the C# ECMA
standards committee.

What’s New in C# 11
Think about the new features in C# 11 as organized around a small set of themes: improved developer productivity, object
initialization and creation, generic math support, and runtime performance. You’ll benefit from all these features, even if you’ll
likely use the features in the first two themes far more often than the last two themes. This article discusses the reasons for

the new features, provides examples of when you’ll use
them, and points to the benefits your programs get because
the .NET runtime makes use of these features.

Improved Developer Productivity
C# 11 adds many features that improve your productivity.
You’ll use these features to write more concise and more
readable code:

•	 Raw string literals
•	 Newlines in string interpolations
•	 UTF-8 string literals
•	 Pattern match Span<char> or ReadOnlySpan<char> on

a constant struct
•	 List patterns

Let’s start with making strings easier to manipulate. Raw
string literals provide new syntax, making it easier to em-
bed arbitrary text, including whitespace, new lines, embed-
ded quotes, and other special characters without requiring
escape sequences. A raw string literal starts with at least
three double-quote (""") characters. It ends with the same
number of double-quote characters. Typically, a raw string
literal uses three double quotes on a single line to start
the string, and three double quotes on a separate line to
end the string. The newlines following the opening quotes
and preceding the closing quotes aren't included in the final
content:

string longMessage = """
 This is a long message.
 It has several lines.
 Some are indented
 more than others.
 Some should start at the first column.
 Some have "quoted text" in them.
 """;

Raw string literals provide
new syntax, making it easier
to embed arbitrary text,
including whitespace, new lines,
embedded quotes, and other
special characters, without
requiring escape sequences.

Any whitespace to the left of the closing triple quotes will
be removed from the string literal. Raw string literals can be
combined with string interpolation to include braces in the

output text. Multiple $ characters denote how many con-
secutive braces start and end the interpolation:

var location = $$"""
 You are at {{{Longitude}}, {{Latitude}}}
 """;

The preceding example specifies that two braces start and
end an interpolation. The third repeated opening and clos-
ing brace are included in the output string.

You can use multiple $ characters in an interpolated raw
string literal to embed { and } characters in the output
string without escaping them. The following snippet shows
an example where $$ indicates that two {{ and }} charac-
ters open and close an interpolated expression. The third
consecutive { or } is added to the output string.

int X = 2;
int Y = 3;

var pointMessage = $$"""
 The point {{{X}}, {{Y}}} is {{Math.Sqrt(
 X * X + Y * Y)}} from the origin
 """;
Console.WriteLine(pointMessage);
// output:
// The point {2, 3} is 3.60555 from the origin.

The preceding example also demonstrates newlines in inter-
polated strings. The C# expressions embedded in an inter-
polated string can span multiple source code lines. You can
format lengthy expressions such as LINQ queries or pattern
matching switch expressions directly inside a string inter-
polation:

string message = $"The usage policy for
 {safetyScore} is {
 safetyScore switch
 {
 > 90 => "Unlimited usage",
 > 80 => "General usage, with safety check",
 > 70 => "Issues must be addressed < 1 week",
 > 50 => "Issues must be addressed today",
 _ => "Issues must be addressed now",
 }
 }";

Think of all the code you write where you format strings
that include quote characters: LINQ query output, XML out-
put, JSON output, and more. The new raw string literals will
make it much easier to format these strings in a way that’s
easier for developers to read.

Developers who work directly with web standards or other
data protocols that use UTF-8 string will appreciate UTF-8
string literals. Add the u8 suffix on a string literal, and the

www.codemag.com 23codemag.com What’s New in C# 11

 public string FirstName { get; init; }
 public string LastName { get; init; }
}

Callers are expected to set the values for the FirstName and
LastName properties using object initializers. However, the
compiler doesn’t enforce that expectation. In C# 11, you
add the required modifier to both property declaration to
mandate that callers must initialize these properties:

public class Person
{
 public required string FirstName { get; init; }
 public required string LastName { get; init; }
}

All callers must include object initializers for both prop-
erties. Otherwise, the compiler emits an error. The caller
must make their code match the expectations set by the
type author. If the type also has a constructor that sets
the required properties, the type author adds the SetsRe-
quiredMembers attribute to the constructor declaration.
Then, the compiler forces that constructor to set an initial
value for all required members. Callers using that construc-
tor aren’t required to add object initializers for those mem-
bers. For example, the Person type might have the following
declaration:

public class Person
{
 public required string FirstName { get; init; }
 public required string LastName { get; init; }

compiler interprets it as a UTF-8-encoded string. The string
literal is stored as a ReadOnlySpan<byte>. The UTF-8 string
literal can be used with .NET library APIs that require UTF-
8 encoded strings. This feature creates a natural syntax for
working with UTF-8 strings, providing more readable and
more performant code constructs when you use UTF-8 strings.

Pattern matching expressions get an improvement for
working with strings and string literals. You can now pat-
tern-match a Span<char> or ReadOnlySpan<char> against
a string literal. The compiler generates code to perform the
match test without allocating and copying the span or the
string.

Finally, List patterns extend pattern matching syntax to
match the sequences of elements in a list or an array. Any
pattern can be applied to any element in the list to check
whether an individual element matches certain characteris-
tics. The discard pattern (_) matches any single element.
The range pattern (..) matches zero or more elements in
the sequence. At most, one range pattern is allowed in a
list pattern. The var pattern can capture any single element,
or a range of elements. You can see several examples of list
patterns in Listing 1.

List patterns provide a rich syntax to text the shape of
sequences to determine whether a sequence contains ele-
ments that match required traits, and to ensure that those
elements are in the proper location.

You’ll often use these new features to write code that is
more expressive, more concise, and more understandable.
The new syntax makes working with strings and related data
structures easier.

Object Initialization and Literals
Another goal for C# is to make it easier to initialize new
objects or values correctly. These features enable using con-
sistent syntax with both class types and struct types. Fur-
thermore, when you make mistakes, the compiler surfaces
the errors at the location where you can best correct the
error. The features added for this goal are:

•	 Required members
•	 Auto-default struct
•	 Extended nameof scope
•	 Generic attributes

Required members lets you annotate
a member declaration to inform
the compiler that it must be
initialized either in a constructor
or an object initializer.

Required members lets you annotate a member declaration
to inform the compiler that it must be initialized either in a
constructor or an object initializer. Consider this class:

public class Person
{

int[] one = { 1 };
int[] odd = { 1, 3, 5 };
int[] even = { 2, 4, 6 };
int[] fib = { 1, 1, 2, 3, 5 };

// You can match the entire sequence by specifying
// all the elements and using values:
Console.WriteLine(odd is [1, 3, 5]); // true
Console.WriteLine(even is [1, 3, 5]); // false (values)
Console.WriteLine(one is [1, 3, 5]); // false (length)

// You can match some elements in a sequence of
// a known length using the discard pattern (_) as a placeholder:

Console.WriteLine(odd is [1, _, _]); // true
Console.WriteLine(odd is [_, 3, _]); // true
Console.WriteLine(even is [_, _, 5]); // false (last value)

// You can supply any number of values or placeholders
// anywhere in the sequence. If you aren't concerned with the length,
// you can use the range pattern to match zero or more elements:
Console.WriteLine(odd is [1, .., 3, _]); // true
Console.WriteLine(fib is [1, .., 3, _]); // true

Console.WriteLine(odd is [1, _, 5, ..]); // true
Console.WriteLine(fib is [1, _, 5, ..]); // false

// The previous examples used the constant pattern
// to determine if an element is a given number.
// Any of those patterns could be replaced by a
// different pattern, such as a relational pattern:
Console.WriteLine(odd is [_, > 1, ..]); // true
Console.WriteLine(even is [_, > 1, ..]); // true
Console.WriteLine(fib is [_, > 1, ..]); // false

Listing 1: List pattern examples

www.codemag.com24 codemag.com

With extended nameof scope, type parameter names and
parameter names are now in scope when used in a nameof
expression in an attribute declaration on that method.
This feature means that you can use the nameof opera-
tor to specify the name of a method parameter in an at-
tribute on the method or parameter declaration. This
feature is most often useful to add attributes for nullable
analysis.

C# 11 adds generic attributes. A generic class can now de-
clare System.Attribute as a based class. This provides a more
convenient syntax for attributes that require a System.Type
parameter.

These features make it easier for you to initialize objects
correctly. They help the developers using your types to use
them correctly.

Generic Math Support
The runtime support for generic math is covered in depth
elsewhere. There are several new C# features that support
this initiative:

•	 Static abstract and static virtual members in inter-
faces

•	 Checked user-defined operators
•	 Relaxed shift operators
•	 Unsigned right-shift operator
•	 Numeric IntPtr and UIntPtr

The largest set of changes are those necessary for static
abstract and static virtual members in interfaces. The
concept is easy to understand: You can declare operators or
other static function as “virtual” or “abstract” in an inter-
face. Any class that implements that interface must provide
an implementation of those operators and static methods.
Because these methods are static, the compiler must resolve
the target method; there’s no runtime dispatch as there is
with instance virtual methods. That means that the com-
piler must be able to determine the correct type for each
static method call.

In practice, that means that these interfaces are generally
generic interfaces. Furthermore, one of the type parameters
must be constrained to be a type that implements the in-
terface. For example, the INumber interface covered in the
generic math article declares this constraint, among many
others:

public interface INumber<TSelf>
 where TSelf : INumber<TSelf>

Checked user defined operators enables developers to write
different implementations of many overloaded operators for
a checked and an unchecked context. In previous versions
of C#, all overloaded operators used the same implementa-
tion in both a checked and unchecked context. This feature
enables type authors to specify different behavior in each
context.

The shift operators use to require that the right operand
was an int. With relaxed shift operators, that restriction
is now removed. Generic math algorithms can use the shift
operators, and the right operand can be the type imple-
menting the INumber interface.

 public Person() { }

 [SetsRequiredMembers]
 public Person(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }
}

Callers using the first constructor must set the required
members. Callers using the second constructor rely on the
constructor to set the required members.

Auto-default structs clarify the rules for definite assign-
ment in struct constructors. The .NET runtime always ini-
tializes the storage for a struct to all 0s. Therefore, struct
constructors don’t need to set any member to the 0 value
explicitly. The additional assignment is unnecessary. Con-
structors that don’t explicitly set all member values now
compile, and the compiler sets all members to definitely
assigned. In general, when you create a struct by calling a
constructor, that constructor initializes all values correctly.
When you set a struct to the default value, all struct mem-
bers are set to 0.

Advertisers Index

1&1 Internet, Inc.
	 www.1and1.com� 7

CODE Consulting
	 www.codemag.com/techhelp� 2, 57

CODE Divisions
	 www.codemag.com� 75

CODE Framework
	 www.codemag.com/framework� 49

CODE Magazine
	 www.codemag.com/magazine� 37, 65

CODE Staffing
	 www.codemag.com/staffing� 25

dtSearch
	 www.dtSearch.com� 69

LEAD Technologies
	 www.leadtools.com� 5

SPTechCon
	 www.sptechcon.com� 45

SXSW Interactive
	 www.sxsw.com� 76

Xamalot
	 www.xamalot.com� 31

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsibi-
lity for errors or omissions.

What’s New in C# 11

www.codemag.com 25codemag.com

Ready to Modernize
a Legacy App?

Need FREE advice on
migrating yesterday’s legacy
applications to today’s
modern platforms? Get
answers, taking advantage of
CODE Consulting’s years of
experience by contacting us
today to schedule your free
hour of CODE Consulting call.
No strings. No commitment.
Nothing to buy. For more
information, visit www.
codemag.com/consulting or
email us at info@codemag.com.

Cached method group conversion to delegate is a compiler
performance improvement that you’ll benefit from without
changing any of your code. This feature benefits from the
updated work by the ECMA C# committee. Earlier standards
forced the compiler to allocate a new delegate object when
code converted a method group to a delegate. The commit-
tee updated the standard for version 6 to allow the compiler
to cache the delegate object. C# 11, the next compiler re-
leased following that change, takes advantage of this new
option. Your code makes fewer allocations just by compiling
with C# 11.

Wrapping up
C# 11 adds quite a few features, some you’re more likely to
use than others. Some are for specific scenarios, like ge-
neric math; others are more general, like raw string literals.
C# keeps evolving to support the applications that you’re
building today, while still being the language you know and
love. You can find links to more details on each of these fea-
tures at https://docs.microsoft.com/dotnet/csharp/whats-
new/csharp-11.

The unsigned right shift operator, >>>, shifts an integral
type to the right, always inserting 0 in the left-most bits.
The arithmetic shift operator, >>, inserts 0 for positive num-
bers and 1 for negative numbers.

Finally, the keywords nint, and nuint are synonyms for the
types System.IntPtr and System.UIntPtr, respectively. The
native sized integer keywords were added in C# 10, but were
not considered the same as the corresponding types. Now
they are.

If you write types that represent numbers, you’ll use these
features and the corresponding generic math interfaces
often. Otherwise, they may not directly affect your code,
but you’ll benefit from the consolidation of many numeric
methods in the runtime library.

Runtime Performance
Finally, C# 11 adds features that can improve runtime per-
formance. Most of these were requested by the .NET Run-
time team. They are used in the runtime, so you’ll get the
performance benefits even if you don’t use the feature in
your code:

•	 Ref fields and scoped ref
•	 File local types
•	 Cached method group conversion to delegate

Most of these were requested
by the .NET Runtime team.
They’re used in the runtime,
so you’ll get the performance
benefits even if you don’t use
the feature in your code.

Ref fields and scoped ref provide more syntax to enable
passing parameters by reference. These features can reduce
copying values or allocating new objects. Ref fields allows
the ref modifier on a member of a ref struct. This feature
minimizes copying when a ref struct needs to reference
some storage in another object. The compiler uses static
analysis to ensure that the ref struct doesn’t have a lifetime
that could extend beyond the source of the ref field. Ref
parameters can include the scoped modifier to inform the
compiler that the reference can’t have a lifetime beyond
the current method. That restricts how it can be passed,
stored, or what storage could be assigned to the param-
eter. These language enhancements enable developers
to write more performant code without using unsafe fea-
tures. The compiler can enforce lifetime rules of reference
variables.

File local types are classes where the definition in-
cludes the file modifier. These types can only be accessed
within the same source file. They are primarily useful for
code generators. A code generator can generate a class
scoped to its output source file safely knowing that the
type won’t conflict with another type in the destination
program.

� Bill Wagner
�

What’s New in C# 11

melan
Highlight
Add "Sponsored Sidebar"

www.codemag.com26 codemag.comHighlighted Performance Wins with .NET 7

ONLINE QUICK ID 2211042

Stephen Toub
stoub@microsoft.com

Stephen Toub is a Partner
Software Engineer at
Microsoft. He spends most
of his time focused on the
libraries that comprise
.NET and on performance
across the .NET stack.

Highlighted Performance Wins
with .NET 7
Ever since .NET Core hit the scene more than seven years ago, performance has been an integral part of the culture of .NET.
Developers are encouraged to find and improve all aspects of performance across the codebase, with changes ranging from
removing a small allocation here, to overhauling an entire algorithm there, to brand new APIs intended to enable all developers

to further improve their own application and service per-
formance. This, in turn, leads to immense quantities of
improvements in any given release, and .NET 7 is no excep-
tion. The post at https://devblogs.microsoft.com/dotnet/
performance_improvements_in_net_7 provides an in-depth
exploration of hundreds of these.

Given the quantity and quality of these improvements, there’s
no handful of changes I can point to that are “the best,” with
changes each having their own unique impact in distinct ar-
eas of the platform. Instead, in this article, I’ve picked just
three areas of improvement to highlight as ones that can have
an instrumental impact on the performance of your code. This
is a small taste, and I encourage you to read the (long) cited
post to get a better understanding for the breadth and depth
of performance improvements in this release.

On-Stack Replacement
There are many positives to just-in-time (JIT) compilation.
A single binary can be run on any supported platform, with
the code in the binary translated to the target computer’s
architecture on-demand, and in doing so, the JIT can spe-
cialize the generated code for the particulars of the target
computer, such as choosing the best instructions it supports
to implement a particular operation. The flip side of this is
that on-demand compilation takes time during the execu-
tion of the program, and that time often shows up as delays
in the startup of an application (or, for example, in the time
for a service to complete a first request).

Tiered compilation was introduced in .NET Core 3.0 as a com-
promise between startup and steady-state throughput. With it,
the JIT is able to compile methods multiple times. It first does
so with minimal optimization, in order to minimize how long it
takes to compile the method (because the cost of finding and
applying optimizations is a significant percentage of the cost of
compiling a method). It also equips that minimally optimized
code with tracking for how many times the method is invoked.
Once the method has been invoked enough times, the JIT re-
compiles the method, this time with all possible optimization,
and redirects all future invocations of the method to that heav-
ily optimized version.

That way, startup is faster while steady-state throughput
remains efficient; in fact, steady-state throughput can
even be faster because of additional information the JIT
can learn about the method from its first compilation and
then use when doing the subsequent compilation. However,
methods with by-default loops previously were opted-out of
tiered compilation because such methods can consume sig-
nificant amounts of the app’s execution time even without
being invoked multiple times.

In .NET 7, even methods with loops benefit from tiered com-
pilation. This is achieved via on-stack replacement (OSR).
OSR results in the JIT not only equipping that initial com-
pilation for number of invocations, but also equipping loops
for the number of iterations processed. When the number of
iterations exceeds a predetermined limit, just as with invoca-
tion count, the JIT compiles a new optimized version of the
method. It then jumps to the new method, transferring over
all relevant state so that execution can continue running
seamlessly without the method needing to be invoked again.

You can see this in action in a few ways. Try compiling a
simple console app:

using System;

for (int i = 0; ; i++)
{
 if (i == 0)
 {
 Console.WriteLine("Running...");
 }
}

Run it, but first set the DOTNET_JitDisasmSummary envi-
ronment variable to 1. You should end up seeing output that
includes lines like these:

 4: JIT compiled Program:<Main>$(ref)
 [Tier0, IL size=21, code size=94]
…
 6: JIT compiled Program:<Main>$(ref)
 [Tier1-OSR @0x2, IL size=21, code size=43]

The C# compiler generated a <Main>$ method for your program
containing top-level statements, and you see two entries for it
in the JIT’s recording of every method it compiled. The first is
the initial compilation with minimal optimization, and the sec-
ond is the OSR variant that’s fully optimized. If you didn’t have
OSR such that tiered compilation didn’t apply to this method,
you would have instead seen a single entry for this method.

Or, try running this silly little benchmark:

using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System;

[DisassemblyDiagnoser]
public partial class Program
{
 static void Main(string[] args) =>
 BenchmarkSwitcher.

www.codemag.com 27codemag.com Highlighted Performance Wins with .NET 7

 new Regex(@"[0-9]{3}-[0-9]{3}-[0-9]{4}",
 RegexOptions.Compiled);

 public static int CountPhoneNumbers(
 string text)
 {
 int count = 0;
 Match m = s_pn.Match(text);
 while (m.Success)
 {
 count++;
 m = m.NextMatch();
 }
 return count;
 }
}

This uses the RegexOptions.Compiled flag to ask the runtime
to use reflection emit to generate a customized implementa-
tion of this regular expression at execution time. Doing so will
make steady-state throughput much faster, at the expense of
having to do all of the work to parse, analyze, optimize, and
code gen this expression at execution time. It also won’t be
able to do that code generation in an environment that lacks
a JIT compiler, like with Native AOT in .NET 7. What if all of
that work could be done at compile-time instead? In .NET 7, it
can. I can write the above in .NET 7 instead as the following:

partial class Helpers
{
 [GeneratedRegex(
 @"[0-9]{3}-[0-9]{3}-[0-9]{4}")]
 private static partial Regex PhoneNumber();

 public static int CountPhoneNumbers(
 ReadOnlySpan<char> text) =>
 PhoneNumber().Count(text);
}

A few things to notice here. First, my CountPhoneNumbers
helper now accepts a ReadOnlySpan<char> instead of a string
(which is implicitly convertible to ReadOnlySpan<char>).
That’s feasible because Regex now has multiple methods that
accept ReadOnlySpan<char> as input and work efficiently
over such spans, enabling my CountPhoneNumbers func-
tion to be used with a wider set of inputs, such as a char[],
a stackalloc’d Span<char>, a ReadOnlySpan<char> created
around some native memory from interop, and so on.

Second, the body of my CountPhoneNumbers method has
been condensed to a single line that just calls the Count
method; this is a new method on Regex in .NET 7 that ef-
ficiently counts the number of occurrences in the input, in
an amortized allocation-free manner.

Third and most importantly for this example, you’ll notice
that I’m no longer using the Regex constructor. Instead,
I have a partial method that returns Regex and that’s at-
tributed with [GeneratedRegex(…)]. This new attribute
triggers a source generator included in the .NET SDK to emit
a C# implementation of the specified regex, as shown in
the screenshot of Visual Studio in Figure 1. The generated
code is logically equivalent to the IL that would be emitted
by RegexOptions.Compiled at execution time but is instead
C# emitted at compile time. This means that you get all the
throughput benefits of the compiled approach, even in an

 FromAssembly(typeof(Program).Assembly).
 Run(args);

 private static readonly int s_year =
 DateTime.UtcNow.Year;

 [Benchmark]
 public int Compute()
 {
 int result = 0;
 for (int i = 0; i < 1_000_000; i++)
 {
 result += i;
 if (s_year == 2021)
 {
 result += i;
 }
 }
 return result;
 }
}

When I run it, I get numbers like .NET 6 taking 858.9us and .NET
7 taking 237.3us. Why is .NET 7 so much faster? Because of OSR.

In the .NET 6 version, tiered compilation isn’t used and the
loop is compiled such that the comparison in the body of the
loop requires reading the value of s_year. In the .NET 7 ver-
sion, tiered compilation is used, and when OSR kicks in and
causes an optimized version of the code to be generated, by
that point, the JIT knows that s_year was already initialized.
As it’s a static readonly, the JIT knows its value will never
change, and the JIT can treat it like a constant. It’ll see that
the year isn’t 2021 and so eliminate that if block as dead code.
You’re thus saving a static field read and a branch on every it-
eration of the loop when compared to the .NET 6 execution.

Regex
.NET 7 significantly improves the performance of regular ex-
pressions processing, so much so that in addition to the previ-
ously cited .NET 7 performance post, there’s an entire post ded-
icated to Regex improvements (https://devblogs.microsoft.
com/dotnet/regular-expression-improvements-in-dotnet-7).
The performance improvements here broadly fit into four cat-
egories: ones that result in existing regexes being faster, new
APIs for more efficiently working with regexes, a new regex
source generator (which has not only startup and steady-state
performance benefits but also pedagogical benefits), and the
new RegexOptions.NonBacktracking option. Here, I’ll take a
look at the source generator, touching on a few of the other
improvements, and you can see the blog posts for more details.

Let’s say I wanted a regular expression for a specific format-
ting of phone numbers in the United States:

@"[0-9]{3}-[0-9]{3}-[0-9]{4}"

This looks for three digits, a dash, three more digits, another
dash, and another four digits. And let’s say my task was to
count the number of phone numbers in a given piece of text.
With .NET 6 and earlier, I might implement that as follows:

partial class Helpers
{
 private static readonly Regex s_pn =

www.codemag.com28 codemag.com

hand, we could write LINQ queries against the internal object
model used to represent a parsed regular expression “node
tree” in order to quickly get the answer, like this:

int count =
 (from pattern in patterns
 let tree = Parse(pattern)
 from node in tree.EnumerateAllNodes()
 where node.Kind is
 RegexNodeKind.Oneloopatomic or
 RegexNodeKind.Notoneloopatomic or
 RegexNodeKind.Setloopatomic
 select node)
 .Count();

As LINQ is used in so many applications by so many develop-
ers, we strive to make it as efficient as possible (even though
in our core libraries we still avoid using it on hot paths due
to overheads involved in things like enumerator allocation
and delegate invocation). Previous releases of .NET saw some
significant improvements, for example due to reducing the
algorithmic complexity of various operations by passing ad-
ditional information from one operator to another (such as
enabling an OrderBy(…).ElementAt to perform a “quick se-
lect” rather than “quick sort” operation). In .NET 7, one of the
larger improvements in LINQ relates to a much larger set of
optimizations throughout .NET 7, that of vectorization.

Vectorization is the process of changing an implementation to
use vector instructions, which are SIMD (single instruction mul-
tiple data) instructions capable of processing multiple pieces of
data at the same time. Imagine that you wanted to determine
whether an array of 1,000,000 bytes contained any zeros. You
could loop over every byte in the array looking for 0, in which
case you’d be performing 1,000,000 reads and comparisons.
But what if you instead treated the array of 1,000,000 bytes as a
span of 250,000 Int32 values? You’d then only need to perform
250,000 read and comparison operations, and since the cost of
reading and comparing an Int32 is generally no more expensive
than the cost of reading and comparing a byte, you’d have just
quadrupled the throughput of your loop. What if you instead
handled it as a span of 125,000 Int64 values? What if you could
process even more of the data at a time? That’s vectorization.

Modern hardware provides the ability to process 128 bits, 256
bits, even 512 bits at a time (referred to as the width of the
vector), with a plethora of instructions for performing various
operations over a vector of data at a time. As you might guess,
using these instructions can result in absolutely massive per-
formance speedups. Many of these instructions were surfaced
for direct consumption as “hardware intrinsics” in .NET Core 3.1
and .NET 5, but using those directly requires advanced know-
how and is only recommended when absolutely necessary.

Higher level support has previously been exposed via the
Vector<T> type, which enables you to write code in terms of
Vector<T>, and the JIT then compiles that usage down to the
best available instructions for the given system. Vector<T> is
referred to as being “variable width,” because, depending on
the system, the code actually ends up running on, it might
map to 128-bit or 256-bit instructions, and because of that
variable nature, the operations you can perform with it are
somewhat limited. .NET 7 sees the introduction of the new
fixed-width Vector128<T> and Vector256<T> types, which
are much more flexible. Many of the public APIs in .NET itself
are now vectorized using one or more of these approaches.

environment that doesn’t support JIT’ing, and you get those
benefits without having to pay for it in startup time. This
code is also viewable and debuggable, which helps improve
not only the correctness of an application but also your
knowledge of how regexes are evaluated:

You can see in this example that the source generator has
output very clean, very readable source code for the regular
expression, tailored to exactly what the regex is, and very
close to what you yourself might write if you were trying
to write code to match this pattern. The code is even com-
mented, and it uses new methods also introduced in .NET
7 for identifying categories of characters like ASCII digits.

It’s also learned some new tricks in how to search efficiently
for possible locations that might match the pattern. In .NET
6, it would have walked character by character looking for a
digit that could start the pattern. Now in .NET 7, you can see
it’s searching for the dash, and if found, it’ll be able to back
up a few characters to try to match the pattern starting at that
position. In a text like “Pride and Prejudice” that I’m searching
here, which, as you might guess, has very few U.S. phone num-
bers in it, this leads to significant performance improvements.

LINQ
Language Integrated Query (LINQ) continues to be one of my
favorite features in all of .NET. As a combination of over 200
methods for performing various manipulations of arbitrary
collections of data, it’s a succinct and flexible way to ma-
nipulate information. For example, during our work to opti-
mize Regex, we’d frequently want to ask questions like “if I
make this change to our loop auto-atomicity logic, how many
loops could we now make atomic automatically,” and with a
database of around 20,000 real-world regular expressions in

Figure 1: Stepping through C# code generated for a Regex

Highlighted Performance Wins with .NET 7

www.codemag.com 29codemag.com

you’re running on hardware that can, in fact, accelerate the
vectorized implementation and that you have enough data
to vectorize at least something:

if (Vector.IsHardwareAccelerated &&
 values.Length >= Vector<int>.Count)
{
 ...
}

Once you know that, you can write your vectorized loop. The ap-
proach will be to maintain a Vector<long> of partial sums; for
each Vector<int> you read from the input, you’ll “widen” it into
two Vector<long>s, meaning every int will be cast to a long, and
because that doubles the size, you’ll need two Vector<long>s to
store the same data as the Vector<int>. Once you have those
two Vector<long>s, you can just add them to your partial sums.
And at the end, you can sum all of the partial sums together.
That gives you this as your entire implementation:

static double Average(ReadOnlySpan<int> values)
{
 long sum = 0;
 int i = 0;

 if (Vector.IsHardwareAccelerated &&
 values.Length >= Vector<int>.Count)
 {
 Vector<long> sums = default;
 do
 {
 Vector.Widen(
 new Vector<int>(values.Slice(i)),
 out Vector<long> low,
 out Vector<long> high);
 sums += low;
 sums += high;
 i += Vector<int>.Count;
 }
 while (i <= values.Length –
 Vector<int>.Count);
 sum += Vector.Sum(sums);
 }

 for (; i < values.Length; i++)
 {
 sum += values[i];
 }

 return (double)sum / values.Length;
}

If you look at the implementation of this overload in .NET 7
(it’s open source, and you’re encouraged to read and con-
tribute), you’ll see this is almost exactly what the official
code currently does.

Call to Action
.NET 7 is full of these kinds of performance improvements,
across the entirety of the release. Please download .NET 7,
upgrade your apps and services, and try it out for yourself.
We’re excited to hear how these improvements contribute to
the performance of your applications.

Some of LINQ was previously vectorized. In .NET 6, the Enumer-
able.SequenceEqual method was augmented to special-case
T[], in which case, the implementation would use a vectorized
implementation to compare the two arrays. In .NET 7, some of
the overloads of Enumerable.Min, Enumerable.Max, Enumer-
able.Average, and Enumerable.Sum have all been improved.

First, these methods now all specialize for the very com-
monly used types T[] and List<T>, in order to optimize the
processing of their contents. Both of these types make it
easy to get a ReadOnlySpan<T> for their contents, which in
turn means the contents of either can be processed with one
shared routine that has fast access to each element rather
than needing to go through an enumerator.

And then some of the implementations are able to take it
further and vectorize that processing. Consider public static
double Enumerable.Average(this IEnumerable<int>), for
example. Its behavior is to sum all of the Int32 values in the
source, accumulating the sum into an Int64, and then dividing
that Int64 by the number of summed elements (which needs
to be at least 1). This can lead to huge speedups, for example:

using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System.Buffers;
using System.Linq;

public partial class Program
{
 static void Main(string[] args) =>
 BenchmarkSwitcher.
 FromAssembly(typeof(Program).Assembly).
 Run(args);

 private int[] _values =
 Enumerable.Range(0, 1_000_000).
 ToArray();

 [Benchmark]
 public double Average() =>
 _values.Average();
}

On my computer, this shows the benchmark on .NET 6 taking an
average of 3661.6us and on .NET 7 taking an average of 141.2us—
almost 26 times faster. How would you vectorize an operation
like this if you wanted to do it by hand? Let’s start with the
sequential implementation, and for simplicity, let’s assume the
input has already been validated to be non-null and non-empty.

static double Average(ReadOnlySpan<int> values)
{
 long sum = 0;

 for (int i = 0; i < values.Length; i++)
 {
 sum += values[i];
 }

 return (double)sum / values.Length;
}

The basic idea is that you want to process as much as pos-
sible vectorized, and then use the same one-at-a-time loop
to process any remaining items. Start by validating that

� Stephen Toub
�

Highlighted Performance Wins with .NET 7

www.codemag.com30 codemag.comUse .NET MAUI for Native, No-Compromise Apps

ONLINE QUICK ID 2211052

David Ortinau
david.ortinau@microsoft.com
dev.to/davidortinau
twitter.com/davidortinau

David is a Principal Product
Manager for .NET Client
Apps at Microsoft, focused
on .NET MAUI. A .NET
developer since 2002,
and versed in a range of
programming languages,
he has developed web,
environmental, and mobile
experiences for a wide
variety of industries. After
several successes with tech
startups and running his
own software company,
David joined Microsoft to
follow his passion: crafting
tools that help developers
create better app experiences.

Use .NET MAUI for Native,
No-Compromise Apps
Where your users are, that's where you want to be, where you need to be. On their phones, on their tablets, on their computers,
and generally everywhere they interact with your app. This is reach—being present where your users are and where they’re
most effectively interacting with your app in order to help them to achieve their goals. The foundation of this omnipresence

is being on both mobile and Web. The question is: How do
you get there faster than your competition, with better
quality, and at a lower cost?

Microsoft offers a variety of ways to create client applica-
tions for everything from games and virtual reality to forms
over data. The catalog includes low-code solutions with
Power Apps, Teams apps, C++ SDKs for desktop and mobile,
and .NET, of course. It's great to have choice, and Microsoft
knows first-hand from talking to many companies that each
has a place. So, where does .NET fit in this mix and when
should you use it?

We have shaped .NET Multi-platform App UI (MAUI) first and
foremost for you to deliver client applications that feature
rich user interactions, high performance, and native plat-
form experiences. You can then leverage all a device and
platform has to offer because .NET MAUI builds upon the
native UI frameworks of Android, iOS, macOS, and Windows.

So that we start off on the same page, let me begin by de-
fining how I'll be using some common and thus commonly
fuzzy terms.

•	 Native means using the technology specifically de-
signed and optimized for the best experience on a
particular platform.

•	 A client application is any application a user interacts
with that runs on devices such as mobile, tablet, desk-
top, etc., typically via a graphical interface.

•	 Platform capabilities refer to features such as cam-
era, RFID, GPS, secure storage, accelerometer, file
system, notifications, system tray, menus, Bluetooth,
and so on.

•	 Integrations are hardware and software that can be
leveraged by your application such as scanners, color
sensors, printers, medical devices, and more.

One .NET
"If you are a .NET developer, then you are already a .NET
MAUI developer," I heard a developer say recently on You-
Tube. This is exactly the confidence we want everyone to get
from using .NET MAUI when applying their .NET experience
to building mobile and desktop applications. We have de-
signed this familiarity into .NET MAUI.

Your .NET code works the same in .NET MAUI as it does in
Blazor, ASP.NET, or any other .NET app. It all uses the same
base class library and runtime. The only difference is how
the runtime on mobile is optimized for resource-constrained
devices.

The startup and configuration of a .NET MAUI app should
look very familiar to you. We employ the same builder pat-
tern to create your app instance, configure dependencies,
tap into lifecycle events, and more.

public static class MauiProgram {
 public static MauiApp CreateMauiApp(){
 var builder = MauiApp.CreateBuilder();
 builder
 .UseMauiApp<App>()
 .ConfigureFonts(fonts => {
 fonts.AddFont("Regular.ttf",
 "OpenSansRegular");
 fonts.AddFont("Semibold.ttf",
 "OpenSansSemibold");
 });
 return builder.Build();
 }
}

The project structure itself, as you see it in Visual Studio
2022 (see Figure 1), looks a lot like your other .NET solutions
where your app is a single project. Historically, you’d have
had a separate project for each platform you targeted and
then a library project for any shared code. .NET MAUI gives
you direct access to each platform from just one project by
using .NET multi-targeting and unifies a bunch of common
resource tasks. I'll explain more on that in the next section.

One Project, Many Platforms
You choose a development platform to build your app, not
to wrangle with underlying platform idiosyncrasies, recon-
ciling the differences between multiple platforms. In .NET

Figure 1: The Solution Explorer in Visual Studio

www.codemag.com 31codemag.com Use .NET MAUI for Native, No-Compromise Apps

The original size may be much larger, which isn't ideal for mobile.
Or perhaps the image is exactly the size you want, so you can tell
.NET MAUI to not resize anything by adding Resize="false". In
this way, you can easily constrain the artifacts and keep your
memory footprint low on mobile. Then, to use this image any-
where in your application, you need only reference the filename.

<Image
 Source="global_map.png"/>

Notice that here, the file extension changed from svg to png.
This is because it references the resource optimized for runtime
performance, which is a png, and not the source file, which,
in this case, is an svg. To directly use svg at runtime, look to
SkiaSharp or another library that supports that format.

You also configure your app icons and splash screen the
same way in .NET MAUI by denoting which resources should
be used to generate all the different sizes (see Figure 2) for
the platforms you’re targeting.

<MauiIcon
 Include="Resources\AppIcon\appicon.svg"
 ForegroundFile="Resources\AppIcon\appiconfg.svg"
 Color="#512BD4" />

<MauiSplashScreen
 Include="Resources\Splash\splash.svg"
 Color="#512BD4"
 BaseSize="128,128" />

MAUI, we decided it didn't need to be so complicated to
build cross-platform apps that remain native, so we’ve ab-
stracted away the meaningless differences. Each platform
is still close within reach. You should have to do as little as
needed to get the most from each platform, including re-
sources, styles, lifecycle events, and writing platform code.

Any Resource in One Place
Managing images and other visual assets can be a labor-in-
tensive process and one that often involves both a develop-
er and a designer. Each platform has different requirements
for file formats, naming conventions, screen densities, and
more. In .NET MAUI, you can place your source image in any
of the supported formats in the Resources/Images folder,
and .NET MAUI automatically generates the various artifacts
needed.

Images
.NET MAUI supports source PNG, JPG, GIF, and SVG, which is
a great vector file format that lends itself well to upscaling
as well as downscaling. By default, all images are treated the
same, starting from the original size. To get more control,
open the csproj file and add some additional information for
that image. For example, if you want to constrain an image to
a different base size than the original, set a BaseSize.

<MauiImage
 Source="Resources/Images/global_map.svg"
 BaseSize="300,600"/>

Figure 2: All the sizes of images needed for app icons

www.codemag.com32 codemag.com

your own global styles to your project (see Listing 1). The
styles are implicit, which means any new control, such as a
Button that you add to the screen, inherits those charac-
teristics.

<Button Text="Save" />

In your application, you may wish to have different button
styles for different uses (see Figure 4), such as primary ac-
tion, secondary action, or by solid and outlined styles. For
this, you can define a button style just like above and give it
an x:Key to reference explicitly.

<Button Text="Save"
 Style="{StaticResource OutlineButton}" />

// Resources/Styles/Styles.xaml
<Style TargetType="Button" x:Key="OutlineButton">
 <Setter Property="CornerRadius" Value="8"/>
 <Setter Property="TextColor" Value="Black"/>
 <Setter Property="BorderWidth" Value="1"/>
 <Setter Property="BorderColor" Value="Black"/>
 <Setter Property="Background"
 Value="Transparent"/>
</Style>

App and View Lifecycle Events
Lifecycle events differ from platform to platform, not always
firing in the same order. .NET MAUI provides a consistent
cross-platform set of lifecycle events for your app itself and
each view element, and platform-specific lifecycle events for
when you need more control. App lifecycle events (as you
see in Figure 5) include:

•	 Created: After the native window has been created
•	 Activated: When the created window becomes the fo-

cused window
•	 Deactivated: When the window is no longer the fo-

cused window
•	 Stopped: When the window is no longer visible
•	 Resumed: When the app resumes from being stopped
•	 Destroying: When the native window is being de-

stroyed

Now in your app, you can access an event like Created from
the window to perform cross-platform or even platform-
specific work.

Fonts for Typography and Icons
Fonts are another notoriously bothersome thing to get right
across multiple platforms and .NET MAUI makes this simple.
Place any TrueType or OpenType in your Resources/Fonts
folder, and then give the file a name in the MauiProgram
that you'll use in your styles.

.ConfigureFonts(fonts => {
 fonts.AddFont("OpenSans.ttf", "OpenSans");
 fonts.AddFont("fabmdl2.ttf", "Fabric");
})

Apply the font family by that name to your styles or directly
on any control, and if your font includes icon glyphs, you
can use them for image sources as well. You can see this
in Figure 3, where the down chevron glyph is beside the
button label.

<Label Text="{x:Static a:FabIconFont.ChevronDown}"
 FontFamily="Fabric"/>

Styles
From a new project, .NET MAUI provides a complete
stylesheet with a default .NET brand-inspired color palette,
sensible defaults for all controls including light and dark
themes, and visual states for interactive controls. You can
use this as a starting point or as a reference guide to add

Figure 3: The font icon is used for the down chevron.

code Listing (more than 15 lines)
 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567

<Style TargetType="Button">
 <Setter Property="TextColor" Value="{AppThemeBinding
 Light={StaticResource White},
 Dark={StaticResource Primary}}" />
 <Setter Property="BackgroundColor" Value="{AppThemeBinding
 Light={StaticResource Primary},
 Dark={StaticResource White}}" />
 <Setter Property="FontFamily" Value="OpenSansRegular"/>
 <Setter Property="FontSize" Value="14"/>
 <Setter Property="CornerRadius" Value="8"/>
 <Setter Property="Padding" Value="14,10"/>
 <Setter Property="VisualStateManager.VisualStateGroups">
 <VisualStateGroupList>
 <VisualStateGroup x:Name="CommonStates">

 <VisualState x:Name="Normal" />
 <VisualState x:Name="Disabled">
 <VisualState.Setters>
 <Setter Property="TextColor"
 Value="{AppThemeBinding
 Light={StaticResource Gray950},
 Dark={StaticResource Gray200}}" />
 <Setter Property="BackgroundColor"
 Value="{AppThemeBinding
 Light={StaticResource Gray200},
 Dark={StaticResource Gray600}}" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateGroupList>
 </Setter>
</Style>

Listing 1: Default implicit Button style

Use .NET MAUI for Native, No-Compromise Apps

www.codemag.com 33codemag.com

implementations that drive each control, loosely coupled
to the native platform. You can think of the architecture of
controls this way: The cross-platform Control has common
characteristics (properties, events, etc.) that a Handler
maps to each platform control. Any of those mapped things
can be overridden, or code added before or after by you.

protected override Window
 CreateWindow(IActivationState activationState)
 {
 Window window =
 base.CreateWindow(activationState);
 window.Created += (s, e) =>
 {
 var mauiWindow = (Window)s;
#if WINDOWS
 var nativeWindow =
 (MauiWinUIWindow)mauiWindow
 .Handler.PlatformView;
 nativeWindow.GetAppWindow()
 .MoveAndResize(
 new RectInt32(x, y, width, height));
#endif
 };
 return window;
 }

From the cross-platform window control, you can access the
platform view through the handler, the part of .NET MAUI
responsible for mapping cross-platform to native platform
APIs. Using multi-targeting compiler directives like #if
WINDOWS, you can then use those platform-specific APIs
to do things like centering the WinUI window on the user's
screen.

Awesome for Mobile
.NET MAUI is the fastest .NET mobile we've ever shipped for
Android and iOS. .NET 6 is 68% faster than Xamarin.Android,
and 44% faster than Xamarin.Forms. Our full-featured .NET
MAUI podcast app starts in under 240ms on modern iPhone
and iPad devices. With each release of .NET, your client ap-
plications benefit from these improvements and many oth-
ers made across the entire .NET stack.

Performance is only the beginning of what makes .NET MAUI
great on mobile devices. Our product team is heavily focused
on building a product that serves you, our customers, from
small to enterprise-size companies. You have helped us and
continue to help us become experts in what it takes to build
apps that are successful for your businesses: a complete set
of UI controls, a vibrant ecosystem of libraries, developer
tooling, enterprise patterns and practices, and abundant
learning resources.

UI Controls
Use C# or XAML to build rich UI with more than 40 cross-
platform controls and layouts, plus all the platform-specific
controls provided by each native framework. Compose and
style them together to get infinitely more!

By default, each control is styled consistently while main-
taining the characteristics that make it native to the plat-
form. A perfect example is the Entry control for text in-
put, as you can see in Figure 6. As you can see from the
static image, this control looks quite different on all four
platforms. The behavior also differs. Are these differences
meaningful to your users? Often, they are, and this is the
experience you want to ship.

When it's not the experience you were going for and you
wish to unify the look and feel across all platforms, you can
tap into the power of .NET MAUI handlers. Handlers are the

Figure 4: Buttons with various styles

Figure 5: App lifecycle diagram

Figure 6: Platform default styling for Entry fields

Use .NET MAUI for Native, No-Compromise Apps

www.codemag.com34 codemag.com

With just a few lines of code, you can make deep platform
customizations to your cross-platform app.

Amazing for Desktop
.NET MAUI is the first product at Microsoft for building native
client applications that run on Android, iOS, macOS, and
Windows. For desktop platforms, you get the most modern
toolkit in WinUI with Windows App SDK and Mac Catalyst for
macOS. This is more than just bringing .NET MAUI mobile
apps to the desktop. We have added support for multiple
app windows; New in .NET 7 are desktop-specific controls
for app-level menus, context menus, and tooltips, plus
gestures for mouse hover and right-click. The true innova-
tion in .NET MAUI is enabled by the BlazorWebView: Blazor
hybrid apps.

BlazorHybrid
If you’ve heard of hybrid apps before, withhold judgment;
this is not the same. Why? Because in the end, it's all .NET.
Here's how this works, as seen in our .NET Podcast open-
source app.

You start with the usual .NET MAUI application and enable
the Blazor integration in the MauiProgram builder.

public static MauiApp CreateMauiApp() {
 var builder = MauiApp.CreateBuilder();
 builder.UseMauiApp<App>();

 builder.Services.AddMauiBlazorWebView();
 return builder.Build();
}

Add a BlazorWebView to the page and reference your razor
file.

<ContentPage>

 <b:BlazorWebView HostPage="wwwroot/index.html">
 <b:BlazorWebView.RootComponents>
 <b:RootComponent Selector="app"
 ComponentType="{x:Type local:Main}" />
 </b:BlazorWebView.RootComponents>
 </b:BlazorWebView>

</ContentPage>

From there, you build your UI using Blazor components and
blend in native pages of UI components as needed. Because
everything compiles to .NET, the Blazor components have
all the same access to device services, file system, sensors,
secure storage, app menus, and more, that you would nor-

For example, the first step to unifying the look of the Entry
across platforms is to remove the underline and outlines.

EntryHandler.Mapper
 .AppendToMapping("MyCustomization",
 (handler, view) => {
#if ANDROID
 // Android specific code here
#elif IOS || MACCATALYST
 // iOS specific code here
#elif WINDOWS
 // Windows specific code here
#endif
});

By appending my own custom method to the handler map,
my code will be run when any Entry is created. I just need
to call this code somewhere in the startup of my application
or before I put my first Entry on screen. Three methods are
provided to customize handlers:

•	 PrependToMapping: Modifies the mapper for a han-
dler before the .NET MAUI control mappings have been
applied

•	 ModifyMapping: Modifies an existing mapping
•	 AppendToMapping: Modifies the mapper for a handler

after the .NET MAUI control mappings have been applied

code Listing (more than 15 lines)
 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567

public class HomeViewModel : INotifyPropertyChanged
{
 ObservableCollection<Item> _products;
 public ObservableCollection<Item> Products
 {
 get
 {
 return _products;
 }
 set
 {
 if (_products != value)
 {
 _products = value;
 OnPropertyChanged(nameOf(Products));
 }
 }
 }

 public Command AddProductCommand =>
 new Command(AddProduct);

 async Task AddProduct()
 {
 await MessagingCenter.Send<HomeViewModel, string>
 (this, "action", "add");
 }
. #region INotifyPropertyChanged
 public event PropertyChangedEventHandler PropertyChanged;

 void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 #endregion
}

Listing 2: HomeViewModel without helpers

Any barrier between the code
running inside the BlazorWebView
and the rest of the app is
imagined. There’s no need
for a JavaScript bridge.

Use .NET MAUI for Native, No-Compromise Apps

www.codemag.com 35codemag.com

menus, tooltips, and mouse-related gestures for hover and
right-click. .NET MAUI doesn’t just give you mobile experi-
ences on the desktop, but rich desktop client experiences to
support your demanding business requirements.

To add app-level menus to your application, from any Con-
tentPage, you can add a hierarchy of menu items and wire
them to events or bind to commands. In the .NET Point of
Sale sample app, for example, I added a menu (see Figure
7) for quick access to adding new products to the menu.

<ContentPage.MenuBarItems>
 <MenuBarItem Text="Products">
 <MenuFlyoutItem Text="Add Product"
 Command="{Binding AddProductCommand}"/>
 <MenuFlyoutItem Text="Add Product Category"/>
 </MenuBarItem>
</ContentPage.MenuBarItems>

Using a similar API, you can add menus to any control in
.NET 7 and they’ll be revealed in a context menu (see Figure
8) when you right-click.

<Editor>
 <FlyoutBase.ContextFlyout>
 <MenuFlyout>
 <MenuFlyoutItem Text="Bold"
 Clicked="OnBoldClicked"/>
 <MenuFlyoutItem Text="Italics"
 Clicked="OnItalicsClicked"/>
 <MenuFlyoutItem Text="Underline"
 Clicked="OnUnderlineClicked"/>
 </MenuFlyout>
 </FlyoutBase.ContextFlyout>
</Editor>

Tooltips can provide simple contextual clues in your UI, and
then with PointerGesture, you can add other visual anima-
tions to enhance the UI, such as a color change or underline
or scaling—anything you can imagine.

<Label
 Text="https://docs.microsoft.com/dotnet/maui"
 ToolTipProperties.Text="dotnet/maui">

mally access in a .NET MAUI app. The only difference is that
the UI of a Blazor component is rendered via HTML. Any bar-
rier between the code running inside the BlazorWebView
(aka browser) and the rest of the app is imagined. There is
no need for the JavaScript bridge that’s common in other
hybrid scenarios.

This excerpt from Listing 3 displays a list of programs that
are retrieved right in the razor file from a native HttpClient
request.

protected override async Task OnInitializedAsync()
{
 persistingSubscription =
 ApplicationState
 .RegisterOnPersisting(PersistShows);
 if(!ApplicationState
 .TryTakeFromJson<Show[]>("shows",
 out var restored)){
 allShows = await PodcastService
 .GetShows(MaxShows, null);
 }else{
 allShows = restored!;
 }
 UpdateGroupedShowsAndCategories(allShows);
}

This code is 100% shared between the web app and the mo-
bile and desktop .NET MAUI apps. You need write no JavaS-
cript to make this work because it's all running on a device
in the .NET process.

Visual Studio 2022 supports hot reload for this scenario
as well, and you can create your Blazor components with
CSS styling and share them across all your .NET apps in the
browser, mobile, and desktop.

Desktop Specific Controls
For most of your desktop scenarios, BlazorWebView may be
the best solution, and you get the bonus of 100% code share
with your web apps. .NET MAUI also has you covered when you
want deeper, desktop native features like app level menus.
And, new in .NET 7, we’ve responded to the feedback from our
customers targeting desktop with .NET MAUI to add context

code Listing (more than 15 lines)
 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567

<PageTitle>.NET Podcasts - Discover</PageTitle>
<SearchBar OnSearch="@FetchShows" />
 <div class="containerPage containerPage--featured">
 <div class="categories">
 <NavLink href="categories" class="appLink"
 title="See all categories">
 See all categories
 </NavLink>
 <Tags Items="@topCategories" TItem="Category">
 <ItemTemplate Context="item">
 <NavLink href="@($"category/{item.Id}")"
 title="@item.Genre">
 @item.Genre
 </NavLink>
 </ItemTemplate>
 </Tags>
 </div>

 foreach (var group in groupedShows)
 {
 <div class="titleWrapper">
 <TitlePage Label="@group.Key" />
 </div>

 <Grid Items="@group.Value" TItem="Show">
 <ItemTemplate Context="item">
 <NavLink @key="item.Id"
 href="@($"show/{item.Id}")">
 <ShowCard Id="@item.Id"
 Title="@item.Title"
 Author="@item.Author"
 Image="@item.Image" />
 </NavLink>
 </ItemTemplate>
 <EmptyResults></EmptyResults>
 </Grid>
 }
 </div>

Listing 3: DiscoverPage.razor

Use .NET MAUI for Native, No-Compromise Apps

www.codemag.com36 codemag.com

XAML Hot Reload
XAML changes are reloaded in your app as soon as they’re
valid, so no saving is required. You'll also notice that your
UI and app state are preserved as you make changes, which
is another massive time saver. Of course, editing a running
application is tricky, and invalid code changes could cause
the app to crash, so those won’t be reloaded. Watch first for
squiggles in your XAML indicating a syntax error to see when
this happens. Then check the errors panel for any XHR er-
rors that report why a XAML Hot Reload may not have been
successful. And finally, the XAML Hot Reload output panel
(see Figure 9) shows a running log of all activity related to
your session.

.NET Hot Reload
C# changes are reloaded a bit differently. Once you have a
change that you wish to apply, click the hot reload flame
button near the debug button in the Visual Studio toolbar.
Alternatively, you can tell Visual Studio to apply changes on
file save. If the changes are valid and successful, all will be
well, and you can proceed to retrigger the code path that
you changed to see the new behavior. Visual Studio oth-
erwise indicates if the changes could not be applied in a
modal and give you the next steps to choose from.

Notice that I said you need to retrigger the code path? In
a case where you edit a click handler, you click the button
again. If you want to rerun the same method, like a UI build
method, when you make a change, you can tap into a .NET
hot reload handler event. To do this in your application, add
a class that implements the MetadataUpdateHandlerAt-
tribute like Listing 5.

In your ContentPage, listen for the UpdateApplica-
tionEvent and then execute the method you want to retrig-
ger, such as Build().

HotReloadService.UpdateApplicationEvent += (obj)=>
{
 MainThread.BeginInvokeOnMainThread(() =>
 {
 Build();
 });
}

In this way, the Build() method is always called anytime a
.NET hot reload is applied to the app, which is more conve-
nient than navigating away and back or adding an extra but-
ton click to retrigger the method. When you’re done working
on that page and method, you can simply comment it out.
It’s also a good idea to wrap such things in #if DEBUG so
you don’t accidently release an app with this code.

Live Preview and Live Visual Tree
One of the hottest new features for developers in Visual Stu-
dio is the ability to see your app right inside the IDE, zoom-
ing in on the area you’re actively working on, aligning to the
very pixel, and even inspecting UI to navigate to code. This
is another of the many massive time savers, especially when
you might be working on a code base with which you are
unfamiliar. Start debugging your .NET MAUI application and
open the XAML Live Preview panel, as shown in Figure 10.

Click the target tool in the top toolbar of the panel and roll
over the UI to see details about the controls. Find any con-

 <Label.GestureRecognizers>
 <PointerGestureRecognizer
 PointerEntered="HoverBegan"
 PointerExited="HoverEnded"
 PointerMoved="HoverMoved" />
 </Label.GestureRecognizers>
</Label>

Developer Tooling
Visual Studio 2022 on Windows and Mac provides the most
productive developer experience for .NET MAUI, beginning
with hot reload. Whether you use XAML for UI or C# for
everything, as you make changes to your debugging app,
you can apply those changes and see them live. This saves
countless hours in stopping, rebuilding, and deploying
changes just to see the differences made. To get started,
you only need to start debugging your app (aka F5) from
Visual Studio. Once debugging, the output indicates that
hot reload is connected.

Figure 7: .NET MAUI can display app level menus like this on macOS.

Figure 8: Display a context menu by attaching the
new ContextFlyout control to a target control.

Use .NET MAUI for Native, No-Compromise Apps

www.codemag.com 37codemag.com

The most popular MVVM libraries available work with .NET
MAUI, and now the Microsoft Community Toolkit has shipped
an MVVM library that includes some fantastic source genera-
tors to help you deliver better code faster. Consider a com-
mon property and command you might add to a ViewModel
in your application that you would then bind to a control

trol and click it. This navigates you to the Live Visual Tree, a
tree view representation of the UI hierarchy. To then go fur-
ther and see the line of code where the control resides and
click the eye icon beside it in the tree. From the code, you
can hot reload and continue forward building your cross-
platform application.

Enterprise Patterns and Practices
Writing robust yet performant code that can be readily
tested is a must for most organizations. .NET MAUI fully
supports the Model-View-ViewModel (MVVM) architectural
pattern for separation of concerns, data binding, command-
ing, dependency injection, and a loosely coupled messaging
bus. With this, you can roll your own app architecture or
add on community libraries to make your development even
nicer. If you're looking for a deep dive into enterprise devel-
opment with .NET MAUI, check out the e-book "Enterprise
Application Patterns Using .NET MAUI" available at https://
docs.microsoft.com/en-us/dotnet/architecture/maui/ and
downloadable from https://aka.ms/maui-ebook.

Figure 9: XAML Hot reload errors display in the error panel, with squiggles in the editor and status in the output panel

#if DEBUG
[assembly: MetadataUpdateHandlerAttribute(
 typeof(HotReloadService))]
namespace MauiApp {
 public static class HotReloadService {
 public static event Action<Type[]?>? UpdateApplicationEvent;

 internal static void ClearCache(Type[]? types) { }
 internal static void UpdateApplication(Type[]? types) {
 UpdateApplicationEvent?.Invoke(types);
 }
 }
}
#endif

Listing 5: HotReloadService.cs

code Listing (more than 15 lines)
 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567

using System.Net.Http.Json;

namespace Podcast.Shared;

public class PodcastService
{
 private readonly HttpClient _httpClient;

 public PodcastService(HttpClient httpClient)
 {
 _httpClient = httpClient;
 }

 public Task<Category[]?> GetCategories() =>
 _httpClient.GetFromJsonAsync<Category[]>("v1/categories");

 public Task<Show[]?> GetShows(int limit, string? term = null) =>
 _httpClient.GetFromJsonAsync<Show[]>
 ($"/v1/shows?limit={limit}&term={term}");

 public Task<Show[]?> GetShows(int limit, string? term = null,
 Guid? categoryId = null) =>
 _httpClient.GetFromJsonAsync<Show[]>
 ($"/v1/shows?limit={limit}
 &term={term}
 &categoryId={categoryId}");

 public Task<Show?> GetShow(Guid id) =>
 _httpClient.GetFromJsonAsync<Show>($"v1/shows/{id}");
}

Listing 4: PodcastService.cs

Use .NET MAUI for Native, No-Compromise Apps

4 page MS insert
– Artwork coming

4 page MS insert
– Artwork coming

4 page MS insert
– Artwork coming

4 page MS insert
– Artwork coming

www.codemag.com42 codemag.com

classes will easily guide you. This is less code for you to
maintain!

The toolkit does much more than this, so be sure to check
it out in-depth at https://docs.microsoft.com/dotnet/com-
munitytoolkit/mvvm/.

Get Started Today
This is an all-new beginning for building powerful client ap-
plications for your businesses with .NET. Each year, you’ll
get the newest C# language features along with a faster,
more secure .NET platform with which to build mobile and
desktop applications using .NET MAUI. Begin your journey
today at https://dot.net/maui.

.NET MAUI is the only first-party supported framework
for building cross-platform apps, and I encourage you to
bookmark our official support policy page at https://aka.
ms/maui-support-policy. With each annual major release of
.NET, we support .NET MAUI for 18 months in accordance
with our Modern Lifecycle Policy. Every other release of the
.NET SDK and runtime is covered by a three-year-long-term
support policy. You'll never see a gap in coverage for the
SDKs you depend upon.

Our .NET 7 release focus for .NET MAUI is to help develop-
ers upgrade their mobile applications from .NET Framework
to .NET, and then enabling our five-million-plus and grow-
ing .NET developers to see that they too are .NET MAUI
developers.

for display. Typically, you’d need to manually implement the
INotifyPropertyChanged interface and express the entire
property with getter, setter, a backing property, and imple-
mentations. Let’s compare the differences.

Compare Listing 2 with the simplicity of the same Hom-
eViewModel using the .NET Community Toolkit MVVM help-
ers:

[INotifyPropertyChanged]
public partial class HomeViewModel
{
 [ObservableProperty]
 ObservableCollection<Item> _products;

 [RelayCommand]
 async Task AddProduct()
 {
 await MessagingCenter
 .Send<HomeViewModel, string>
 (this, "action", "add");
 }
}

C# generators create a partial class (notice that this class
is partial) to fill out the code that you don't have to write
for the properties and commands making them bindable!
This is wonderful for many reasons, not least of which is
that you get IntelliSense in the UI for those generated
methods. You can bind the list control to a public property
called Products and then bind the menu item to a com-
mand called AddProductCommand. Even if you don't know
or remember those naming conventions, the IntelliSense
provided by Visual Studio based on the generated partial

� David Ortinau
�

Sample Code

You can get the code at
https://github.com/microsoft/
dotnet-podcasts and
https://github.com/dotnet/
maui-samples

Figure 10: XAML Live Preview shows and inspects your running application.

Use .NET MAUI for Native, No-Compromise Apps

www.codemag.com 43codemag.com Minimal APIs: Stuck in the Middleware Again

ONLINE QUICK ID 2211062

Minimal APIs: Stuck in
the Middleware Again
No matter how you build your APIs, you’ll need certain functionality that’s more than just in the body of a method. ASP.NET Core allows
you to add this functionality through middleware. Let’s see how that middleware can interact with Minimal APIs. Last year, I showed
you how to write and structure your own Minimal APIs (https://www.codemag.com/Article/2201081/Minimal-APIs-in-.NET-6).

What was missing in that article is how to opt into middleware
functionality. Let’s dig into middleware and Minimal APIs.

Middleware in ASP.NET Core
Before I dig into using middleware with Minimal APIs, let
me explain what middleware is. Sometimes you don’t need a
twenty-five-cent word to explain a simple concept. Middle-
ware allows ASP.NET Core to execute a piece of code. That
code could be part of ASP.NET Core, like Static File support,
Authentication support, or even Routing. That code could
be some third-party library or even your own code. For ex-
ample, here’s a simple top-level file that new .NET 6 projects
use to listen for requests:

var bldr = WebApplication.CreateBuilder(args);

// Add services to the container.
bldr.Services.AddRazorPages();

// Get the web application object
var app = bldr.Build();

// Add Middleware
app.UseStaticFiles();
app.UseRouting();
app.MapRazorPages();

// Start Listening for requests
app.Run();

Once the app object is created by building the web applica-
tion (to contain any required services), you can add middle-
ware that will be called, in order, to handle the request. The
order of this middleware matters, as this is the specific order
that the request is passed into each part of the middleware.
As you can see in Figure 1, the order of the middleware is
stacked together:

As a request comes in, each middleware looks at the request
and tries to determine if it can handle the request. In Figure
2, you’ll see that the request can be handled by the Razor
Pages middleware.

The request is passed to Static Files but it determines that
it isn’t a request that Static Files can handle, so it passes it
to the Routing middleware. The Routing middleware deter-
mines that it can’t handle it either, so it passes it to the next
middleware: Razor Pages. Once the Razor Pages middleware
realizes that it can handle the request, it fulfills the request
and returns, which passes the request to the last middle-
ware that called it. This continues the chain until the re-
quest is ultimately returned to the user.

At any point, middleware can fulfill the request and, in that
case, it doesn’t call the next piece of middleware. Instead, it
just returns the chain back up, as seen in Figure 3:

Although these pieces of middleware may do a little or quite
a lot, it’s a black box for most of us developers. But what’s
really happening in the middleware? Let’s write a tiny piece
of middleware and find out.

If you call the Use method on the application, you can in-
clude a lambda to be called during a request:

app.Use(async (ctx, next) =>
{
 await next.Invoke(ctx); // Pass the context
});

You’ll notice that you’re passed two parameters when the
lambda is called. The first parameter is the context object
(HttpContext) that gives you access to the request and
response objects. The second parameter is a RequestDel-
egate. This is how you will call the next piece of middle-
ware. Notice that middleware has no idea of the order of
middleware; it just gives you a bite at the apple of the re-
quest. Not all middleware is there to handle a request. For
this example, let’s write to the log with the speed of the
request:

app.Use(async (ctx, next) =>
{
 // Get a starting time
 var start = DateTime.UtcNow;

 // Call the next piece of middleware
 await next.Invoke(ctx);

 // Execute code as the chain returns
 // back up the list of middleware.
 var totalMs = (DateTime.UtcNow - start)
 .TotalMilliseconds;
 app.Logger.LogInformation(
 @$"Request {ctx.Request.Path}: {totalMs}ms");

});

Now that you’ve had a brief introduction to middleware,
let’s talk about how it works with Minimal APIs.

Using Middleware with Minimal APIs
Although some middleware is about answering requests
(e.g., Razor Pages, Controllers, and Static Files), other
middleware is to provide services to other middleware. To

Shawn Wildermuth
shawn@wildermuth.com
wildermuth.com
twitter.com/shawnwildermut

Shawn Wildermuth has
been tinkering with com-
puters and software since
he got a Vic-20 back in the
early ’80s. As a Microsoft
MVP since 2003, he’s also
involved with Microsoft
as an ASP.NET Insider and
ClientDev Insider. He’s
the author of over twenty
Pluralsight courses, written
eight books, an interna-
tional conference speaker,
and one of the Wilder
Minds. You can reach
him at his blog at
http://wildermuth.com.
He’s also making his first,
feature-length documentary
about software developers
today called “Hello World:
The Film.” You can see
more about it at
http://helloworldfilm.com.

melan
Highlight
Missing an H on the end (like in his name)

melan
Highlight
Change ":" to "." (Period)

www.codemag.com44 codemag.comMinimal APIs: Stuck in the Middleware Again

app.MapGet("api/films",
 [Authorize]
 async (BechdelDataService ds,
 int? page,
 int? pageSize) =>
 {
 FilmResult data = await ds.LoadAllFilmsAsync();
 if (data.Results is null) {
 return Results.NotFound();
 }
 return Results.Ok(data);
 });

You should notice that the attribute is on the method (the
anonymous method in this example). Unlike with controllers,
there isn’t a good way to specify the attribute for a group of
Minimal APIs. I find the attribute method clunky and, evi-
dently, so did Microsoft, as they recommend another way.

Instead of using an attribute, the more common way is to
use a fluent syntax for the Minimal API:

app.MapGet("api/films",
 async (BechdelDataService ds,
 int? page,
 int? pageSize) =>
 {
 FilmResult data = await ds.LoadAllFilmsAsync();
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
 }).RequireAuthorization();

In this way, most middleware supports a fluent syntax (via
extension methods) to the call to MapXXX to add informa-
tion to the middleware. For example, you can also allow
specific APIs to be accessible without authorization by using
the AllowAnonymous method:

app.MapGet("api/years",
 async (BechdelDataService ds) =>
 {
 var data = await ds.LoadFilmYears();
 if (data is null) Results.NotFound();
 return Results.Ok(data);
 }).AllowAnonymous();

This is a fluent syntax so you can chain these together:

app.MapGet("api/years",
 async (BechdelDataService ds) =>
 {
 var data = await ds.LoadFilmYears();
 if (data is null) Results.NotFound();
 return Results.Ok(data);
 }).AllowAnonymous()
 .RequireHost("localhost");

Let’s walk through some common middleware to see how it’s
used in minimal APIs.

CORS
In the case of CORS (or cross-origin resource sharing), often
you’ll only have a single policy defined:

accomplish this, you need to opt-in or provide data to be
used by the middleware. You can see this in one of the most
common cases with Authorization. If you were writing a
controller-based API, you might use an attribute to tell the
Authorization middleware that authorization is required by
a particular controller or action:

 [Route("{moniker}/api/me")]
 [Authorize]
 [ApiController]
 public class MeController : Controller
 {

The use of the Authorize attribute allows the controller to
opt into requiring authorization. But how do you accomplish
this with Minimal APIs? If you have a Minimal API that re-
quires authorization, you can still use the attribute:

Figure 1: The Middleware

Figure 2: Chain of Middleware

Figure 3: Short Circuiting Middleware

www.codemag.com 45codemag.com Minimal APIs: Stuck in the Middleware Again

 FilmResult data =
 await ds.LoadAllFilmsByYearAsync(year);
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
}).Produces(200);

You can specify the types it produces as well (FilmResult in
this example):

app.MapGet("api/films/{year:int}",
 async (BechdelDataService ds,
 int? page,
 int? pageSize,
 int year) =>
{
 FilmResult data =
 await ds.LoadAllFilmsByYearAsync(year);
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
}).Produces<FilmResult>(200, "application/json");

Notice that you can specify the type, the result code, and
the MIME type. In addition, you’ll want to explain problem
codes as well:

app.MapGet("api/films/{year:int}",
 async (BechdelDataService ds,
 int? page,
 int? pageSize,
 int year) =>
{
 FilmResult data =
 await ds.LoadAllFilmsByYearAsync(year);
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
}).Produces<FilmResult>(200, "application/json")
 .ProducesProblem(404);

This produces metadata so that callers can expect certain
types of problem results. You can also add metadata for API
names and tags (used for grouping):

app.MapGet("api/films/{year:int}",
 async (BechdelDataService ds,
 int? page,
 int? pageSize,
 int year) =>
{
 FilmResult data =
 await ds.LoadAllFilmsByYearAsync(year);
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
}).Produces<FilmResult>(200, "application/json")
 .ProducesProblem(404)

app.UseCors(cfg =>
{
 cfg.WithMethods("GET");
 cfg.AllowAnyHeader();
 cfg.AllowAnyOrigin();
});

In some cases, you’ll be using CORS policies and want to opt
into individual ones. For example, if you configured CORS
to have a partner policy for certain APIs, it would look like
this:

builder.Services.AddCors(cfg =>
{
 cfg.AddDefaultPolicy(cfg =>
 {
 cfg.WithMethods("GET");
 cfg.AllowAnyHeader();
 cfg.AllowAnyOrigin();
 });

 cfg.AddPolicy("partners", cfg =>
 {
 cfg.WithOrigins("https://somepartnername.com");
 cfg.AllowAnyMethod();
 });
});

Although the default policy applies to all the MapGet calls,
you might want to support all methods if you’re from a part-
ner website (i.e., “partners” policy). To opt into that, make
a fluent call on the Minimal API:

app.MapGet("api/films/{year:int}",
 async (BechdelDataService ds,
 int? page,
 int? pageSize,
 int year) =>
{
 FilmResult data =
 await ds.LoadAllFilmsByYearAsync(year);
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
}).RequireCors("partners");

Swagger
Using OpenAPI (through Swagger) has become an impor-
tant way to document and test your APIs. Minimal APIs sup-
port this with a set of fluent syntax methods. This allows
you to annotate the minimal API with information that will
be available to OpenAPI tooling as well as if you’re support-
ing the Swagger UI plug-in.

First, there are methods for adding information about what
the API produces. You could specify just the result codes
like so:

app.MapGet("api/films/{year:int}",
 async (BechdelDataService ds,
 int? page,
 int? pageSize,
 int year) =>
{

www.codemag.com46 codemag.com

Source Code

The source code can
be downloaded at https://
github.com/wilder-minds/
minimalapi-middleware.

Where Are We?
Although this article isn’t a comprehensive list of how to
opt into features of built-in middleware, I hope it provides
a hint as to how the interaction of middleware and Minimal
APIs can work together. For middleware authors, support-
ing extension methods to allow Minimal APIs to provide
you with information about an API is something you should
consider. For middleware users, you’ve seen that if a type of
middleware doesn’t directly support Minimal APIs, you can
still fall back to using attributes to attain the same func-
tionality.

 .WithName("GetAllFilms")
 .WithTags("films");

In this way, these methods can be used to add metadata
about your API to let your users know what to expect. Al-
though these work with Swagger, there are other methods
(e.g., WithMetadata and WithDisplayName) that don’t
show up in the Swagger implementation.

OutputCaching
If you’re familiar with ASP.NET before .NET Core, you might
be used to using output caching. This allows you to cache
the output of a request so that subsequent calls could just
return the result. In .NET 7, this comes back and is sup-
ported via the CacheOutput method:

app.MapGet("api/films",
 async (BechdelDataService ds,
 int? page,
 int? pageSize) =>
 {
 FilmResult data = await ds.LoadAllFilmsAsync();
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
 }).CacheOutput();
 // Or .CacheOutput("somepolicy")
 // for specific output caching needs

You can see that you can either use the default output cach-
ing policy by providing no parameter, or you can supply a
named policy. This allows you to handle output caching on
an API-by-API basis. This is often only useful on MapGet
APIs.

ResponseCaching
Like output caching, response caching is a way to help de-
crease the load on a server. It does this by using caching
HTTP headers. If you’ve opted into using Response Caching,
you’ll need a way to specify the response caching policy for
your Minimal APIs. Unfortunately, at least in the .NET 7 pre-
views, there aren’t methods for adding response caching.
Instead, you’ll have to use the attributes, but luckily this
still works:

app.MapGet("api/films",
 [ResponseCache(Duration = 5)]
 async (BechdelDataService ds,
 int? page,
 int? pageSize) =>
 {
 FilmResult data = await ds.LoadAllFilmsAsync();
 if (data.Results is null)
 {
 return Results.NotFound();
 }
 return Results.Ok(data);
 });

In this case, you’re telling the response caching to add a
Cache-control header with a max-age of five seconds. So,
to use Response Caching, you’ll continue to operate like you
did in controller-based APIs from earlier versions of ASP.NET
Core.

� Shawn Wildermuth
�

Minimal APIs: Stuck in the Middleware Again

www.codemag.com 47codemag.com EF Core 7: It Just Keeps Getting Better

ONLINE QUICK ID 2211072

EF Core 7: It Just Keeps Getting Better
Lately, it seems that each iteration of EF Core brings fabulous new features and improvements. That has a lot do with the fact
that the team has made a big investment in creating a stable base to build on. Although EF Core 7 is being released alongside
.NET 7 and ASP.NET Core 7, it targets .NET 6, which is the long-term support version of .NET. So you can continue using it on a

supported version of .NET for that longer term. I’ve been
overwhelmed in trying to choose which of its features to
share with you here. There are so many that are interesting.
Not only does it mean writing about them, but I also get to
test them all out, which is quite a lot of fun, thanks to the
fact that I don’t have to do so with the goal of releasing
production code.

You’ll find this article filled with some of the features that
will be most impactful to the bulk of dev teams as well as a
few that I personally found interesting.

Although I will always refer to this version as EF Core 7,
keep in mind that much of the documentation and other
resources will use EF7 as its nickname. I still remember that
first version of EF Core, just after EF6, which had a working
name of EF7 until it became EF Core. So, I may wait until EF
Core 8 to use the new nickname.

Faster and Faster!
Back in 2021, one of the biggest stories for EF Core 6 was
the dramatic performance improvement for non-tracking
queries. At that time, the team committed to focusing on
improving the performance of other workflows in EF Core
7. And true to their word, there was a lot of work done on
updates that EF Core sends to the database.

Shay Rojansky, who has become “the performance guy” on
the EF team, has explored the many nooks and crannies
within SQL sent to the database and other related areas,
discovering many points at which efficiencies could be ap-
plied. Some of the inefficiencies he discovered hailed back
to the early days of Entity Framework. In an EF Core Com-
munity Standup earlier this year, Shay walked us through a
fascinating look at the discoveries he’d made and the tun-
ings he applied. Each tuning may have only sped things up
a small amount, but they do add up!

Although most of these tweaks are under the covers and
you will benefit from them without having to take any ac-
tion, I would like to highlight some of them for you. How-
ever, if you do want to geek out on these changes, I highly
recommend watching the standup video here on YouTube
(https://youtu.be/EXbuRVqxn2o).

Reducing Round Trips to the Database
Some of Shay’s discoveries were nuances that I hadn’t paid
attention to. An interesting one is a drawback of EF Core’s
default transaction behavior. As you may know, EF Core
wraps every command sent in SaveChanges inside a data-
base transaction so that if one fails, they’ll all roll back. If
you only have one command being sent, the calls for the
transaction aren’t needed because there aren’t other com-
mands involved. Therefore, when SaveChanges involves only
a single change, rather than sending the three commands
(BEGIN TRANSACTION, the change command, and then COM-

MIT), EF Core 7 only sends the change command, cutting the
chattiness down from three commands to one. And when
comparing EF Core 6 to EF Core 7 where the database was
on a remote server, Shay measured a 45% improvement on
the SaveChanges call. Granted this was only a change from
about 8 ms to 4 ms, but those do add up in a production
application. This is a great example of the types of tweaks
made to the updates.

Another tweak is related to inserts. You may be aware of
another pattern that’s been around since the beginning of
EF, and which continued through EF Core, and that’s that
INSERT commands have always been paired with a SELECT
to return the database-generated value of any primary or
foreign key. These new keys were then applied to the related
objects that EF was inserting. Although this doesn’t require
EF Core to make an additional call to the database, it does
force the database to execute an additional command. Now
with EF Core 7, the SQL Server provider compresses all of
those into a single command by using an OUTPUT in the
INSERT command, rather than an extra command to SELECT.

In other words, instead of this multi-command message
from EF Core 6:

INSERT INTO [People] ([Name])
 VALUES (@p0);
 SELECT [PersonId]
 FROM [People]
 WHERE @@ROWCOUNT = 1
 AND [PersonId] = scope_identity();

EF Core 7 sends this:

INSERT INTO [People] ([Name])
 OUTPUT INSERTED.[PersonId]
 VALUES (@p0);

In the case of a single INSERT being sent where EF Core 7
won’t wrap this in a transaction, the OUTPUT clause also
removes the need for a transaction that was needed around
the composed INSERT plus SELECT.

The improvements are not limited to when SaveChanges
only sends a single change. Batched commands are also
streamlined. Not only do they also lose the explicit BEGIN
and COMMIT for transactions, but they’re also expressed in
a more efficient way.

And if you’ve ever used EF Core’s HiLo feature, parent/child
inserts can really benefit from it. Wait what? HiLo? Yeah,
me too. I had completely forgotten about this feature, in-
troduced in EF Core 3, to ask SQL Server to pre-generate a
bunch of primary keys that EF Core caches and pushes into
INSERT commands as needed. Here’s the documentation for
the UseHiLo method: https://docs.microsoft.com/en-us/
dotnet/api/microsoft.entityframeworkcore.sqlserverprop-

Julie Lerman
@julielerman
thedatafarm.com/contact

Julie Lerman is a Microsoft
Regional director, Docker
Captain, and a long-time
Microsoft MVP who now
counts her years as a coder
in decades. She makes
her living as a coach and
consultant to software
teams around the world.
You can find Julie presenting
on Entity Framework,
Domain-Driven Design and
other topics at user groups
and conferences around
the world. Julie blogs at
thedatafarm.com/blog,
is the author of the highly
acclaimed “Programming
Entity Framework” books,
and many popular videos
on Pluralsight.com.

www.codemag.com48 codemag.comEF Core 7: It Just Keeps Getting Better

You would write a delete method like this:

context.People
 .Where(p => p.PersonId == 1).ExecuteDelete();

Although I’m only deleting a single row, you can write your
expression so that the delete affects multiple rows.

Update is a little more complicated because it enables you
to specify multiple updates to occur. Each change is encap-
sulated in a SetProperty method. Therefore, ExecuteUpdate
expects SetProperty expressions and each SetProperty ex-
pression expects an expression with the property and the
value. Here, I’m applying perhaps not the most brilliant
logic to assume that Lehrman is always a misspelling of my
last name and my relatives’.

context.People
 .Where(p => p.LastName == "Lehrman")
 .ExecuteUpdate (s =>
 s.SetProperty(c =>c.LastName, c =>"Lerman"));

The resulting SQL is as clear as if you’d written it yourself.

UPDATE [p]
SET [p].[LastName] = N'Lerman'
FROM [People] AS [p]
WHERE [p].[LastName] = N'Lehrman'

These are simple examples, but the team has worked out
variations to handle relationships, inheritance, and other
more complex scenarios. Check the documentation for more
detailed examples.

Mapping Entity Properties
to Database JSON Columns
Storing JSON data in a relational database is usually a mat-
ter of storing the objects as some flavor of text or char in
the database. For example, I may have an nvarchar Measure-
ments column in my People table with JSON data that looks
like this:

{“HeightCM”:188,”ShoeUK”:7}

Most RDBMs, including SQL Server, have a way to query
JSON-formatted data as JSON, not as text. I can write the
TSQL to query for specific elements: Here I only want the
HeightCM data, within the Measurements column:

SELECT personid, firstname,lastname,
 json_value(measurements,’$.HeightCM’)
 as HeightCM
FROM people

In my .NET solution, I can create a Measurements type:

public class Measurements
{
 public int HeightCM { get; set; }
 public int ShoeUK { get; set; }

I can use JSON conversion anytime I want to store the data
from type as a JSON string in my Person class. That way I can
work with a tidy class in C# and still have my JSON format-
ted text stored in the database.

ertybuilderextensions.usehilo. If you’ve cached keys with
HiLo, EF Core can use them for parent child inserts without
having to first send the parent INSERT command in order to
get the new primary key for the parent to use as the foreign
key for the child object(s). This means that these inserts can
now be sent as a batch, which reduces the save from four
round trips in EF Core 6 to a single round trip in EF Core 7.

In addition to the video I linked to above, Shay Rojansky’s
blog post about EF Core 7 Preview 4 details many of these
improvements. I’m a big fan of how he builds a story around
the changes asking, “what about this?” and “what about
that?” The blog post is here: https://devblogs.microsoft.
com/dotnet/announcing-ef-core-7-preview6-performance-
optimizations/

Some Other Notable Performance Enhancements
Speaking of batched commands, you may recall that EF Core
batches commands that are sent with SaveChanges. Based
on performance analysis by the team when first designing
the feature, the SQL Server provider only batched commands
if there were at least four being sent. That’s been changed so
that the minimum number of commands to batch is now two.

If you use Lazy Loading via the proxy generation workflow,
there are also major performance improvements here. A
user reported that enabling lazy loading proxies on a con-
text was creating a huge performance problem for the mod-
el builder. That meant that the very first database interac-
tion performed for that context in an application instance
was taking an inordinate amount of time. The team changed
how the model responded to proxy generation, which re-
sulted in a complete reduction of that extra time caused by
UseLazyLoadingProxies. Arthur Vickers relays the EF Core 6
vs. EF Core 7 timings on a complex model in this GitHub is-
sue comment: https://github.com/dotnet/efcore/issues/20
135#issuecomment-1141085764. The chart shows that in EF
Core 6, the model in question took 13 times longer to gen-
erate when UseLazyLoadingProxies was enabled. In EF Core
7, the time for model generation was equal with or without
the proxy method.

Finally, Bulk Updates and Deletes
On the topic of updates, EF Core 7 brings another long-re-
quested feature for pushing changes to the database: bulk
updates. How long? The GitHub issue (https://github.com/
dotnet/efcore/issues/795) was opened in 2014.

Since the beginning of EF time, if you wanted to update a row
in the database, you first had to query it, apply the changes
to the object, and then call SaveChanges. If you wanted to
delete a row, it’s a similar workflow: retrieve the object,
change its state to deleted, and then call SaveChanges.

Users have long wanted to be able to express something
similar to a LINQ query to push the changes directly to the
database—something that’s more like how you can express
updates and deletes in SQL.

After a lot of conversations with the community, the team
decided to design this via ExecuteDelete and ExecuteUpdate
methods that are appended to LINQ queries in the same
way that you’d apply a LINQ execution method. And these
are executed immediately, not stored in the change tracker
awaiting a call to SaveChanges.

www.codemag.com 49codemag.com EF Core 7: It Just Keeps Getting Better

 Measurements = new Measurements
 { HeightCM = 188, ShoeUK = 8 }};
var personB = new Person
{
 FirstName = "Katrina",
 LastName = "Jones",
 Measurements = new Measurements
 { HeightCM = 170, ShoeUK = 7 }};

Once I’ve added them to the context and called SaveChang-
es with this mapping in place, the Measurements data is
compressed into JSON and stored into the Measurements
column (Figure 1).

And because Measurements is a type in my system, I can
construct queries that are aware of its properties.

var tallpeople = context.People
.Where(p=>p.Measurements.HeightCM>180)
.ToList();

The real magic comes in EF Core and the provider’s ability to
transform this into SQL. In this case, TSQL:

SELECT [p].[PersonId], [p].[FirstName],
 [p].[LastName],
 JSON_QUERY([p].[Measurements],'$')
FROM [People] AS [p]
WHERE CAST(JSON_VALUE
 ([p].[Measurements],'$.HeightCM’) AS int)>180

More patterns related to this are supported, including col-
lections and layers of objects (e.g., grandchildren) that are
stored as tiered JSON documents in the nvarchar column.
Check the documentation for further examples.

Mapping Stored Procedures
Just Like EF6
In the original Entity Framework, you had the ability to map
stored procedures to entities. When you called SaveChang-
es, as long as you followed the basic rules, EF called your
stored procedures, pushing in the parameters rather than
generating its own SQL. Bringing this feature to EF Core has
been on the back burner for quite some time but now, with
more critical features out of the way, the team has imple-
mented this capability into EF Core 7.

In EF, I recall some convoluted UI for doing this mapping,
although I have zero impetus to pull out one of the old 1000-
page EF books I wrote to remind myself how that worked.

It’s much simpler in EF Core 7. There are simple and discover-
able FluentAPI mappings called InsertUsingStoredProcedure,
UpdateUsingStoredProcedure, and DeleteUsingStoredProce-
dure that you apply to an entity in OnModelCreating.

Person.Measurements =
 JsonSerializer.Serialize
 (new Measurements{HeightCM=188,ShoeUK=7});

When I retrieve Measurements in any query, I’ll have to de-
serialize it back into the Measurements type to work with it
in my code.

It’s already cumbersome to serialize and deserialize, but
worse yet is querying with LINQ. You have to query the
string, not the type. But how? How can you use a string
query method to retrieve just the HeightCM, or worse, to
retrieve all people whose HeightCM is greater than 180? You
can’t do that with LINQ. Either you have to retrieve more
data than you want and then apply the filter in the client-
side code, or you have to send raw SQL, or perhaps use views
or stored procedures.

Because of this, direct support for JSON columns has been a
highly requested feature for EF Core. Finally with EF Core 7,
it had risen to the top of the to-do list and thanks to work
done by Maurycy Markowski on the EF Core team, it’s sup-
ported in this version. According to Markowski, the feature
is pretty basic in this version, but it provides the framework
for deeper implementation in the future.

The keys to this support lay in the combination of leverag-
ing EF Core-owned types and the database providers trans-
lating queries into SQL that reflects how their database
queries JSON data.

This also means that you now have another way of persisting
value objects with EF Core. Owned entities have given you a
path for storing value objects in a relational database where
the properties of the value object get split out into addi-
tional columns in the table along with the type that “owns”
that property. Now the value object can be more neatly en-
capsulated into a JSON object in a single database column.

You need to apply two mappings to the Person.Measure-
ments property in OnModeling. The OwnsOne mapping has
an overload that allows you to further specify the relation-
ship of the owned property using an OwnedNavigationBuild-
er. This builder has new overload allowing you to specify
that the property is a JSON column.

modelBuilder.Entity<Person>()
 .OwnsOne(p => p.Measurements,
 jb => { jb.ToJson(); });

Here I add two new person objects:

var personA = new Person
{
 FirstName = "Maurycy",
 LastName = "Markowski",

Figure 1: Measurements values are stored as JSON in the nvarchar column.

www.codemag.com50 codemag.com

over keys on the client side. You can generate them at the
same time you create new objects without waiting on the
database to provide those values for you. In the scenario
above, EF Core creates a temporary value for PersonId (seen
only by EF Core’s internals) while awaiting that database-
generated value. You can at least make the setter private to
protect from developers accidentally setting the PersonId
property to some random value, which could cause a con-
flict in the database. There are ways around that protection.
Imagine that you have so many people in your database that
you run out of ints and decide to switch to GUIDs. That’s
a difficult change to make so far into your application’s
history.

A common practice, especially among developers following
guidance and practices from Domain-Driven Design, is to
create a value object that you use as the type for the key
property.

Here’s an example of a new type I created and named En-
tityKey that’s then used as the type for the Person class’
PersonId:

public class EntityKey
{
 public EntityKey(int id) => Id = id;
 public int Id { get; private set; }
}
public class Person
{
 public EntityKey PersonId { get; set; }
 . . .

This gives some nice advantages. For example, if I need to
change the EntityKey Id property to a GUID, it won’t impact
the Person type at all. The Person type doesn’t care about
how EntityKey is implemented. Read more about some ad-
vantages of using Value Objects for key properties at Nick
Chamberlain’s blog post here: https://buildplease.com/
pages/vo-ids/.

Back to EF Core. EF Core knows how to handle ints and
GUIDS as keys but it doesn’t know how to store your cus-
tom-generated EntityKey type. Value converters, introduced
in EF Core 3, provide what looks like a possible solution.
You can tell EF Core that when it’s time to save a Person
object, it should use the Id property of the PersonId prop-
erty as the value to persist. And when querying Person
types, EF Core should take the int that’s stored in the table
and create an EntityKey from it (using that constructor
defined in EntityKey) then set that as the value of Perso-
nId. All this is defined in this HasConversion-fluent API
method.

modelBuilder
 .Entity<Person>()
 .Property(c => c.PersonId)
 .HasConversion(
 v => v.Id,
 v => new EntityKey(v))
 .ValueGeneratedOnAdd();

It’s a brilliant solution, but up through EF Core 6, EF Core
couldn’t combine its value-generation capabilities with the
conversion. Steve Smith, my brainy co-conspirator on the
Pluralsight Domain-Driven Design Fundamentals, brought

Each method takes a string to identity the procedure name
and a StoredProcedureBuilder that’s comprised of one or
more parameters where you identify the entity properties
that align with the parameters via matching names. Each
method is constructed a bit differently based on its nature.

As an example, here is a simple insert stored procedure:

CREATE PROCEDURE dbo.PeopleInsert
 @personid int OUT,
 @firstname nvarchar(100),
 @lastname nvarchar(100)
 AS
 BEGIN
 INSERT into [People] (FirstName, LastName)
 Values(@firstname, lastname);
 SELECT @personid = SCOPE_IDENTITY();
 END;

The StoredProcedureBuilder for an insert starts with the
procedure name and then the lambda for the StoredPro-
cedureBuilder. For the parameters, I used lambdas to
express each property of Person that maps to the param-
eters and did so in the order expected by the procedure.
Additionally, I used an overload to further specify the first
parameter—that it’s an output parameter and because
the parameter name doesn’t match the property name, I
specify that the name is “id”. You may already have noticed
this:

modelBuilder.Entity<Person>()
 .InsertUsingStoredProcedure("PeopleInsert",
 spbuilder => spbuilder
 .HasParameter(p => p.PersonId,
 pb => pb.IsOutput().HasName("id"))
 .HasParameter(p => p.FirstName)
 .HasParameter(p => p.LastName)
)

If you’re also mapping the update and delete, you can com-
pose them together. Another improvement over the way this
was in EF is that you aren’t required to supply all of the map-
pings in order for any of them to work. For example, if I only
have a mapping for updates, that procedure is used and EF
Core composes SQL for inserts and deletes.

There are additional methods that you can use with the
StoredProcedureBuilder besides HasParameter: HasOrigi-
nalParameter, HasResultColumn, and HasRowsAffectedPar-
ameter.

Enabling Value Generation on Value
Converters Used for Key Properties
This is an important change to EF Core 7 for developers fol-
lowing practices learned from Domain-Driven Design (like
me!). Let me start by explaining what this means. By now
you know what key properties are in EF Core. Most often you
see a key defined as an int or a GUID.

public class Person
{
 public int PersonId { get; set; }

Int is commonly used for relational databases that can gen-
erate those integers for you. GUIDs give you more control

EF Core 7: It Just Keeps Getting Better

www.codemag.com 51codemag.com

The value of the HasResult property of the result returned by
CreatingInstance is false but it’s materializationData object
has access to the DbContext instance and the EntityType,
which gives you the ability to affect anything within those
objects. All of the methods expose the materializationData
object.

When CreatingInstance is hit, you have access to the in-
stance of the object being created, although its properties
have not yet been populated. And it’s this entity that’s re-
turned by default from the method.

Next, the InitializingInstance method gets hit immediately
after the property values have been created but not yet
populated. It returns an InterceptionResult (note that this
one isn’t generic) that has one read-only property, IsSur-
pressed, which is false. Query results overwrite any chang-
es you make to the entity properties here. It’s best to make
those changes in the next method. However, if you have
unmapped properties, any values you apply to them here
will remain. In his Preview 7 blog post referenced above,
Vickers uses an example of a property for audit data to
note when the data was retrieved from the database. He
then populates that Retrieved property in the Initializin-
gInstance method.

Finally, there’s the InitializedInstance that receives the
populated entity object as a parameter.

Keep in mind that if you have related objects or an owned
type, such as the Measurements type from the JSON column
support example above, those will be materialized separate-
ly. Therefore, if you affect the Measurements property of a
Person as the Person is being materialized, that property
will be overwritten when the Measurements object is being
materialized.

This interceptor isn’t solely for modifying results or enti-
ties. You might use it to trigger application events or other
relevant actions. But like any tool, whether for coding or
building a doghouse, take care in how you apply it. As Kha-
lid Abuhakmeh warns in a blog post about EF Core 5 inter-
ceptors (https://khalidabuhakmeh.com/entity-framework-
core-5-interceptors), you should be careful about adding
resource-intensive logic in any of the interceptors, as well
as triggering unwanted side effects.

this up way back in 2018 in this GitHub issue: https://
github.com/dotnet/efcore/issues/12135. EF Core com-
plained, saying that it doesn’t have a value generator for
EntityKey and the error message suggested that you should
set the key’s value in code.

Perhaps you’ve figured out where this is leading: EF Core 7
now supports the combination of value converters with val-
ue generation. You must have that ValueGeneratedOnAdd()
method or you’ll get a runtime exception saying that the
ChangeTracker isn’t able to track an EntityKey type.

Back to the Future: Intercepting
Object Materialization and Other
New Interceptors, Too
Why “back to the future”? For you long-time users of En-
tity Framework, before EF4 gave you POCO support and the
DbContext, you had a more tightly coupled way of imple-
menting EF using an ObjectContext. Through that API, you
had access to an ObjectMaterialized event handler that al-
lowed you to inject your own rules and logic as the object
was being created from query results. If you wanted to ac-
cess it when using EF6 DbContext, you’d have to drill into
the low-level ObjectContext. But since EF Core, there is no
ObjectContest and you’ve never had a way to override the
behavior.

Until now. Huzzah! You finally have this capability with EF
Core 7 by way of interceptors. Interceptors were another
great feature of EF6 that took some time to find their way
into EF Core 3. Now EF Core 7 adds a slew of new intercep-
tors to allow you to add your own logic to low-level actions.
These interceptors allow you to:

•	 Override object materialization
•	 Modify the LINQ expression tree
•	 Affect how optimistic concurrency is handled
•	 Tap into additional points in the lifecycle of connec-

tions and commands
•	 Muck with query result sets

Arthur Vickers details the various new interceptors in his
blog post at https://devblogs.microsoft.com/dotnet/an-
nouncing-ef7-preview7-entity-framework/.

I’ll focus here on the object materialization interceptor, aka
the IMaterializationInterceptor. This interceptor allows you
to tap into the pipeline before and after materialization.
In other words, once EF Core has instantiated the object
but hasn’t yet pushed the query result values into it. I’ll
dig a little deeper into this interceptor, which should also
give you an idea of how you can do the same with the other
interceptors.

There are four interception points in this interceptor; before
and after the new instance is created and, once created,
before and after the instance is initialized.

Let’s take a look at each of these methods.

I’ve created a class that implements the IMaterialization-
Interceptor interface (see Listing 1) and implemented
all four methods without adding any of my own logic, so
each returns either the InterceptionResult or the entity by
default.

public class MyMaterializationInterceptor
 : IMaterializationInterceptor
{
 public InterceptionResult<object> CreatingInstance(
 MaterializationInterceptionData materializationData,
 InterceptionResult<object> result)=>result;

 public object CreatedInstance(
 MaterializationInterceptionData materializationData,
 object entity) =>entity;

 public InterceptionResult InitializingInstance(
 MaterializationInterceptionData materializationData,
 object entity, InterceptionResult result)=> result;

 public object InitializedInstance(
 MaterializationInterceptionData materializationData,
 object entity) => entity;

Listing 1: The IMaterializationInterceptor interface’s returns

EF Core 7: It Just Keeps Getting Better

www.codemag.com52 codemag.com

munity Standup here on YouTube: https://www.youtube.
com/watch?v=IfaURw5D1Qg.

More EF 6 Parity
In each iteration of EF Core, the team works toward bringing
more parity with features we loved and relied on from EF6.
Here are some that have been implemented for EF Core 7.

Entity Splitting
Entity splitting is a mapping that allows you to persist prop-
erties of a single entity across multiple tables or views.

There are Fluent API and data annotation mappings for this.
Here’s an example of mapping a few properties from the
Person type into a separate table called PeopleLastNames
using the new SplitToTable method. I’m letting convention
take care of naming the core table. For views, there’s a
method called SplitToView.

modelBuilder.Entity<Person>()
 .SplitToTable(
 “PeopleLastNames”,
 s => s.Property(p => p.LastName)
);

This mapping creates a second table with its own PersonId
column that’s a primary key as well as a foreign key pointing
back to PersonId in the People table (Figure 2).

You can specify multiple properties to split out by using an
expression function in the lambda as follows:

modelBuilder.Entity<Person>()
 .SplitToTable(
 “PeopleNames”,
 s => { s.Property(p => p.LastName);
 s.Property(p => p.FirstName);
 }
);

With an eye always on persisting classes that are designed
following Domain-Drive Design, entity splitting also means
that you now have a variety of ways to persist value objects:

•	 As separate columns in the same table as the host
entity

•	 As a JSON document in a single column of the host
entity’s table

Support for Database Specific
Aggregate Functions
EF Core is designed to enable common features across da-
tabases. EF Core 7 now allows database providers to expose
provider-specific aggregates that the provider knows how to
translate into their own flavor of SQL. You’ll find these in
the EF Functions extension that has already been exposing
methods such as SQL Server’s CONTAINS, RANDOM, and a
number of date functions.

Thanks to the change in EF Core 7, the SQL Server provider
adds string.Join, string.Concat, and some methods for you
statistics seekers, methods to translate to some TSQL func-
tions I’ve never used in my very lengthy career: StandardDevi-
ationSample (STDEV in TSQL), StandardDeviationPopulation
(STDEVP), VarianceSample (VAR), VariancePopulation (VARP).
SQLite also benefits from string.Join and string.Concat.

Shay Rojansky is not only a member of the EF Core team but
also a long-time maintainer of PostgreSQL providers for .NET,
EF, and EF Core. In addition to working on the other func-
tions, he has added quite a few aggregate methods to the
PostgreSQL provider for EF Core for strings such as filtering
and ordering, JSON, arrays, ranges, and some statistics as
well. For the curious, learn more in this GitHub pull request
discussion: https://github.com/npgsql/efcore.pg/pull/2383.

You may wonder how string.Join is new. You’ve always been
able to write a query like this:

context.People
.Select(p=>
 string.Join(“,”,p.FirstName, p.LastName))
.ToList();

That returns a list of joined names such as:

Julie, Lerman
Shay, Rojansky

What’s new here is that you can use them in GroupBy ex-
pressions. Here, for example is a query where I want to
group by LastName and then create a comma-delimited list
of the first names in that group.

Var groupedpeople = context.People
 .GroupBy(p => p.LastName)
 .Select(surname => new
 {
 Last = surname.Key,
 firstnames =
 string.Join(“,”,
 surname.Select(p => p.FirstName))
 })
.ToList();

Given that I’ve seeded the database with three people, two
with the last name of Jones, here are the results of this
query:

Jones: Katrina,Serena
Markowski: Maurycy

Shay discusses and demonstrates a number of the new ag-
gregate features for EF Core 7 in the August 25, 2022 Com-

Figure 2: Entity Splitting creates a separate table for
specified properties.

EF Core 7: It Just Keeps Getting Better

www.codemag.com 53codemag.com

templates instead of the default. I wasn’t surprised to see
Arthur Vickers create a customization on DbSet. Arthur isn’t
a big fan of the null bang (!) used to satisfy null reference
settings.

Public virtual DbSet<Person>
 People { get; set; } = null!;

Instead, he customized the template to use his preferred
pattern by removing the getter and setter and just returning
an instance of the DbSet.

Public virtual DbSet<Person> People
 => Set<Person>();

Override EF Core’s Conventions
with Your Own
EF Core 6 brought the ability to apply bulk configurations,
which is wonderful. You can override the ConfigureConven-
tions to apply things like HaveColumnType to all properties
in the model that are strings, instead of doing it per prop-
erty in each relevant entity.

But there was something else from EF6 that we’ve been hop-
ing for: a more sweeping way to affect conventions. That’s
finally come to EF Core 7 and in fact, creating the Configu-
reConventions method in EF Core 6 was part of the prepa-
ration for this feature, referred to as “public conventions”
because the conventions are now publicly exposed.

With the conventions now public, you can now remove or
replace built-in conventions as well as add completely new
ones.

The set of built-in conventions is exposed in the ModelCon-
figurationBuilder that’s passed into the Configure Conven-
tions method. You can even take a look at them by drilling
into the configurationBuilders Conventions property.

Protected override void ConfigureConventions
 (ModelConfigurationBuilder configurationBuilder)
{
 var cs = configurationBuilder.Conventions;
 base.ConfigureConventions(configurationBuilder);
}

•	 As a separate table with individual columns for each
property of the value object along with the primary
key column

•	 As a separate table with the primary key column and a
single column containing a representative JSON docu-
ment

In the future, EF Core will let you more easily use value con-
versions to store value objects (https://github.com/dotnet/
efcore/issues/13947) but the added flexibility in EF Core 7
via JSON column support and table splitting combined with
owned-type support continue to allow you to persist value
objects in relational stores.

EF Core 7 as a Part of Distributed Transactions
If you used EF6 or earlier versions, you may be familiar with
the support for including EF’s SaveChanges in Windows’
distributed transactions. A limitation in .NET Core has pre-
vented this for some time, but once again, Rojansky came
to the rescue and fixed this in the dotnet runtime reposi-
tory. You can read about this change at https://github.com/
dotnet/runtime/issues/715. I haven’t written about EF and
distributed transactions in a long time (https://docs.micro-
soft.com/en-us/archive/msdn-magazine/2013/december/
entity-framework-entity-framework-6-the-ninja-edition)!
But now, with or without EF Core in the mix, you can com-
bine transactions from a variety of systems in a single trans-
action.

Table Per Concrete Type (TPC) Mapping
TPC was always “the red-headed step-child” of inheritance
mappings. In EF Core, as it was in EF, TPC was the last to be
implemented and has been overlooked by many develop-
ers. Vickers reminds you that it’s a much better strategy
than the more popular Table Per Type (TPT). TPC was sup-
ported in EF6. EF Core arrived with Table per Hierarchy (all
columns across an inheritance hierarchy in a single table).
Then EF Core 5 brought you TPT (where the unique proper-
ties of each derived type are stored in their own tables).
Now, finally, TPC has arrived with EF Core 7. TPC stores each
complete derived type in its own table. To learn more, check
out the EF Core 7 Preview 5 announcement blog post that
reviews pros and cons of these various mappings (https://
devblogs.microsof t.com/dotnet/announcing-ef7-
preview5/).

Define Your Own Scaffolding Rules with T4 Templates
Do you remember T4 templates? They’re yet another lan-
guage syntax to learn but don’t worry, it’s not YAML. Tem-
plates are the underpinnings of how EF Core scaffolding is
able to reverse-engineer databases into a DbContext and
entity classes. Back in the days of yore when EF was not EF
Core, you could use T4 templates to customize how to build
your models from your databases. This is really handy when
you find yourself adding (or removing) the same code time
and time again after scaffolding a database.

Brice Lambson was then, as he is now, the go-to guy for
T4 templating on the EF team. He and other team mem-
bers showed off the work he’s done on this feature in this
April 2022 Community Standup (https://youtu.be/x2nh1vZ-
BsHE), if you want to see some great demos of how you
can generate your finely tuned DbContext and entity classes
when scaffolding databases. There’s tooling for doing this
in Visual Studio 2022 (written by Brice) and command line
tools where you can tell EF Core scaffolding to use your

public class MaxStringLength200Convention :
 IModelFinalizingConvention
{
 public void ProcessModelFinalizing(IConventionModelBuilder
 modelBuilder,
 IConventionContext<IConventionModelBuilder> context)
 {
 foreach (var property in
 modelBuilder.Metadata.GetEntityTypes()
 .SelectMany(entityType =>
 entityType.GetDeclaredProperties().Where(
 property => property.ClrType == typeof(string))))
 {
 property.Builder.HasMaxLength(200);
 }
 }
 }
}

Listing 2: The MaxStringLength200Convention class

EF Core 7: It Just Keeps Getting Better

www.codemag.com54 codemag.com

Need FREE Project
Advice? CODE Can Help!

No strings free advice on
new or existing software
development projects.
CODE Consulting experts
have experience in the
cloud, web, desktop, mobile,
microservices, containers,
database, and DevOps
projects. Schedule your free
hour of CODE call with our
expert consultants today.
For more information,
visit www.codemag.com/
consulting or email us at
info@codemag.com.

updates (https://github.com/dotnet/efcore/issues/27185)
have very detailed lists of changes and, of course, filtering
on milestones is also very useful. But also be aware that
you can move to EF Core 7 just for the performance ben-
efits without having to worry much about breaking changes.
The list of breaking changes is short and you can view it at
https://docs.microsoft.com/en-us/ef/core/what-is-new/
ef-core-7.0/breaking-changes.

The various conventions are grouped. For example, the For-
eignKeyAddedConventions contains a collection of six con-
ventions, one of which is the KeyDiscoveryConvention.

You can remove a convention, which also means that if you
don’t know what you’re doing, you could really mess up your
data model. But let’s say you want database tables to match
the names of the entity classes, not the DbSets. You could
remove the TableNameFromDbSetConvention.

configurationBuilder.Conventions
 .Remove(typeof(TableNameFromDbSetConvention));

Or perhaps you have a configuration rule that needs to be
applied in all of your DbContexts in all of your apps. Perhaps
all strings for your SQL Server database should default to
nvarchar(200), rather than nvarchar(max). You can create
a convention for that in a class, add it to your project, and
then add it to the configuration builder.

Adding conventions is a little more complicated because dif-
ferent conventions are applied at different stages of model
building and these stages are identified via different inter-
faces. Quite often, it’s simplest to add your conventions
when the model is finished with applying conventions by
implementing the IModelFinalizingConvention. Do keep in
mind that mappings are always applied after conventions,
so you might have mappings that override your custom con-
ventions.

There’s a new class to define a custom MaxLengthConven-
tion limiting text-based data columns to 200. I can reuse
this class across many DbContexts in one or more solutions.

My MaxStringLength200Convention class (Listing 2) em-
ploys what might be a familiar pattern of searching the
metadata for strings, and then setting the HasMaxLength
mapping for those strings.

With the class in place, you can now add the convention.
The Add method takes a lambda but as you don’t need to
reference the lambda in the expression: You can simply use
an underscore as the lambda variable.

Here’s the updated ConfigureConventions method:

protected override void ConfigureConventions(
 ModelConfigurationBuilder configurationBuilder)
{
 configurationBuilder.Conventions
 .Remove(typeof(TableNameFromDbSetConvention));
 configurationBuilder.Conventions
 .Add(_ => new MaxStringLength200Convention());
 base.ConfigureConventions(configurationBuilder);
}

So Much More to Explore
It’s never possible to include all of the changes in a single
article and there are so many more improvements and new
features in EF Core 7 that have caught my eye. The EF Core
team has created a lot of great resources and documentation
that I highly recommend checking out. In addition to the
docs at https://docs.microsoft.com/en-us/ef/core/, there
are a lot of great details to glean from their GitHub reposi-
tory (https://github.com/dotnet/efcore). The bi-weekly

� Julie Lerman
�

EF Core 7: It Just Keeps Getting Better

melan
Highlight
Add "Sponsored Sidebar"

Compare. Buy. Build.

www.componentsource.com/compare

51,979
Data Points
Collected

1,337
Features

Compared

1,733
Hours of
Research

524
Commercial

Products

25
Years of

Knowledge

Discover the best software components and tools

www.componentsource.com

Licensing Experts
available 24 hours Mon-Fri

Call 888.850.9911
sales@componentsource.com

Upgrades
Old Versions

Lapsed Renewals
License Co-terms

Specializing in
Perpetual Licenses
Timed Licenses
Subscriptions
Renewals

C

M

Y

CM

MY

CY

CMY

K

CS-Code-Magazine-2022_11.pdf 1 26/09/2022 11:46:11

www.codemag.com56 codemag.comUpgrade Tooling for .NET 7

ONLINE QUICK ID 2211082

Upgrade Tooling for .NET 7
Last year, the .NET team introduced the .NET Upgrade Assistant tool to make migrating from .NET Framework to modern .NET
targets easier. Since then, the team has been hard at work iterating on the upgrade tooling story to improve functionality and
fill gaps. With .NET 7’s release, there are now more tooling options for easing the transition from .NET Framework to .NET 7.

This article walks through those improvements—both the
new capabilities in Upgrade Assistant and some new tool-
ing focused specifically on web scenarios with the ASP.NET
Incremental Migration Tooling and System.Web Adapters.

Although there are more tools to choose from now, each has
a particular role in the upgrade process:

•	 Use Upgrade Assistant for analyzing the work re-
quired to upgrade, both with the existing analysis
mode and the new binary analysis mode explained in
more detail later in this article.

•	 Use Upgrade Assistant for upgrading class libraries or
WPF, WinForms, console, or WCF apps in-place.

•	 Use ASP.NET Incremental Migration Tooling to up-
grade ASP.NET applications by incrementally moving
endpoints to a new ASP.NET Core project.

•	 Use System.Web Adapters in conjunction with ASP.
NET Incremental Migration (to help the old and new
projects interoperate) and to migrate class libraries
with System.Web dependencies.

You can find the latest docs and news about Upgrade As-
sistant on GitHub at https://github.com/dotnet/upgrade-
assistant.

You can find the latest docs and news about the ASP.NET
Incremental Migration Tooling and System.Web Adapters on
GitHub at https://github.com/dotnet/systemweb-adapters.

Upgrade Process Overview
Although there’s new tooling to help, the overall process to
migrate from .NET Framework to .NET 7 is still the same. The
steps are shown in Figure 1.

Step 1: Preparation
The first step in upgrading a project from .NET Framework
to .NET 7 is to get ready for the upgrade by understand-
ing what work is ahead and possibly by making preliminary
changes to the solution.

Specific actions during this step of migration include:

1.	 Reviewing the project’s dependencies. This includes
the .NET Framework APIs your app depends on, third-
party packages, and other projects you own. While
reviewing APIs or dependencies (like NuGet packages)
that won’t work on .NET 7, be on the lookout for any
that will be difficult to replace. If missing APIs or
NuGet packages are used in common or high priority
code paths, this may be a red flag that an upgrade will
require larger changes.

a.	 Upgrade Assistant has a new binary analysis
command in preview. Details on how to use this
new command are in the Upgrade Assistant sec-
tion of this article. Upgrade Assistant’s binary
analysis command will report on which .NET
Framework APIs your project uses and whether
those APIs are supported on .NET 7 or not.

Figure 1: The .NET Upgrade Process

Mike Rousos
mikerou@microsoft.com

Mike Rousos is a Principal
Software Engineer on the
.NET Customer Engage-
ment Team. A member of
the .NET team since 2004,
he has worked on a wide
variety of feature areas
and contributed content to
the .NET team blog, .NET
Conf sessions, Channel 9
videos, and .NET develop-
ment e-books like “.NET
Microservices: Architecture
for Containerized .NET
Applications.” Outside of
work, Mike is involved in
his church and enjoys read-
ing, writing, and games
of all sorts. His primary
hobby, though, is spending
time with his four kids.

www.codemag.com 57codemag.com Upgrade Tooling for .NET 7

to a newer version of .NET Framework, you’re ready to begin
modernizing the project’s assets. The best place to start is
the project file itself because .NET 7 uses new, simpler SDK-
style project files.

Both Upgrade Assistant and the Incremental Migration Tool-
ing can help with this step.

•	 If you’re using Upgrade Assistant to upgrade a non-
web project, it upgrades the project file in-place. In
one of Upgrade Assistant’s early steps, it updates the
project’s csproj or vbproj file so that it uses the new
SDK-style format while being functionally equivalent
to the old project file.

•	 If you’re using Incremental Migration Tooling to
upgrade an ASP.NET app, it creates a new ASP.NET
Core project that you can gradually move endpoints
into. The new project starts out empty with refer-
ences and other items added as more of the project is
migrated.

As part of upgrading the project file, you will also want to
review your NuGet package references and make sure they’re
correct. The packages.config method of referencing NuGet
packages that were probably used in the original project
lists all NuGet packages needed, whereas, in an SDK-style
project, only the packages your project uses directly need
to be referenced (those packages’ references do not need to
be referenced). Again, tooling helps with this. Upgrade As-
sistant automatically removes unneeded package references
and Incremental Migration Tooling won’t even add unnec-
essary package references to the new project in the first
place.

Of course, the version of NuGet references may also need to
be updated in order to work with the new .NET target you’ll
be using (.NET 6 or .NET 7). Both Upgrade Assistant and
Incremental Migration update package versions.

Finally, as part of upgrading the project file, the target
framework moniker for the project should be set to the .NET
platform that you’re upgrading to. Upgrade Assistant auto-
matically detects whether .NET 6, .NET 7, or .NET Standard
makes the most sense for the project and updates it accord-
ingly. With Incremental Migration, the UI for creating the
new project allows the user to select .NET 6 or .NET 7.

Step 3: Upgrading Project Source
The third step of upgrading from .NET Framework to .NET 7
is upgrading the contents of the project: the source code,
config files, and other assets. This is usually the bulk of the
upgrade work.

Both Upgrade Assistant and Incremental Migration Tooling
have the ability to automatically apply some fixes to source
code while upgrading. For Upgrade Assistant, fixes are ap-
plied automatically across the whole project while, for In-
cremental Migration Tooling, fixes are made as the source
code is copied over from the old project to the new one as
needed to migrate specific vertical slices of the app.

Remember that no upgrade tooling can completely auto-
mate the changes needed to upgrade from .NET Framework
to .NET 7. Especially for application models (like web apps)
that have significant differences from .NET Framework,
it will be necessary to make manual updates the tooling

b.	 Upgrade Assistant’s existing Analyze command is
also useful while preparing for an upgrade because
it highlights changes that Upgrade Assistant rec-
ommends, such as specific NuGet packages that will
need to be updated or other changes that are re-
quired in the source or configuration of the project.

2.	 Choosing a target framework. When upgrading from
.NET Framework, you might want to target .NET 7, .NET
6, or .NET Standard 2.0. If you’ll be using Upgrade As-
sistant, it recommends an appropriate target based on
your project and whether you prefer Long Term Support
(LTS) or Current versions. More details on .NET support
policy are available at https://dotnet.microsoft.com/
platform/support/policy/dotnet-core. If you’re using
incremental migration tooling or updating the project
file by hand, you need to choose the target framework
yourself. Things to consider include:

a.	 A .NET Standard 2.0 target allows libraries to be
shared between .NET 6/7 callers and .NET Frame-
work callers. Because of this valuable portabil-
ity, it’s recommended that class libraries should
target .NET Standard 2.0 unless they have de-
pendencies that require a more restrictive target
framework. Executable projects (console apps,
Windows desktop apps, and web apps like ASP.
NET Core MVC or WebAPI projects) cannot target
.NET Standard because it’s only an API definition
and not a runnable product.

b.	 .NET 6 is the most recent LTS release of .NET.
This means that it will be supported longer than
.NET 7. LTS releases are supported for three years
from their release date compared to 18 months
for Current releases. If you need longer-term
support for your project and don’t need any of
.NET 7’s new features, .NET 6 is a great choice.

c.	 .NET 7 is the most recent Current release of .NET.
That means it has the latest features and best
performance. If you intend to take advantage of
.NET 7’s improvements in your project, choose it
as the target framework moniker.

3.	 Upgrading to .NET Framework 4.8. In some cases, it
may make sense to retarget projects to .NET Framework
4.8 prior to upgrading to .NET 7. For very large projects
or projects targeting old versions of .NET Framework (be-
fore .NET Framework 4.5, for example), this can be valu-
able because it allows you to address breaking changes
between older and newer versions of .NET Framework
separate from further breaking changes moving from
.NET Framework to .NET 7. For small or medium-sized
projects or those targeting more recent .NET Framework
versions, upgrading to .NET Framework 4.8 isn’t neces-
sary because the number of breaking changes moving to
.NET Framework 4.8 is likely to be small.

4.	 Order projects. Finally, if your solution contains many
projects, consider in which order you will upgrade them
to .NET 7 (or .NET Standard). It’s usually best to up-
grade lower-level dependencies (“leaf nodes” of the
project graph) to .NET Standard first and then upgrade
their callers. If you use Upgrade Assistant to upgrade
a solution, it recommends an ordering based on the
dependencies of projects in the solution and based on
which project you ultimately want upgraded to .NET 7.

Step 2: Upgrading the Project File
Once you’ve prepared for the upgrade by understanding
the project’s dependencies and, possibly, by upgrading it

www.codemag.com58 codemag.com

containers. You can also choose between framework-depen-
dent deployment (which will use the .NET runtime on the
user’s machine) or self-contained deployment that includes
the .NET runtime and libraries needed with the application.
More details on .NET deployment models and options (in-
cluding ahead-of-time compilation and single-file deploy-
ment) are available at https://docs.microsoft.com/dotnet/
core/deploying.

ASP.NET Incremental Migration
One of the most exciting new options for upgrading is ASP.
NET Incremental Migration Tooling. This tooling is a Visual
Studio extension that allows developers to use a simple GUI
interface to create new ASP.NET Core projects in parallel
with existing ASP.NET apps. The tooling takes care of con-
necting the two apps (using a YARP proxy) so that requests
coming into the ASP.NET Core app are first handled by that
app and, if the ASP.NET Core app is unable to handle them,
are then proxied to the original ASP.NET app. This applies
the Strangler Fig pattern, allowing developers to gradu-
ally move functionality from their ASP.NET app into a new
ASP.NET Core app one controller or action method at a time
without changing their original ASP.NET app. From an end
user’s perspective, the experience of using the app will be
unchanged. Behind the scenes, the app will be slowly mov-
ing to ASP.NET Core as more and more of its components are
upgraded.

Although Upgrade Assistant is still the recommended tool
for upgrading class libraries and non-web apps, ASP.NET
Incremental Migration Tooling is recommended for ASP.NET
scenarios.

Getting Started with Incremental Migration
To get started, install the Visual Studio exten-
sion from https://marketplace.visualstudio.com/
items?itemName=WebToolsTeam.aspnetprojectmigrations.

Once the extension is installed, you can choose “Migrate
project” in the context menu when right-clicking on an ASP.
NET app, as shown in Figure 2.

A UI appears allowing the user to select the target frame-
work (.NET 6 or .NET 7) and template to use (MVC or WebAPI)
for the new project and a new ASP.NET Core project is cre-
ated, configured with a YARP proxy to automatically forward
any requests it can’t handle to the original ASP.NET app.
Project launch configuration is also updated so that pushing
F5 in Visual Studio begins debugging both the old and new
web projects.

Incrementally Migrating Project Components
Once the new project is created, you can choose to migrate
classes, controllers, or views. Simply right-click on the com-
ponent to migrate (either in Visual Studio’s editor or in the
solution explorer) and choose the Migrate menu option. The
UI will display a tree view of the selected component and its
dependencies, as shown in Figure 3. Dependencies could
include other classes, views, NuGet packages, or project-to-
project references. From the migration UI, you can choose
which of the dependencies to migrate (by default, all direct
dependencies are selected).

Clicking the Migrate selection button copies the selected
item along with all selected dependencies into the new

wasn’t able to automate. Although the upgrade tooling will
address the “easy” changes, allowing you to focus on those
that require more understanding of the project, the tooling
won’t address all necessary changes in any but the simplest
of projects. In most cases, source code upgraded to .NET 7
won’t immediately build and requires manual work to com-
plete the upgrade before the project will successfully com-
pile and run on the new target.

Step 4: Testing and Deploying
Once the project builds against the new .NET target, you’re
nearly done. But don’t forget to test thoroughly before de-
ploying the upgraded project. There are runtime behavioral
differences between .NET Framework and .NET 7 that can
cause apps to fail when run even if they build correctly.
Make sure that any test suites are ported and passing in ad-
dition to exercising the upgraded project manually to con-
firm that everything’s working as expected.

Once that’s done, you’re ready to deploy. With the upgraded
app running on .NET 7, deployment may look a bit differ-
ent—it’s now an option to run on Linux or in Linux-based

Figure 2: Migrating an ASP.NET app with Incremental
Migration Tooling

Upgrade Tooling for .NET 7

www.codemag.com 59codemag.com

from ASP.NET to ASP.NET Core. The project can be found at
https://github.com/dotnet/systemweb-adapters. In that
GitHub repository, you can learn more about the project,
file issues, or even submit pull requests to contribute.

The System.Web Adapters project has two parts:

•	 A core package of adapters.
•	 Extensions that make it easier to work with an ASP.NET

and ASP.NET Core project side-by-side, as in the case
of incremental migration.

Adapters Package
The lowest-level component of the System.Web adapters
is the Microsoft.AspNetCore.SystemWebAdapters package.
This package targets .NET Standard and contains adapters
for common System.Web APIs, such as HttpContext.Current
and APIs on HttpRequest, HttpResponse, and many other
types. When used by a .NET Framework caller, the adapt-
ers type-forwards references to these types to the actual
implementations in System.Web. When used from a .NET 6
or .NET 7 caller, the package shims the calls to equivalent
ASP.NET Core calls.

project. While copying source files, the tooling updates
source code with some transformations to get it closer to
what’s needed to run on ASP.NET Core (fixing up some com-
mon ASP.NET namespace changes, for example, or replacing
types with near equivalents in ASP.NET Core). While copying
NuGet dependencies, the tooling updates the packages to
more recent versions that work with the newer .NET ver-
sion in the new project. Of course, as mentioned previously,
there will be additional manual fixups needed in migrated
source files before they will build and work in the new proj-
ect. But by using the Incremental Migration Tooling, you’re
able to tackle that challenge one small part of the app at
a time.

Except for a couple properties in the csproj file to enable the
migration process, the original ASP.NET app isn’t changed,
so it will keep working the same as always.

System.Web Adapters
The ASP.NET team has created an open-source project called
System.Web Adapters that pairs with the Incremental Migra-
tion Tooling extension to make it easier to transition code

Figure 3: The incremental migration UI

Upgrade Tooling for .NET 7

www.codemag.com60 codemag.com

app.MapDefaultControllerRoute();
app.MapReverseProxy();

Once the System.Web adapter middleware is registered, end-
points in the ASP.NET Core app can opt into behaviors to emu-
late ASP.NET behaviors to match how they functioned in the
old app. These optional ASP.NET-emulated behaviors include
setting the value of Thread.CurrentPrincipal, forcing a request
to be served by a single thread, pre-buffering requests, or
buffering responses. Controllers and action methods can opt
into these behaviors using attributes or they can be enabled
by default using extension methods in the app’s startup path.
More information is available in the System.Web adapters
documentation at https://github.com/dotnet/systemweb-
adapters/blob/main/docs/usage_guidance.md.

On the ASP.NET side of things, System.Web adapter services
are enabled by registering the SystemWebAdapters module
in the app’s web.config (this happens automatically when
the FrameworkServices package is installed) and by calling
Application.AddSystemWebAdapters() in the app’s Applica-
tion_Start method.

It’s recommended to enable the System.Web adapter ser-
vices’ proxy support, which will cause values like the request
URL to match the app’s public entry point even though the
requests have been proxied to the ASP.NET app. That sup-
port is enabled by calling AddProxySupport in the app’s Ap-
plication_Start method:

protected void Application_Start()
{
 SystemWebAdapterConfiguration
 .AddSystemWebAdapters(this)
 .AddProxySupport(options =>
 options.UseForwardedHeaders = true);
}

Full details on setting up the ASP.NET app to take advantage
of new functionality in the System.Web adapters is available
in documentation at https://github.com/dotnet/system-
web-adapters/blob/main/docs/framework.md.

Remote App Authentication and Session
The System.Web adapters services packages also enable
sharing authentication and session state between the ASP.
NET and ASP.NET Core apps. This means that if a user signs
in using an endpoint in the original ASP.NET app or sets
session items on such an endpoint, the same identity and
session items will be available when the user navigates to an
endpoint served by the ASP.NET Core app. Similarly, session
items written from the ASP.NET Core app will be available to
the ASP.NET app.

Although session and authentication work differently in
ASP.NET and ASP.NET Core, the System.Web adapters enable
these features to work in incremental migration scenarios
by allowing the ASP.NET Core app to make requests to the
ASP.NET app behind the scenes to determine user identity
and session items. Any changes to session state are simi-
larly written to the ASP.NET app. So, the ASP.NET app serves
as the source of truth for authentication and session infor-
mation.

These features are enabled by calling AddRemoteAppClient
on the ASP.NET Core app’s ISystemWebAdapterBuilder (re-

Using Microsoft.AspNetCore.SystemWebAdapters, develop-
ers can use code that depends on these common System.
Web APIs while targeting .NET Standard 2.0 and have it work
on either ASP.NET or ASP.NET Core. This has benefits in two
scenarios:

•	 By using the adapters package, class libraries with
System.Web dependencies can be upgraded to target
.NET Standard 2.0 with minimal code changes. This
makes upgrading a large web solution much simpler.
By targeting class libraries to .NET standard, they can
be used by upstream callers that are still targeting
.NET Framework and by callers that are upgraded to
ASP.NET Core and .NET 7. This is especially useful in
incremental migration scenarios because it allows the
original ASP.NET app and the new ASP.NET Core app in
the migration scenario to share class libraries.

•	 Using the System.Web adapters can also help mini-
mize code changes when initially migrating code to
an ASP.NET Core project during incremental migration.
Although the APIs supported by the adapters package
are prioritized around what’s most likely to be used
in libraries, there’s enough overlap with APIs used in
MVC scenarios that they provide some value getting
migrated classes working on ASP.NET Core, as well. It
will be necessary to update instances of System.Web
APIs being used from the migrated ASP.NET Core app
eventually, but the System.Web adapters can be useful
in getting things working initially.

Services Packages
In addition to the adapters package, the System.Web Adapt-
ers project includes new functionality that helps ASP.NET
and ASP.NET Core apps work together better in incremental
upgrade scenarios. This new functionality ships in two pack-
ages: one package for use in the ASP.NET app (Microsoft.
AspNetCore.SystemWebAdapters.FrameworkServices) and
one for use in the ASP.NET Core app (Microsoft.AspNetCore.
SystemWebAdapters.CoreServices).

The services are enabled in the ASP.NET Core app by call-
ing AddSystemWebAdapters and UseSystemWebAdapters
in their main method, as shown in this code snippet. This
makes SystemWebAdapters services available in the app’s
dependency injection container and registers SystemWeb-
Adapters middleware.

using Microsoft.AspNetCore.SystemWebAdapters;
var builder = WebApplication.CreateBuilder(args);

// Add System.Web adapter services to the container
builder.Services.AddSystemWebAdapters();

builder.Services.AddReverseProxy()
 .LoadFromConfig(builder.Configuration
 .GetSection("ReverseProxy"));

builder.Services.AddControllersWithViews();

var app = builder.Build();

// Additional middleware goes here

// Add System.Web adapter middleware
app.UseSystemWebAdapters();

Upgrade Tooling for .NET 7

www.codemag.com 61codemag.com

 .Add("mObject", typeof(DemoModel));
 });

Notice that on the ASP.NET Core side, the call to AddAu-
thentication takes a Boolean parameter. This parameter in-
dicates whether remote app authentication should be the
default authentication scheme for the app or not. If remote
app authentication is the default scheme, user identity is
retrieved from the ASP.NET app for every request to the ASP.
NET Core app. If it’s not the default, identity will only be
retrieved from the ASP.NET app for requests to endpoints
decorated with an authentication attribute specifically re-
questing authentication with this scheme:

[Authorize(AuthenticationSchemes = "Remote")]

Using remote app authentication as the default scheme
avoids needing to add these attributes and makes the user’s
identity available everywhere but comes with the downside
of having an HTTP call to the ASP.NET app to retrieve iden-
tity for every request the ASP.NET Core app serves. Not us-
ing remote app authentication as the default scheme allows
the remote identity to be used more tactically only in cases
where it’s needed.

Similarly, because sharing session state requires HTTP re-
quests to the ASP.NET app, it’s not enabled by default. In-
stead, controllers or action methods that need to share ses-
sion state with the ASP.NET app should be annotated with
the [Session] attribute.

Because the System.Web adapters libraries are still in pre-
view at the time this article is being written, some small
changes may be made to the API (method names, etc.) prior
to the article being published. Full details and all the latest
details on configuring and using shared session and shared
authentication in incremental migration scenarios are avail-
able in the System.Web adapter documentation at https://
github.com/dotnet/systemweb-adapters/tree/main/docs.

.NET Upgrade Assistant
Although Incremental Migration Tooling and the System.
Web Adapters offer migration assistance for ASP.NET sce-
narios, the .NET Upgrade Assistant is still the recommended
tool for upgrading class libraries, console apps, Xamarin
apps, and Windows Desktop apps in-place. Since Upgrade
Assistant’s release last year, a number of new features have
been added, most notably the ability to scan binaries and
compare the .NET Framework APIs used against the surface
area of .NET 7 and the ability to upgrade a new type of proj-
ect: WCF server projects.

Binary Analysis
Previously, when upgrading from .NET Framework to a more
modern .NET target, users would use the .NET Portability
Analyzer to gauge how many of the .NET Framework APIs
they’d used were unavailable on the .NET platform they were
migrating to. The .NET Portability Analyzer is in the process
of being deprecated and this functionality has been added
to Upgrade Assistant. Now you can use the same tool to
analyze .NET API usage and upgrade your projects.

Upgrade Assistant’s binary analysis feature differs from its
existing analyze command in that the analyze command
works by running the same analysis as the upgrade com-

turned by adding System.Web services to the app’s services)
and by calling AddRemoteAppServer on the ASP.NET app’s
ISystemWebAdapterBuilder (returned by the call to Appli-
cation.AddSystemWebAdapters). These remote app calls al-
low the user to configure the connection between the ASP.
NET Core and ASP.NET apps—specifying a security key so
that the ASP.NET app knows requests for session or auth
information are legitimate and specifying the base URL of
the ASP.NET app for the ASP.NET Core app to communicate
with.

To enable sharing session information between the two
apps, the ASP.NET app must call AddSession and configure a
serializer that will be used for writing and reading sessions
state to/from the ASP.NET Core app. Serialization is typically
done with the System.Web Adapters’ JsonSessionSerializer,
but users can implement their own serializers if needed. As
part of configuring the serializer, the developer must regis-
ter session item keys that will be used and specify the types
of the corresponding session items. This registration with
typing information is necessary to securely deserialize ses-
sion items.

Similarly, to enable shared authentication to work, the ASP.
NET app must add a call to AddAuthentication in order to
enable endpoints that will deliver user identity to the ASP.
NET Core app.

Altogether, with both remote authentication and remote
session enabled, the code in global.asax.cs ends up looking
like this:

SystemWebAdapterConfiguration
 .AddSystemWebAdapters(this)
 .AddProxySupport(options =>
 options.UseForwardedHeaders = true)
 .AddRemoteAppServer(remote => remote
 .Configure(options =>
 options.ApiKey = "MySecureKey")
 .AddAuthentication()
 .AddSession())
 .AddJsonSessionSerializer(o =>
 {
 o.KnownKeys
 .Add("myInt", typeof(int));
 o.KnownKeys
 .Add("mObject", typeof(DemoModel));
 });

On the ASP.NET Core side, sharing session state and shared
authentication are enabled in the same way. AddSession
and AddAuthentication are called while configuring the
ISystemWebAdapterRemoteClientAppBuilder, and a serial-
izer is registered with the ISystemWebAdapterBuilder along
with session items that are expected.

builder.Services.AddSystemWebAdapters()
 .AddRemoteAppClient(remote => remote
 .Configure(ConfigureRemoteAppOptions)
 .AddAuthentication(true)
 .AddSession())
 .AddJsonSessionSerializer(o =>
 {
 o.KnownKeys
 .Add("myInt", typeof(int));
 o.KnownKeys

Upgrade Tooling for .NET 7

www.codemag.com62 codemag.com

Binary analysis is still in development, so until it’s fully re-
leased, you need to set an environment variable to enable it
in Upgrade Assistant.

Set UA_FEATURES=ANALYZE_BINARIES

Once the UA_FEATURES variable is set to ANALYZE_BINA-
RIES, Upgrade Assistant has a new command available to
it: analyzebinaries. There are several useful options that
can be passed to the analyzebinaries command. Among
them are:

•	 -f <format>: This option allows specifying the output
format for the report that’s generated. Options are
HTML or Sarif. Sarif is a well-known JSON format used
to store diagnostic information. Visual Studio can dis-
play data from Sarif files in its error list and extensions
are available to visualize Sarif in Visual Studio Code.

•	 -t <Current | LTS | Preview>: This option allows
specifying which .NET target you intend to upgrade to
so APIs used in the app can be compared to that tar-
get. Specifying Current compares against .NET 7 and
LTS compares against .NET 6. Preview also compares
against .NET 7 for the time being but soon it will com-
pare against .NET 8 previews.

•	 -p <Linux | Windows>: The platform option allows
specifying whether the upgrade project will run on
Windows or Linux so that the API surface area can be
adjusted for the desired environment.

Unlike other Upgrade Assistant commands, the analyzebi-
naries command runs on compiled binaries rather than proj-
ect or solution files. So, for input, you’ll need to specify a
dll or a folder containing one or more .NET assemblies. This
means that you can run the analyzebinaries command even
against dependencies you don’t own. This can be useful if
you need to gauge whether a binary dependency is likely to
work on .NET 7, but be careful about running the command
on NuGet binaries. NuGet packages often have different bi-
naries for different targets, so seeing whether a specific as-
sembly from NuGet uses unsupported APIs or not is typically
not useful. There may be other assemblies available for the
package for different targets or newer versions of the pack-
age available with more supported .NET platforms. NuGet
dependencies are better analyzed with Upgrade Assistant’s
analyze command.

To use analyzebinaries, it’s recommended to copy the as-
semblies you own source code for as well as any binary de-
pendencies that cannot be upgraded to newer .NET 7-native
versions through other means (not NuGet output or .NET
Framework binaries) into a temporary folder. Then, run the
analyzebinaries command using options appropriate for
your scenario. For example:

upgrade-assistant analyzebinaries -t LTS
 -f html .\binaryoutput

Upgrade Assistant reads the assemblies and generates a re-
port showing any APIs that aren’t supported on the target
version of .NET, as well as APIs that are available but require
additional NuGet references, as shown in Figure 4.

CoreWCF
In April of 2022, version 1.0 of the CoreWCF community proj-
ect was released. This project makes many server-side WCF

mand and reports on items to be changed (source code to
update, package versions to update, etc.) and the binary
analysis feature instead looks at API usage compared to
a catalog of which APIs are available on which .NET plat-
forms.

Figure 4: Upgrade Assistant analyzebinaries output

Figure 5: Upgrade Assistant’s new CoreWCF Upgrade step

Upgrade Tooling for .NET 7

www.codemag.com 63codemag.com

tal Migration Visual Studio extension isn’t currently open
source, you can still provide feedback on it through the Sys-
tem.Web adapters GitHub repo.

Wrap Up
.NET 7 offers a host of new features and performance im-
provements. Targeting .NET Framework, while supported,
keeps projects from using the latest runtime features, lan-
guage features, performance improvements, and community
libraries. Upgrading from .NET Framework to .NET 7 can be a
challenge, especially for some app models like ASP.NET that
have seen major changes, but tools like Upgrade Assistant
and Incremental Migration Tooling for ASP.NET can help.

No tooling can completely automate the transition from
.NET Framework to .NET 7, but Upgrade Assistant can help
analyze the work that needs to be done and assist in mak-
ing many of the changes needed to move libraries, console
apps, and Windows Desktop or Xamarin apps to .NET 7.
Meanwhile, the new Incremental Migration Tooling for ASP.
NET provides a visual interface for gradually moving func-
tionality in an ASP.NET app to ASP.NET Core on .NET 7 one
component at a time. The System.Web adapters libraries
enable sharing web-based code between .NET Framework
and .NET 7 and enable important interoperability scenarios
between ASP.NET and ASP.NET Core apps in incremental up-
grade scenarios.

Please try the tools out and engage with us on GitHub to
share feedback or any issues you run into!

APIs available for .NET 6 and .NET 7. At the same time as
the 1.0 release, Microsoft announced that it would support
CoreWCF usage in production scenarios and that it was a
recommended path forward for customers with server-side
WCF dependencies who wanted to upgrade to .NET 6 or .NET
7, but who could not easily remove the dependency on WCF.
More details on CoreWCF and Microsoft support for the proj-
ect is available at https://devblogs.microsoft.com/dotnet/
corewcf-v1-released. To learn more about CoreWCF, be sure
to check out Sam Spencer’s article on CoreWCF elsewhere in
this issue of CODE Magazine or go to https://github.com/
corewcf/corewcf.

To help customers looking to use CoreWCF as a means of
upgrading to .NET 7, Upgrade Assistant now supports up-
grading self-hosted WCF scenarios to CoreWCF. No new com-
mands are needed—just use a recent version of Upgrade As-
sistant and a new upgrade step (shown in Figure 5) will look
for self-hosted WCF services and, if found, help to upgrade
them to CoreWCF.

Most of the changes moving to CoreWCF are related to set-
ting up the ServiceHost. Some WCF settings that were pre-
viously specified in configuration are now set up program-
matically. Upgrade Assistant’s new CoreWCF upgrade step
will help to move the parts of the configuration that need
to be changed into code while leaving the rest of the con-
fig file for CoreWCF to use. CoreWCF runs on top of ASP.NET
Core, so the new code paths will look familiar to anyone
who’s configured an ASP.NET Core web host before. Because
CoreWCF tries to be as compatible with WCF as possible, ex-
isting service contracts and implementations should work
unchanged.

Upgrade Tooling Roadmap
This article has introduced a lot of new upgrade tooling op-
tions: new Upgrade Assistant features, including a binary
analysis command, new Incremental Migration tooling for
ASP.NET scenarios through a Visual Studio extension, and
adapter libraries to make upgrading web scenarios easier.

Going forward, the teams working on these tools will be fo-
cused both on adding more functionality to the tools and
aligning them with each other. It’s great that there’s now
more tooling available for upgrading to .NET 7 but, in the
future, these tools will begin to consolidate and support
each other better. There will continue to be a command-line
experience through Upgrade Assistant and a Visual Studio
experience through the Incremental Migration extension,
but planning is underway to share the internal logic of
these two tools so that they will give similar experiences
(through different user interfaces) and allow users to write
extensions that will work with either toolset.

The upgrade tooling for .NET is still young and developing
rapidly. As you work with the tools, please get involved with
their development efforts. By sending feedback, filing is-
sues, and creating pull requests, you can help to shape the
future of .NET upgrade tooling. You can provide feedback
and contribute to Upgrade Assistant at https://github.com/
dotnet/upgrade-assistant.

Similarly, you can connect with the System.Web adapters
project and create issues or pull requests at https://github.
com/dotnet/systemweb-adapters. Although the Incremen-

� Mike Rousos
�

Upgrade Tooling for .NET 7

www.codemag.com64 codemag.comUsing CoreWCF to Move WCF Services to .NET Core

ONLINE QUICK ID 2211092

Sam Spencer
sam.spencer@microsoft.com

Sam is a Program Manager
on the .NET team.
He has worked on various
developer technologies at
Microsoft including YARP,
CoreWCF, .NET, WinUI,
WinJS, LightSwitch,
Visual Web Developer and
Visual Basic.

Using CoreWCF to Move WCF
Services to .NET Core
CoreWCF is a port of the functionality of the WCF Server libraries to the .NET [Core] platform. In this article, I’ll talk about the
objectives of the CoreWCF project and how it can be used to more easily modernize applications to .NET. CoreWCF is an open
source project and can be found at https://github.com/CoreWCF/CoreWCF. If you’re going to work with the code examples

shown in this article, you’ll need the following installed on
your system:

•	 Visual Studio 2022
•	 .NET 6.0 or greater

Introduction to CoreWCF
Windows Communication Foundation (WCF) is an RPC mech-
anism that enables rich client/server communication be-
tween processes. The advantages WCF has over other RPC
mechanisms such as WebAPI, REST, or gRPC are that the
contracts and data types are defined using .NET classes and
interfaces, it supports a high fidelity serialization of data
types, has efficient binary serialization, and includes built-
in security and rich communication paradigms such as call-
backs and streaming. WCF supports WS-* standards-based
communication using SOAP and proprietary bindings for
more efficient communication between .NET on the client
and server. For these reasons, WCF has been a very com-
monly used RPC stack in .NET Framework apps.

When the .NET Core project started in 2016, the goal was
to take the best of .NET, but also to use it as an opportu-
nity to pare down some of the bloat that had accrued with
.NET Framework. The software industry has largely moved
on from SOAP to restful Web API and gRPC. WCF has a very
large and complex surface area that wasn’t seen as fitting
well with the “lean and mean” goals of .NET Core.

Microsoft had been recommending WCF as the RPC mecha-
nism to use in .NET for some time, and customers have a
large investment in WCF services. We realized that the lack
of WCF capability was a major blocker to being able to mod-
ernize the apps to .NET Core.

The.NET team didn’t initially intend to include WCF in the
box, but there were a couple of devoted WCF developers who
wanted to update WCF and bring it to modern .NET. So we
funded the effort to seed a community project, which be-
came CoreWCF. This gathered the attention of other devel-
opers in the community who needed WCF support, including
the .NET team at AWS, who contributed toward the support
of WS-* security protocols.

CoreWCF isn’t a straight port of WCF to .NET—there were a
couple of architectural changes that were needed as part
of the port:

•	 Using ASP.NET Core as the service host, push pipeline,
and the middleware pattern for extensibility.

•	 Removing the obsolete Asynchronous Programming
Model (APM) programming pattern as it made the co-

debase incredibly hard to work with, which isn’t desir-
able for a community project wanting to encourage
external contributions.

•	 Removing platform-specific and IO code. Refactoring
apps into microservices and Linux-based containers is
a common requirement, and so CoreWCF needs to be
able to run anywhere that .NET core can be run.

After three years of development, the feature set was
deemed functional enough for mainstream usage and so the
1.0 of the project was released in April 2022. CoreWCF, like
the .NET platfom it’s built on, is cross-platform, so can be
used as easily on Linux, in a Kubernetes container, or on
MacOS as it can be on a Windows server.

When talking with WCF customers, particularly larger en-
terprise customers, a large concern with adopting a com-
munity project is what level of support would be available.
Microsoft came to an internal agreement so that Microsoft
Support is available for CoreWCF when used in produc-
tion. If you’ve ported to CoreWCF and you find operational
bugs (not missing features), Product Support coordinates
a fix.

Using CoreWCF in Practice
There are a couple of parts to creating a WCF service:

•	 Defining the service contracts: C# interfaces with at-
tributes

•	 Implementing the contracts: C# classes implement-
ing the service interface

•	 Creating data contracts for data that will be serial-
ized as part of the service contracts: POCO classes
with optional attribution

•	 Exposing the services: Use WCF Bindings

The key advantage of CoreWCF is that in most cases, it
doesn’t involve any changes to the service definition, imple-
mentations, or data contracts. The same code you used for
these items in WCF is supported in CoreWCF. The differences
come with the ceremony as to how the services are hosted
and the bindings that are supported.

What Does a CoreWCF Service Look
Like?
The best way to understand CoreWCF is probably to create
a new service from scratch. The easiest way to do that is
using the new project template (a community contribution),
which can be installed using the dotnet tool.

dotnet new --install CoreWCF.Templates

www.codemag.com 65codemag.com Using CoreWCF to Move WCF Services to .NET Core

 }

The service implementation is in the form of a class that
implements the service definition. There are no changes
from how this is defined in WCF.

public class Service : IService
{
 public string GetData(int value)
 {
 return $"You entered: {value}";
 }

 public CompositeType GetObject(CompositeType obj)
 {
 if (obj == null)
 {
 throw new ArgumentNullException("composite");
 }
 if (obj.BoolValue)
 {
 obj.StringValue += "Suffix";
 }
 return obj;
 }
}

The last part of the file uses the DataContract and DataMem-
ber attributes to mark a class for serialization so that it can
be used as part of service definition.

That installs a new template that can be used from the com-
mand line or via Visual Studio. Once installed, in the Visual
Studio New Project dialog, type “corewcf” in the search box
to find the template, as seen in Figure 1

Go through the dialogs to create a project for .NET 6.0 or
7.0. The template has support for the other versions, but
with .NET 6+, you get the simplified ASP.NET starter code
and top-level statements.

Opening IService.cs, you can see that the definition of the
service is identical to how it’s defined with WCF. You have an
interface decorated with the ServiceContract attribute, and
each of the methods to be exposed is decorated with Op-
erationContract. The only difference is that the attributes
are now from the CoreWCF namespace rather than System.
ServiceModel namespaces.

using CoreWCF;
using System;
using System.Runtime.Serialization;

namespace CoreWCFService1
{
 [ServiceContract]
 public interface IService
 {
 [OperationContract]
 string GetData(int value);

 [OperationContract]
 CompositeType GetObject(CompositeType obj);

Figure 1: New project dialog showing CoreWCF template

www.codemag.com66 codemag.com

[DataContract]
public class CompositeType
{
 bool boolValue = true;
 string stringValue = "Hello ";

 [DataMember]
 public bool BoolValue
 {
 get { return boolValue; }
 set { boolValue = value; }
 }

 [DataMember]
 public string StringValue
 {
 get { return stringValue; }
 set { stringValue = value; }
 }
}

Program.cs sets up the host and exposes the services via
bindings. If you’re familiar with ASP.NET Core, this will look
somewhat familiar because CoreWCF uses the same host and
builder model, but with extra middleware that implements
WCF services and provides WSDL generation through meta-
data.

var builder = WebApplication.CreateBuilder();

builder.Services.AddServiceModelServices();
builder.Services.AddServiceModelMetadata();
builder.Services.AddSingleton<IServiceBehavior,
 UseRequestHeadersForMetadataAddressBehavior>();

var app = builder.Build();

The next block adds a service from our class Service and
exposes its definition from IService with a BasicHttpBinding
and sets the URL as /Service.svc.

app.UseServiceModel(bld =>
{
 bld.AddService<Service>();
 bld.AddServiceEndpoint<Service, IService>(
 new BasicHttpBinding(BasicHttpSecurityMode.Transport),
 "/Service.svc");

 var mb = app.Services.GetRequiredService<
 ServiceMetadataBehavior>();
 mb.HttpsGetEnabled = true;
});

app.Run();

By default, the ASP.NET hosting runs the process using
the Kestrel web server, but it can also be hosted in IIS Ex-
press, depending on how the process is launched. That can
be changed in Visual Studio using the launchSettings.json
file.

Bindings in CoreWCF
Bindings in WCF define how the services will be exposed over
the wire. For example, the BasicHttpBinding used above
exposes a service over HTTP using the SOAP protocol. The
NetTcp Binding uses a custom binary XML serialization to
be more efficient over the wire than plain text XML. WCF
supported a large range of bindings and only a subset are
currently included in CoreWCF, listed in Table 1.

The WSFederationHttpBinding and related security func-
tionality have been developed by AWS. The WebHttpBinding
was implemented by a community member who had a large
investment in services using the Binding, and they deter-
mined that it would be cheaper for them to port the binding
than converting all the services to MVC or WebAPI.

The main bindings not yet available that we hear developers
asking for are:

•	 NamedPipeBinding
•	 MSMQBinding

Both are currently under development. In line with the
architectural changes to be cross-platform, the Message
Queue binding will be changing to have a provider model for
the actual queue implementation so that it isn’t tied to the
Windows MSMQ Server and can be used with queue imple-
mentations for cloud providers such as AWS and Azure.

Configuration in CoreWCF
WCF had strong support for configuration. The bindings that
control the way that services are exposed could be specified
in code, but more commonly was done through configura-
tion. The idea was that you can create the service, and then
Ops/IT can configure the binding and its properties without
needing to rebuild the application. This resulted in long and
complex configuration files, which proved to be a source of
errors and complexity. Later versions of .NET Framework in-
troduced a simplified form of configuration to reduce the
verbosity and provide common defaults.

The WCF configuration model was based around the .NET
Framework xml/web.config model for configuration that
isn’t fully supported on Core, and which now uses a JSON-
based configuration format. The lack of configuration sup-
port was a problem for a couple of users, and their combined
work has resulted in the package CoreWCF.Configuration.
Currently, not all options are supported, but this should
help when migrating WCF applications.

Here are the basic steps to use the configuration library:

Binding Description

BasicHttpBinding
Uses SOAP to encode messages over HTTP and is compatible
with ASMX-based services and clients using SOAP 1.1

NetHttpBinding
Uses a binary format over HTTP for smaller message encoding. If
the service contract is duplex, it will use web sockets to create a
bi-directional channel

WSFederationHttpBinding Supports WS-Federation to enable federated security

WSHttpBinding
SOAP 1.2-based, only uses open standard WS-* protocols for
interoperability with other frameworks

NetTcpBinding
Uses TCP for delivery with a binary encoding for the message
format, with support for Windows Security

WebHttpBinding
Supports creating Restful web services using WCF contract
definitions

Table 1: Bindings supported by CoreWCF

Using CoreWCF to Move WCF Services to .NET Core

www.codemag.com 67codemag.com

Client-Side WCF Support
.NET Core includes client-side support for calling WCF servic-
es with the System.ServiceModel.* NuGet packages. Client
wrappers can be generated for services using the Connect-
edServices and Service Reference UI in Visual Studio. From
the command line, the dotnet-svcutil tool can be used to
generate the same wrapper code.

dotnet tool install --global dotnet-svcutil
dotnet-svcutil --roll-forward LatestMajor
https://localhost:7173/Service.svc?wsdl

Using either of those tools requires that the ServiceModel-
Metadata feature is added as part of the app initialization.
This is included in the project template and the example
code further up. You may need to add the ?wsdl query string
to the URL to get the metadata.

The following console app code uses the service wrapper to
call the service above:

using ServiceReference1;
// Instantiate the Service wrapper specifying the
// binding and optionally the Endpoint URL.
var client = new ServiceClient(
 ServiceClient.EndpointConfiguration.BasicHttpBinding_
IService,
 "https://localhost:7173/Service.svc");

var simpleResult = await client.GetDataAsync(10);
Console.WriteLine(simpleResult);

var msg = new CompositeType(){ StringValue = "A ",
 BoolValue=true};
var msgResult = await client.GetObjectAsync(msg);
Console.WriteLine(msgResult.StringValue);

How to Modernize a WCF Service
to .NET Core
Assuming you have an existing WCF application, there are
a couple of approaches that can be used to modernize the
services using CoreWCF:

•	 In-place replacement while running on .NET Frame-
work

•	 Copy individual services over
•	 In-place upgrade to .NET Core

Read on for some discussion about these options.

In-Place Replacement While Running on
.NET Framework
The 1.x releases of CoreWCF have been designed so that
it can be used on .NET Framework with ASP.NET Core 2.1.
The services can be updated individually to be exposed
using CoreWCF before changing the runtime and project
file format. This can be an effective way to ensure that
CoreWCF will meet your needs before diving into a larger
migration.

The code shown in this article for .NET 6 uses top-level
statements and the simplified ASP.NET initialization code.
Samples for .NET Framework and earlier versions of .NET can
be found at https://github.com/corewcf/samples.

1.	 Copy the system.serviceModel section into a separate
file, such as wcf.config, which should be placed in the
application folder. Here’s an example file:

<system.serviceModel>
 <bindings>
 <netTcpBinding>
 <binding name="netTcpBindingConfig"
 receiveTimeout="00:10:00" />
 </netTcpBinding>
 </bindings>
 <services>
 <service name="Services.ISomeContact">
 <endpoint address="net.tcp://localhost:8750/Service"
 binding="netTcpBinding"
 bindingConfiguration="netTcpBindingConfig"
 contract="ISomeContact" />
 </service>
 </services>
</system.serviceModel>

1.	 In your CoreWCF project, add the CoreWCF.Configura-
tionManager NuGet package.

2.	 Tell CoreWCF to load configuration from your XML file:

builder.Services.AddServiceModelServices();
builder.Services.AddServiceModelConfigurationManagerFile(
 "wcf.config");
builder.Services.AddServiceModelMetadata();
builder.Services.AddSingleton<IServiceBehavior,
 UseRequestHeadersForMetadataAddressBehavior>();

If NetTcpBinding is used, the TCP port numbers of endpoints
using this binding must be additionally specified when con-
figuring the builder.

That's all there should be to it! If there are any configura-
tion problems in the wcf.config file, they will be reported
when the application starts.

The set of supported configuration elements are:

<bindings>
 <basicHttpBinding maxBufferSize="" transferMode=""
textEncoding="" />
 <netHttpBinding maxBufferSize="" transferMode=""
textEncoding=""
 messageEncoding="" />
 <netTcpBinding maxBufferSize="" maxBufferPoolSize=""
maxConnections=""
 transferMode="" hostNameComparisonMode="" />
 <wSHttpBinding maxBufferPoolSize="" />
</bindings>

All the bindings above also support these properties:
name="", securityMode="", maxReceivedMessageSize="",
receiveTimeout="", closeTimeout="", openTimeout="", send-
Timeout="", and xmlReaderQuotas="".

<services>
 <endpoint name="" address=""
binding="" bindingConfiguration=""
 contract="" />
</services>

The goal is to add more configuration support over time.

Using CoreWCF to Move WCF Services to .NET Core

www.codemag.com68 codemag.com

What’s Next for CoreWCF
The project is being developed in the open at https://
github.com/corewcf/corewcf. Its release schedule is inde-
pendent from that of .NET or Visual Studio: It releases when
new functionality is ready to be consumed. We have plans
for supporting additional Bindings such as NamedPipe and
MessageQueue. As a community-driven project, we focus on
what’s most important to customers and have a pinned is-
sue (https://github.com/CoreWCF/CoreWCF/issues/234) for
discussing what features should be added next. If you want
a listed feature, add a thumbs up and if it’s not on the list,
please create a new entry for it.

We welcome contributions from the community, both large
and small. If you have a small change or fix, feel free to
create a Pull Request (PR) with the change. If you want to
contribute something larger, we suggest that you create an
issue to discuss the feature and design before submitting
a PR—that generally results in a smoother process for all
involved.

Conclusion
CoreWCF provides a smoother modernization path for appli-
cations that have taken a strong dependency on WCF. Using
CoreWCF is often a quicker migration path than re-designing
services to use a different RPC mechanism.

Copy Individual Services Over
Some developers prefer to take the approach of creating a
new project and then copying code across from their exist-
ing projects. You should find that only a few changes are
required to the service classes and interfaces to be able to
use them with CoreWCF. The CoreWCF project template in-
cludes the ceremony for setting up the host. You will need
to specify the bindings for each service in the app.UseSer-
viceModel block, or use the XML configuration support to
set up the bindings.

In-Place Upgrade to .NET Core
If you’re doing an in-place upgrade of the project from .NET
Framework to Core, there are various steps that need to be
performed, regardless of the use of WCF. The Upgrade As-
sistant tool discussed in other articles in this issue can be
used to perform those migration steps, such as updating
project file format, changing NuGet references, namespace
upgrades, etc.

At the time of writing this article, one of our summer interns
has been working on additions to the Upgrade Assistant to
perform some of the CoreWCF migration actions for you. By
the time you read this, they may have been included in the
tool. For more information, see the repo at https://github.
com/dotnet/upgrade-assistant.

The manual steps that need to be performed after the .NET
Upgrade Assistant has updated a project to .NET 6 are:

•	 Add a NuGet package reference to CoreWCF.Primitives and
the packages for the type of binding you will be using.

•	 Replace any using System.ServiceModel; import with
using CoreWCF; as the namespace has been changed.

•	 CoreWCF is built on top of ASP.NET Core, so you need
to update the project to start an ASP.NET Core host.

•	 Update the project’s SDK to Microsoft.NET.Sdk.
Web (because it uses ASP.NET Core).

•	 Make the app’s Main method async.
•	 Replace ServiceHost setup with the code shown

above.
•	 The services need to be exposed via bindings.

•	 That can be done with code such as:

app.UseServiceModel(bld =>
{
 bld.AddService<Service>();
 bld.AddServiceEndpoint<Service, IService>(
 new BasicHttpBinding(BasicHttpSecurityMode.Transport),
 "/Service.svc");
});

•	 Each service needs to be added and be exposed by at
least one binding.

•	 Or it can be done via configuration. If using configura-
tion, be aware that not all of what you could specify in
WCF is currently supported in CoreWCF. See the section
on configuration above.

•	 For example, the <host> element isn’t supported in
the service model configuration. Instead, the port
that endpoints listen to is configured in code. So, you
need to remove the <host> element from wcf.config
and add the following line to the app’s main method,
before the call to builder.Build:

builder.WebHost.UseNetTcp(8090);

� Sam Spencer
�

Using CoreWCF to Move WCF Services to .NET Core

www.codemag.com 69codemag.com

ONLINE QUICK ID 2211102

Daniel Roth
daroth@microsoft.com
@danroth27

Daniel Roth is a Principal
Product Manager at Micro-
soft on the ASP.NET team.
He has worked on various
parts of .NET over the
years, including WCF, XAML,
ASP.NET Web API, ASP.NET
MVC, and ASP.NET Core.
His current passion is
making Web UI development
easy with ASP.NET Core and
Blazor.

Blazor for the Web and Beyond
in .NET 7
The web is everywhere. Web apps run on devices of all shapes and sizes from desktop computers to mobile phones, thanks to
ubiquitous implementation of modern open web standards. For developers seeking to build apps for a broad range of devices
and platforms, the web provides unmatched cross-platform reach. .NET has supported building web apps from its earliest days.

The new .NET 7 release has end-to-end support for build-
ing web apps including high-performance back-end services
with ASP.NET Core, rich interactive web UI with Blazor, and
middleware for everything in between. Many of the largest,
most heavily used web apps on the planet are built using
.NET technologies. .NET provides a full stack and cross-plat-
form solution for building web apps along with great tooling
in Visual Studio and an active open-source ecosystem.

Blazor enables client web UI development with .NET without the
need to write JavaScript. With Blazor, you author reusable web UI
components using a combination of HTML, CSS, and C# that can
then be used in any modern web browser. Unlike earlier attempts
to run .NET in browsers, like the ill-fated Silverlight, Blazor relies
only on open web standards, like WebAssembly and WebSockets.
Blazor is also fully open source and has an active community of
contributors and independent project maintainers.

Blazor became part of .NET and ASP.NET Core with .NET Core
3.0 back in 2019 and is fully supported as part of the .NET
6 long-term support (LTS) release. .NET 7 includes many
great new Blazor features that make implementing web apps
easier and more productive. Let’s look at what .NET 7 has to
offer for Blazor development!

Blazor Custom Elements
Blazor provides a powerful component model for encapsu-
lating reusable pieces of web UI. This makes it easy to build
reusable libraries of web UI components and to quickly build
apps using preexisting components.

With .NET 7, you can now use Blazor components from exist-
ing JavaScript apps, including apps built with popular front-
end frameworks like Angular, React, or Vue. .NET 7 adds sup-
port for using Blazor components as custom HTML elements.

With .NET 7, you can now use Blazor
components from existing JavaScript
apps, including apps built with
popular front-end frameworks
like Angular, React, or Vue.

Modern browsers provide APIs for defining custom elements
that can encapsulate UI elements. These custom elements
can then be used with any web UI. You can host custom ele-
ments implemented using Blazor with either Blazor Server
or Blazor WebAssembly.

To get started building custom elements with Blazor, you
first need to add a package reference to Microsoft.AspNet-
Core.Components.CustomElements.

To register a Blazor component as a custom element, use
the RegisterCustomElement<TComponent>() extension
method and specify a name for the element. Be sure to use
an element name with at least one dash (-) in it, as this is
required by the custom elements standard.

In Blazor WebAssembly, you register a custom element like
this in Program.cs:

builder.RootComponents.RegisterCustomElement
<Counter>("blazor-counter");

In Blazor Server, registering a custom element looks like
this:

builder.Services.AddServerSideBlazor(options =>
{
 options.RootComponents.RegisterCustomElement
<Counter>("blazor-counter");
});

You can now add a blazor-counter element to your app to
create a Counter component.

<blazor-counter></blazor-counter>

Note that to use the custom element you’ll need to specify
explicitly both the open and close tags: Custom elements
don’t support XML-style self-closing elements.

To set up your JavaScript app to use a Blazor custom element,
you’ll first need to decide if you want to use Blazor Server or
Blazor WebAssembly and add the corresponding script to your
app (blazor.server.js or blazor.webassembly.js).

<script src=”_framework/blazor.webassembly.js”>
</script> <!—or blazor.server.js 

To use Blazor Server, you’ll need an ASP.NET Core app to
host the Blazor components. With Blazor WebAssembly,
you’ll need to publish the app together with your JavaS-
cript app. During development, you’ll want to set up your
front-end development server to proxy requests to the
ASP.NET Core back-end or Blazor WebAssembly app and
run both apps simultaneously. Using ASP.NET Core to host
both apps can simplify the development experience. ASP.
NET Core provides templates for hosting Angular-, React-,
and Blazor WebAssembly-based apps that you can use to
get set up quickly.

Blazor for the Web and Beyond in .NET 7

melan
Highlight
Bad break. Break after "Java"

www.codemag.com70 codemag.comBlazor for the Web and Beyond in .NET 7

<input @bind="searchText" @bind:after=
"PerformSearch" />

@code {
 string searchText = "";

 async Task PerformSearch()
 {
 // Do something async with searchText
 }
}

In this example, the PerformSearch async method runs
automatically after any changes to the search text are de-
tected.

It’s also now easier to set up binding for component pa-
rameters. Components can support two-way data binding by
defining a pair of parameters for the value and for a callback
that’s called when the value changes. The new @bind:get
and @bind:set modifiers now make it trivial to create a
component that binds to an underlying UI element.

<input @bind:get="Value" @bind:set=
"ValueChanged" />

@code {
 [Parameter]
 public TValue Value { get; set; }

 [Parameter]
 public EventCallback<TValue> ValueChanged
{ get; set; }
}

The @bind:get and @bind:set modifiers are always used to-
gether. The @bind:get modifier specifies the value to bind
to, and the @bind:set modifier specifies a callback that’s
called when the value changes.

A parent component using the above component (let’s call
it MyInput) can now bind to the value of the input using @
bind-Value.

<MyInput @bind-Value="text" />

@code {
 string text = "Type something great!";
}

Show App Loading Progress
The Blazor WebAssembly project template has a new loading
UI that shows the progress of loading the app (see Figure 1).

The new loading screen is implemented with some simple
HTML and CSS in the Blazor WebAssembly template using
two new CSS custom properties (variables) provided by
Blazor WebAssembly:

•	 --blazor-load-percentage: The percentage of app files
loaded

•	 --blazor-load-percentage-text: The percentage of
app files loaded rounded to the nearest whole number

You can pass parameters to your Blazor custom elements using
HTML attributes or by setting properties on the element object
using JavaScript. For example, let’s say the Counter component
has a parameter for specifying the increment amount:

[Parameter]
public int IncrementAmount { get; set; }

You can specify the parameter in HTML on the custom ele-
ment like this:

<blazor-counter increment-amount="10">
</blazor-counter>

Or using JavaScript like this:

const elem = document.querySelector(
 "blazor-counter");
elem.incrementAmount = 10;

Note that the HTML attribute name for the property is ke-
bab case (increment-amount) and the JavaScript property is
camelCase (incrementAmount).

With the JavaScript syntax, you can pass complex parameter
values using JavaScript objects, which will then get JSON
serialized. With HTML attributes, you’re limited to passing
simple types like strings, Booleans, or numerical types.
Passing child content or other templated content via render
fragments is not supported.

Data Binding Get/Set/After Modifiers
.NET 7 includes some nice improvements for configuring
data binding in Blazor.

In Blazor, you can create a two-way binding between UI ele-
ments and component state using the @bind directive attribute:

<input @bind="searchText" />

@code {
 string searchText = "";
}

When the value of the input changes, the searchText field is
automatically updated accordingly. Also, when the compo-
nent renders, the value of the input is set to the value of
the searchText field.

In .NET 7, you can now easily run async logic after a binding
event has completed using the new @bind:after modifier:

Figure 1: The new Blazor loading screen shows the app’s loading progress.

Apex Data Solutions
– Artwork Coming

www.codemag.com72 codemag.comBlazor for the Web and Beyond in .NET 7

IDisposable instance that, when disposed, removes the cor-
responding location changing handler.

For example, the following handler prevents navigation to
the counter page:

var registration = NavigationManager
.RegisterLocationChangingHandler(async cxt =>
{
 if (cxt.TargetLocation.EndsWith("counter"))
 {
 cxt.PreventNavigation();
 }
});

Note that your handler will only be called for internal naviga-
tions within the app. External navigations can only be handled
synchronously using the beforeunload event in JavaScript.

The new NavigationLock component
makes common scenarios for handling
location changing events simple.

The new NavigationLock component makes common scenari-
os for handling location changing events simple.

<NavigationLock
 OnBeforeInternalNavigation="ConfirmNavigation"
 ConfirmExternalNavigation />

NavigationLock exposes an OnBeforeInternalNavigation call-
back that you can use to intercept and handle internal location
changing events. If you want users to confirm external naviga-

Using these new CSS variables, you can create a custom
loading UI that matches the style of your own Blazor We-
bAssembly apps.

Empty Blazor Templates
The Blazor project templates provide a great starting point
for learning how to build your first Blazor template. In ad-
dition to setting up the Blazor app for development, these
templates include sample pages demonstrating commonly
used features as well as Bootstrap for CSS styling.

After you’ve figured out the basics of using Blazor, the in-
cluded demo code is no longer needed and having to repeat-
edly remove it can get tedious. So, in .NET 7, we’ve added new
empty Blazor project templates that include only the bare ne-
cessities for creating a new Blazor app. You now have a com-
pletely blank canvas that you can make completely your own,
including using whatever CSS design framework you want.

The new empty Blazor templates appear alongside the exist-
ing Blazor templates in the Visual Studio new project dialog
(see Figure 2).

Handle Location Changing Events
Blazor in .NET 7 now has support for handling location
changing events. This allows you to warn users about un-
saved work or to perform related actions when the user per-
forms a page navigation.

To handle location changing events, register a handler with
the NavigationManager service using the RegisterLocation-
ChangingHandler method. Your handler can then perform
async work on a navigation or choose to cancel the navi-
gation by calling PreventNavigation on the LocationChang-
ingContext. RegisterLocationChangingHandler returns an

Figure 2: Start your next Blazor app with a blank canvas using the new empty Blazor project templates.

www.codemag.com 73codemag.com Blazor for the Web and Beyond in .NET 7

tions too, you can use the ConfirmExternalNavigations proper-
ty, which will hook the beforeunload event for you and trigger
the browser-specific prompt. The NavigationLock component
makes it simple to confirm user navigations when there’s un-
saved data. Listing 1 shows using NavigationLock with a form
that the user may have modified but not submitted.

Dynamic Authentication Requests
Blazor provides out-of-the-box support for authentication us-
ing OpenID Connect and a variety of identity providers including
Azure Active Directory (Azure AD) and Azure AD B2C. In .NET 7,
Blazor now supports creating dynamic authentication requests
at runtime with custom parameters to handle more advanced
authentication scenarios in Blazor WebAssembly apps.

To specify additional parameters, use the new Interacti-
veRequestOptions type and helper methods on Navigation-
Manager. For example, you can specify a log-in hint to the
identity provider to indicate who to authenticate, like this:

InteractiveRequestOptions requestOptions = new()
 {
 Interaction = InteractionType.SignIn,
 ReturnUrl = NavigationManager.Uri,
 };
requestOptions.TryAddAdditionalParameter(
 "login_hint", "user@example.com");
NavigationManager.NavigateToLogin(
 "authentication/login", requestOptions);

Similarly, you can specify the OpenID Connect prompt pa-
rameter, like when you want to force an interactive login:

requestOptions.TryAddAdditionalParameter(
 "prompt", "login");

You can specify these options when using IAccessTokenPro-
vider directly to request tokens:

var result = await AccessTokenProvider
 .RequestAccessToken(
 new() { Scopes = new[] { "edit" } });

if (!result.TryGetToken(out var token))
{
 result.InteractionOptions
 .TryAddAdditionalParameter(
 "login_hint", "user@example.com");
 NavigationManager.NavigateToLogin(
 result.InteractiveRequestUrl,
 result.InteractionOptions);
}

You can also specify authentication request options when
making HTTP requests and the token cannot be acquired by
the AuthorizationMessageHandler without user interaction:

try
{
 await Http.GetAsync("/orders");
}
catch (AccessTokenNotAvailableException ex)
{
 ex.Redirect(requestOptions =>
 {

 requestOptions.TryAddAdditionalParameter(
 "login_hint", "user@example.com");
 });
}

Any additional parameters specified for the authentication
request will be passed through to the underlying authenti-
cation library and on to the identity provider.

Hot Reload Improvements
.NET 6 introduced hot reload support, which is the ability to ap-
ply code changes to your running app during development with-
out having to restart it. Both Blazor Server and Blazor WebAs-
sembly apps support hot reloading changes, although hot reload
for Blazor WebAssembly apps was significantly more limited.

.NET 7 improves hot reload support for Blazor WebAssembly
apps by adding the following capabilities:

•	 Add new types
•	 Add nested classes
•	 Add static and instance methods to existing types
•	 Add static fields and methods to existing types
•	 Add static lambdas to existing methods
•	 Add lambdas that capture this to existing methods

that already captured this previously

Work is ongoing to improve hot reload across all of .NET, so ex-
pect more hot reload improvements to come in future releases.

Blazor WebAssembly Debugging
Improvements
Debugging Blazor WebAssembly apps presents unique chal-
lenges because the app runs within a web browser. To debug
your Blazor WebAssembly code, Visual Studio connects to
the browser via a .NET debugging proxy using the browser’s
JavaScript debugging protocol.

<EditForm EditContext="editContext" OnValidSubmit="Submit">
 ...
</EditForm>
<NavigationLock OnBeforeInternalNavigation="ConfirmNavigation"
ConfirmExternalNavigation />

@code {
 private readonly EditContext editContext;
 ...

 // Called only for internal navigations.
 // External navigations will trigger a browser specific
 // prompt.
 async Task ConfirmNavigation(LocationChangingContext context)
 {
 if (editContext.IsModified())
 {
 var isConfirmed = await JS.InvokeAsync<bool>(
 "window.confirm",
 "Are you sure you want to leave this page?");

 if (!isConfirmed)
 {
 context.PreventNavigation();
 }
 }
 }
}

Listing 1: Use the NavigationLock component to confirm user navigations when there is
unsaved form data.

melan
Highlight
Bad break. Break after "Inter"

www.codemag.com74 codemag.com

Running .NET on
WebAssembly isn’t
just for Blazor

Blazor WebAssembly apps
can run in modern web
browsers thanks to a .NET
runtime implemented in
WebAssembly. This runtime
can be used for more than
just Blazor apps.
The new JavaScript interop
support in .NET 7 makes it
straightforward for JavaScript
apps to call into existing
.NET libraries without any
dependency on the Blazor
component model.
The .NET WebAssembly
runtime also enables other
alternative UI frameworks
based on .NET to run in web
browsers, like Uno, OpenSilver,
and Ooui.

dotnet workload install wasm-experimental

This workload contains two project templates: WebAssembly
Browser App, and WebAssembly Console App (see Figure 3).

These templates are experimental, which means the devel-
oper workflow for them hasn't been fully sorted out yet. But
the .NET and JavaScript APIs used in these templates are
supported in .NET 7 and provide a foundation for using .NET
on WebAssembly from JavaScript.

The WebAssembly Browser App template creates a simple
web app that demonstrates using .NET directly from JavaS-
cript in a browser. The WebAssembly Console App is similar,
but runs as a Node.js console app instead of a browser-
based web app.

The root HTML file in both templates imports a JavaScript
module (main.js or main.mjs) that imports the relevant APIs
from dotnet.js for working with .NET from JavaScript using
WebAssembly.

import { dotnet } from './dotnet.js'

const {
 setModuleImports,
 getAssemblyExports,
 getConfig,
 runMainAndExit
} = await dotnet.create();

These APIs enable you to set up named modules that can be
imported into your C# code.

setModuleImports('main.js', {
 window: {
 location: {
 href: () =>
 globalThis.window.location.href
 }

Blazor WebAssembly debugging in .NET 7 now has the fol-
lowing improvements:

•	 Support for the Just My Code setting to show or hide
type members not from user code

•	 Support for inspecting multidimensional arrays
•	 The Call Stack window now shows the correct name for

async methods
•	 Improved expression evaluation
•	 Correct handling of the “new” keyword on derived

members
•	 Support for debugger-related attributes in System.

Diagnostics

Expanded Crypto Support
.NET 7 includes expanded support for cryptographic algo-
rithms when running on WebAssembly. The following algo-
rithms are now also supported:

•	 SHA1, SHA256, SHA384, SHA512
•	 HMACSHA1, HMACSHA256, HMACSHA384, HMAC-

SHA512
•	 Rfc2898DeriveBytes (PBKDF2)
•	 HKDF

Improved JavaScript Interop
on WebAssembly
.NET 7 introduces a new low-level mechanism for using .NET
in JavaScript-based apps. With this new JavaScript interop
capability, you can invoke .NET code from JavaScript using
the .NET WebAssembly runtime as well as call into JavaS-
cript functionality from .NET without any dependency on the
Blazor UI component model.

The easiest way to see the new JavaScript interop func-
tionality in action is using the new experimental templates
in the wasm-experimental workload. You can install the
wasm-experimental workload using the following command:

Figure 3: The experimental WebAssembly Browser App and WebAssembly Console App templates show how to execute .NET
on WebAssembly from JavaScript.

Blazor for the Web and Beyond in .NET 7

melan
Highlight
Bad break. Break after "Java"

melan
Highlight
Bad break. Break after "Java"

www.codemag.com 75codemag.com

ONLINE QUICK ID 00

 v

CODE Focus Nov 2022
Volume 23 Issue 6

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Editorial Contributors
Otto Dobretsberger
Jim Duffy
Jeff Etter
Mike Yeager

Writers In This Issue
Jon Douglas	 Julie Lerman
Jeremy Likness	 David Ortinau
Angelos Petropoulos	 Daniel Roth
Mike Rousos	 Sam Spencer
Stephen Toub	 Bill Wagner
Shawn Wildermuth

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand:	The NEWS Group (TNG)
	 Media Solutions
	 The Mail Group

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $50.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379
Phone:	 832-717-4445
Fax:	 832-717-4460

CODE COMPILERS

 }
});

To import a JavaScript function so it can be called
from C#, use the new JSImportAttribute on a
matching method signature:

[JSImport("window.location.href", "main.js")]
internal static partial string GetHRef();

The first parameter to the JSImportAttribute is
the name of the JavaScript function to import
and the second parameter is the name of the
module, both of which were set up by the set-
ModuleImports call.

In the imported method signature, you can
use .NET types for parameters and return val-
ues, which will be marshaled for you. Use
JSMarshalAsAttribute<T> to control how the im-
ported method parameters are marshaled. For
example, you might choose to marshal a long as
JSType.Number or JSType.BitInt. You can pass Ac-
tion/Func callbacks as parameters, which will be
marshaled as callable JavaScript functions. You
can pass both JavaScript and managed object ref-
erences and they will be marshaled as proxy ob-
jects, keeping the object alive across the boundary
until the proxy is garbage collected. You can also
import and export asynchronous methods that
return a Task, which will be marshaled as JavaS-
cript promises. Most of the marshaled types work
in both directions, as parameters and as return
values, on both imported and exported methods.

To export a .NET method so it can be called from
JavaScript, use the JSExportAttribute:

[JSExport]
internal static string Greeting()
{
 var text = $"Hello from {GetHRef()}";
 Console.WriteLine(text);
 return text;
}

You can then get the exported methods in JavaS-
cript and invoke them.

const config = getConfig();
const exports = await getAssemblyExports(
 config.mainAssemblyName);
const text = exports.MyClass.Greeting();

You can also invoke the main entry point in a .NET
app.

await runMainAndExit(
 config.mainAssemblyName,
 ['dotnet', 'is', 'great!']);

Blazor provides its own JavaScript interop mech-
anism based on the IJSRuntime interface, which
is uniformly supported across all Blazor hosting

models. This common asynchronous abstrac-
tion enables library authors to build JavaScript
interop libraries that can be shared across the
Blazor ecosystem and is still the recommend way
to do JavaScript interop in Blazor.

In Blazor WebAssembly apps, you also had the op-
tion to make synchronous JavaScript interop calls
using the IJSInProcessRuntime or even unmar-
shalled calls using the IJSUnmarshalledRuntime.
IJSUnmarshalledRuntime was tricky to use and
only partially supported. In .NET 7, IJSUnmar-
shalledRuntime is now obsolete and should be
replaced with the [JSImport]/[JSExport] mecha-
nism. Blazor doesn't directly expose the dotnet
runtime instance it uses from JavaScript, but it can
still be accessed by calling getDotnetRuntime(0).
You can also import JavaScript modules from your
C# code by calling JSHost.ImportAsync, which
makes the module's exports visible to [JSImport].

Blazor Hybrid
Blazor isn’t just for web apps! Blazor components
can also be hosted in native client apps using the
Blazor Hybrid hosting model. In a Blazor Hybrid app,
your components run directly on the device, not
from within a browser. WebAssembly isn’t used and
there’s no need for a web server. The Blazor com-
ponents render to an embedded web view control
using a local interop channel. Blazor Hybrid apps
run fast and have full access to the native device’s
capabilities through normal .NET APIs. You can re-
use existing Blazor web UI components with Blazor
Hybrid apps and share them with both your web and
native client apps. With Blazor Hybrid you can build
a single shared UI for mobile, desktop, and web.

Blazor Hybrid support is included with .NET MAUI
in .NET 7. By hosting your Blazor components in a
.NET MAUI app, you can build native mobile and
desktop apps using your existing web development
skills. .NET MAUI provides access to many native
device capabilities through a common cross-plat-
form API, including the ability to reuse native UI
controls alongside your Blazor components. To
create a new Blazor Hybrid app with .NET MAUI,
simply use the included .NET MAUI Blazor App proj-
ect template. Blazor Hybrid support is also avail-
able for WPF and Windows Forms apps on NuGet.

Blazor Just Keeps Getting
Better!
Blazor has come a long way from its humble be-
ginnings. Blazor today can be used to build a
web-based UI for nearly any kind of app. With
the addition of the many improvements to Blazor
.NET 7, Blazor continues to provide itself as a
mature and modern client web UI framework. We
hope you enjoy working with Blazor in .NET 7 and
we look forward to seeing what you build with
these new capabilities!

� Daniel Roth
�

Blazor for the Web and Beyond in .NET 7

MS It’s
how you
make
software

