
MAR
APR
2025

Text, Text, Text, Text, Text, Text, Text
co

de
m

ag
.c

om
 -

TH
E

LE
A

D
IN

G
 IN

D
EP

EN
D

EN
T

D
EV

EL
O

PE
R

M
AG

A
ZI

N
E

- U
S

 $
 8

.9
5

 C
an

 $
 1

1.
95

Co
ve

r A
I g

en
er

at
ed

 -
M

ar
ku

s
Eg

ge
r

SubtitleSubtitle Subtitle

Title

ARE YOU WONDERING
HOW ARTIFICIAL
INTELLIGENCE CAN
BENEFIT YOU TODAY?©

sh
ut

te
rs

to
ck

EXECUTIVE BRIEFINGS
Are you wondering how AI can help your business? Do you worry about privacy or regulatory issues stopping
you from using AI to its fullest? We have the answers! Our Executive Briefings provide guidance and
concrete advise that help decision makers move forward in this rapidly changing Age of Artificial Intelligence
and Copilots!

We will send an expert to your office to meet with you. You will receive:

1. An overview presentation of the current state of Artificial Intelligence.

2. How to use AI in your business while ensuring privacy of your and your clients’ information.

3. A sample application built on your own HR documents – allowing your employees to query
those documents in English and cutting down the number of questions that you
and your HR group have to answer.

4. A roadmap for future use of AI catered to what you do.

AI-SEARCHABLE KNOWLEDGEBASE AND DOCUMENTS
A great first step into the world of Generative Artificial Intelligence, Large Language Models (LLMs),
and GPT is to create an AI that provides your staff or clients access to your institutional knowledge,
documentation, and data through an AI-searchable knowledgebase. We can help you implement a first
system in a matter of days in a fashion that is secure and individualized to each user. Your data remains
yours! Answers provided by the AI are grounded in your own information and is thus correct and applicable.

COPILOTS FOR YOUR OWN APPS
Applications without Copilots are now legacy!

But fear not! We can help you build Copilot features into your applications in a secure and integrated
fashion.

CONTACT US TODAY FOR A FREE CONSULTATION AND DETAILS ABOUT OUR SERVICES.

codemag.com/ai-services
832-717-4445 ext. 9 • info@codemag.com

4 codemag.com

TABLE OF CONTENTS

4 Table of Contents

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay
$50.99 USD. Payments should be made in US dollars drawn on a US bank. American
Express, MasterCard, Visa, and Discover credit cards are accepted. Back issues are
available. For subscription information, send e-mail to subscriptions@codemag.com
or contact Customer Service at 832-717-4445 ext. 9.

Subscribe online at www.codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly
by EPS Software Corporation, 6605 Cypresswood Drive, Suite 425, Spring, TX
77379 U.S.A. POSTMASTER: Send address changes to CODE Component Developer
Magazine, 6605 Cypresswood Drive, Suite 425, Spring, TX 77379 U.S.A.

Features
8 Exploring .NET MAUI: Working with

Lists of Data
In this fifth entry in his series on MAUI, Paul teaches you how to
navigate from list items to detail pages using ListView, CollectionView,
and CarouselView controls.
Paul Sheriff

24 Offline AI Image Generation
If you’ve been fascinated by those AI-generated images (that
sometimes get things wrong), you’ll want to learn how Sahil uses text
and image input to come up with interesting results.
Sahil Malik

34 Building Modern Web Applications
Using Blazor ASP.NET Core
Blazor has been used to create interactive web apps since .NET 5 came
out. Joydip shows you how flexible it is using C# and .NET to build a
web app.
Joydip Kanjilal

52 Boost your iOS App Development
with ChatGPT AI-Assistance
You’ve probably been playing with ChatGPT, trying to stump it or see
how accurate it can be. Kevin challenges it to help develop an app.
You’ll want to see what happens!
Kevin J. McNeish

62 Managing Diverse Data Types in a
Dataset with COLUMNTRANSFER
Follow along as Gaurav explores datasets with multiple feature types for
machine learning.
Gaurav Mittal

Departments
6 Editorial

33 Advertisers Index

74 Code Compilers

codemag.comEditorial

EDITORIAL

6

 Rod Paddock

7Title articlecodemag.com

Do you worry about privacy or regulatory issues stopping you from using AI to its fullest?

We have the answers!

We will send an expert to your office to meet with you. You will receive:

1. An overview presentation of the current state of Artificial Intelligence.

2. How to use AI in your business while ensuring privacy of your and your clients’ information.

3. A sample application built on your own HR documents – allowing your employees to query
those documents in English and cutting down the number of questions that you
and your HR group have to answer.

4. A roadmap for future use of AI catered to what you do.

CONTACT US TODAY FOR A FREE CONSULTATION AND DETAILS ABOUT OUR SERVICES.

codemag.com/executivebriefing
832-717-4445 ext. 9 • info@codemag.com©

sh
ut

te
rs

to
ck

ARE YOU
WONDERING
HOW ARTIFICIAL
INTELLIGENCE
CAN HELP YOUR
BUSINESS?

8 codemag.comExploring .NET MAUI: Working with Lists of Data

ONLINE QUICK ID 2503021

Exploring .NET MAUI:
Working with Lists of Data
In this article series, you’ve created several .NET MAUI pages, created a top-level menu system, and programmatically navigated
between pages. Using data binding greatly reduces the amount of code you need to write. Using the MVVM and DI design
patterns helps you create applications that are reusable, maintainable, and testable. In this article, you’ll display lists of data and

navigate from a list item to the detail page for that item.
NET MAUI provides ListView, CollectionView, and Carou-
selView controls for displaying lists. Each list control is
illustrated, and you’re provided with guidance on what
each control is best at displaying.

Display a List of Users Using a ListView
Now that you’ve learned about the standard controls for in-
put, let's turn your attention to working with lists of data.
You’ve already seen the Picker control for displaying a small
set of data. Other list controls are ListView, CollectionView,
and CarouselView. The ListView control displays a scrolling
vertical list of items. You define what each item looks like
by creating a DataTemplate within which you use a Cell. A
DataTemplate is a set of Cells used to display each record
within your collection. As the list control iterates over your
data collection, each record is displayed according to the
control layout within the DataTemplate.

There are three Cell types used most often in a DataTem-
plate to define how the list of data looks. A TextCell dis-
plays two pieces of information on each row of the List-
View: a piece of large text is set using the Text property,
then, on the next line, a piece of smaller text is set using
the Detail property. An ImageCell adds an ImageSource
property while still using the Text and Detail properties
to display large and small text next to the image. Finally,
ViewCell allows complete flexibility to define the look
for each element displayed in the list. I prefer to use
ViewCell as it provides the most flexibility.

Modify the User View Model to Get a List of Users
When using .NET MAUI or WPF, always use the
ObservableCollection<T> class for all your lists, as op-
posed to a List<T>. The ObservableCollection<T> object
raises the appropriate notifications when the list chang-
es. If an item is added, updated, or removed from the list,
or if the whole list is recreated, any bound objects to this
collection are informed and redisplay themselves using
the new information in the collection.

Before you can display a list of users, you first need to
modify the UserViewModel class to retrieve a list of users
from the UserRepository. Open the ViewModelClasses\
UserViewModel.cs file and add a new private property to
hold a collection of users.

private ObservableCollection<User> _Users = new();

Add a new public property named Users to hold the list of
users and to give a public collection property to bind to
on the user list page.

public ObservableCollection<User> Users {
 get { return _Users; }
 set {
 _Users = value;
 RaisePropertyChanged(nameof(Users));
 }
}

Locate the GetAsync() method and modify it to use the
UserRepository class to retrieve a list of users, as shown
in Listing 1. Check to ensure that the Repository variable
is not equal to null. If it’s not null, call the GetAsync()
method on the Repository class to return the set of us-
ers and assign that collection to the Users property. Set
the RowsAffected property to the Count of the users.
Also set the InfoMessage property to inform the user how
many rows of users were found. Later, you’ll add a label to
display this informational message.

Using the TextCell
Let's modify the user list page to display a list of users
using a ListView control and a TextCell. Open the Views\
UserListView.xaml file and add a few XML namespaces to
the partial views' namespace, the view model namespace,
and the entity layer namespace.

xmlns:partial="clr-namespace:
 AdventureWorks.MAUI.ViewsPartial"
xmlns:vm="clr-namespace:
 AdventureWorks.MAUI.MauiViewModelClasses"
xmlns:model="clr-namespace:
 AdventureWorks.EntityLayer;
 assembly=AdventureWorks.EntityLayer"

Remove the entire <VerticalStackLayout> element and re-
place it with the code shown in Listing 2. In the ListView
control, set the SeparatorColor and SeparatorVisibility
properties to provide separation between each item on
the Android and iOS platforms. Set the ItemsSource prop-
erty of the ListView to the Users collection property of
the view model. Create a <ListView.ItemTemplate> ele-
ment that encloses the <DataTemplate> element. Add the
x:DataType attribute on the DataTemplate starting tag to
inform the Cell what type of object is expected for each
row of the collection. Within the DataTemplate, add a
<TextCell> element with the Text and Detail properties
set to bind to the appropriate properties in the User class.

Open the Views\UserListView.xaml.cs file and replace
the entire contents of the file with the code shown in
Listing 3. The constructor for this class needs to have the
UserViewModel injected. Assign the instance of the view
model class passed into the private _ViewModel variable.

Paul D. Sheriff
http://www.pdsa.com

Paul has been working
in the IT industry since
1985. In that time,
he has successfully
assisted hundreds of
companies’ architect
software applications
to solve their toughest
business problems. Paul
has been a teacher and
mentor through various
mediums such as video
courses, blogs, articles and
speaking engagements
at user groups and
conferences around the
world. Paul has multiple
courses in the www.
pluralsight.com library
(https://bit.ly/3gvXgvj)
and on YouTube.com
(https://www.youtube.
com/@pauldsheriff) on
topics ranging from C#,
LINQ, JavaScript, Angular,
MVC, WPF, XML, jQuery,
and Bootstrap. Contact
Paul at psheriff@pdsa.com.

9codemag.com Exploring .NET MAUI: Working with Lists of Data

In the OnAppearing() method set the BindingContext
property of the ContentPage to the _ViewModel variable.
Finally, call the GetAsync() method on the UserViewModel
class to populate the Users property so the ListView con-
trol can bind to the list of users.

Open the ExtensionClasses\ServiceExtensions.cs file
and add the UserListView page as a new service to the DI
container. This page needs to participate in DI to have
the UserViewModel injected into its constructor. Add the
following line of code to the AddViewClasses() method.

services.AddScoped<UserListView>();

Try It Out
Run the application on Windows and click on the Us-
ers menu to see the list of users, as shown in Figure
1. Notice that there’s no separator displayed on a Win-
dows computer. For whatever reason, Microsoft chose not
to respect the SeparatorColor and SeparatorVisibility
properties on a Windows computer. Thus, the TextCell is
not how I would choose to display data on a ListView.
Instead, you should use a ViewCell as that allows you to
keep the interface consistent between all platforms.

Run the application on the Android emulator and you should
see that there’s a separator displayed, as shown in Figure 2.
On both Android and iOS platforms, both the SeparatorColor
and SeparatorVisibility properties are respected.

#region GetAsync Method
public async
 Task<ObservableCollection<User>> GetAsync() {
 RowsAffected = 0;

 try {
 if (_Repository == null) {
 LastErrorMessage = REPO_NOT_SET;
 }
 else {
 Users = await _Repository.GetAsync();
 RowsAffected = Users.Count;
 InfoMessage =
 $"Found {RowsAffected} Users";
 }
 }
 catch (Exception ex) {
 PublishException(ex);
 }

 return Users;
}
#endregion

Listing 1: Retrieve a list of users from the UserRepository class and set the Users
property in the view model.

using AdventureWorks.MAUI.MauiViewModelClasses;

namespace AdventureWorks.MAUI.Views;

public partial class UserListView
 : ContentPage {
 public UserListView(UserViewModel viewModel) {
 InitializeComponent();

 _ViewModel = viewModel;
 }

 private readonly UserViewModel _ViewModel;

 protected async override void OnAppearing() {
 base.OnAppearing();

 BindingContext = _ViewModel;

 await _ViewModel.GetAsync();
 }
}

Listing 3: Call the GetAsync() method on the _ViewModel variable to retrieve the list
of users to display on this page.

<Border Style="{StaticResource Border.Page}">
 <Grid Style="{StaticResource Grid.Page}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <partial:HeaderView
 ViewTitle="User List"
 ViewDescription="The list of users
 in the system." />

 <ListView Grid.Row="1"
 SeparatorColor="Black"
 SeparatorVisibility="Default"
 ItemsSource="{Binding Users}">
 <ListView.ItemTemplate>
 <DataTemplate x:DataType="model:User">
 <TextCell Text="{Binding FullName}"
 Detail="{Binding Email}" />
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </Grid>
</Border>

Listing 2: Create a ListView with a TextCell to display all users in a list.

Figure 1: A ListView control using a TextCell for
displaying user information on Windows

Figure 2: A ListView control using a TextCell for
displaying user information on Android

10 codemag.com

<Style TargetType="BoxView"
 x:Key="Grid.Item.Separator">
 <Setter Property="VerticalOptions"
 Value="Fill" />
 <Setter Property="BackgroundColor"
 Value="Black" />
 <Setter Property="HeightRequest"
 Value="2" />
 <Setter Property="Margin"
 Value="0,0,0,10" />
 </Style>

When you use a ViewCell template, add the
HasUnevenRows="True" to the ListView control or the
list won’t render correctly on mobile devices. Remove the
SeparatorColor and SeparatorVisibility properties and
add the HasUnevenRows="True" attribute to the List-
View control, as shown in the following code:

<ListView Grid.Row="1"
 HasUnevenRows="True"
 ItemsSource="{Binding Users}">

Try It Out
Run the application and click on the Users menu to see
the new user template as was shown in Figure 3. If you
run the application on the Android emulator or on iOS,
it should look the same as on Windows. This is the main
reason I like to use ViewCell: The results on each platform
almost always look the same.

Display User Detail View from List View
Because you removed the button that read Navigation to De-
tail from the user list page, you removed the ability to navigate
to the user detail page. Let's now add that capability back in
by clicking on the edit button on one of the users in the list.

Add Command for Editing
Open the MauiViewModelClasses\UserViewModel.cs file
and add a new method to navigate to the user detail
page. As mentioned previously, .NET MAUI uses a URI-
based navigation system. As such, you pass parameters
between pages by using a key/value pair as you would for
a web application. The first key/value pair is separated
from the name of the page to navigate to by a question
mark, whereas succeeding key/value pairs are separated
using an ampersand. If you type in the following code, be
sure there are no spaces within the interpolated string.

#region EditAsync Method
protected async Task EditAsync(int id) {
 await Shell.Current.GoToAsync(
 $"{nameof(Views.UserDetailView)}?id={id}");
}
#endregion

Define an EditCommand property of the type ICommand
to which you can map the Command property on the Edit
button, as shown in the following code snippet.

public ICommand? EditCommand { get; private set; }

Create an instance of this new command property in the
Init() method and set it to call the EditAsync() method
you just created.

Using the ViewCell
Open the Views\UserListView.xaml file and replace the
<TextCell> element with the XAML shown in Listing 4.
When you use a ViewCell control, you have complete flex-
ibility to use any layout you want for each row in your
collection. In this ViewCell, create a VerticalStackLayout
element with a spacing of five device-independent pixels
between each child element. Four HorizontalStackLayout
elements are created with Label controls in each to de-
fine where the various properties of each User object are
to be displayed (see Figure 3). The last element within
the VerticalStackLayout is a BoxView control with a keyed
style attached to it.

Open the Resources\Styles\CommonStyles.xaml file lo-
cated in the Common.Library.MAUI file and add the new
keyed style for the BoxView control. This style is used to
separate each user in the ListView control, as shown in
the following XAML:

<ViewCell>
 <VerticalStackLayout Spacing="5">
 <HorizontalStackLayout>
 <Label FontAttributes="Bold"
 FontSize="Title"
 Text="{Binding LastNameFirstName}" />
 </HorizontalStackLayout>
 <HorizontalStackLayout>
 <Label FontAttributes="Bold"
 Text="Email" />
 <Label Text="{Binding Email}" />
 </HorizontalStackLayout>
 <HorizontalStackLayout>
 <Label FontAttributes="Bold"
 Text="Phone" />
 <Label Text="{Binding Phone}" />
 </HorizontalStackLayout>
 <HorizontalStackLayout>
 <ImageButton Source="edit.png"
 ToolTipProperties.Text="Edit User" />
 <ImageButton Source="trash.png"
 ToolTipProperties.Text="Delete User" />
 </HorizontalStackLayout>
 <BoxView Style="{StaticResource
 Grid.Item.Separator}" />
 </VerticalStackLayout>
</ViewCell>

Listing 4: Use a ViewCell to provide the most consistent UI between all platforms.

Figure 3: Create your own custom template using ViewCell.

Exploring .NET MAUI: Working with Lists of Data

11codemag.com

EditCommand = new Command<int>(
 async (int id) => await EditAsync(id));

The edit button is contained within the DataTemplate in
the ListView control. As such, the x:DataType is mapped
to the User object and not the user view model class.
Because the EditCommand property you just created is in
the view model, you need a reference back to that view
model. Open the Views\UserListView.xaml file and add
an x:Name attribute to the ContentPage.

x:Name="UserListPage"

Now that you’ve defined a name that refers to the Con-
tentPage, and that page has its x:DataType equal to the
UserViewModel object, this allows you to reference that
view model by adding a Source={x:Reference UserList-
Page} within the Binding markup extension. Locate the
ImageButton control for editing and make it look like the
following XAML.

<ImageButton Source="edit.png"
 ToolTipProperties.Text="Edit User"
 CommandParameter="{Binding UserId}"
 Command="{Binding
 Source={x:Reference UserListPage},
 Path=BindingContext.EditCommand}" />

Receive User ID in Detail Page
The UserId is passed to the user detail page as the key
ID in your navigation URI. You need some way to retrieve
that ID key and assign the value to a property in the
UserDetailView class. Open the Views\UserDetailView.
xaml.cs file and first add a public property named UserId.

public int UserId { get; set; }

Next, add a [QueryProperty] attribute above the public
partial class UserDetailView definition, as shown in the
code snippet below. The QueryProperty attribute reads
the value passed as part of the key pair "id=2", for exam-
ple. It maps that value to the property name specified as
the first parameter to the QueryProperty attribute. In this
case, it maps it to the UserId property you just created.

[QueryProperty(nameof(UserId), "id")]
public partial class UserDetailView
 : ContentPage {
 // REST OF THE CODE HERE
}

Locate the OnAppearing() event procedure and where you
call the method GetAsync(1) with the hard-coded value
one, use the UserId property, as shown in the code below.

// Retrieve a User
await _ViewModel.GetAsync(UserId);

Try It Out
Run the application and click on the User menu. Click
on the edit button for the first users and the detail for
the first user is displayed on the detail page (Figure 4).
Notice that a back arrow is displayed in the upper left
corner of the window shell. If you click on this, you’re
returned to the user list page. If you click on each user

Instantly Search
Terabytes

The Smart Choice for Text Retrieval® since 1991

dtSearch.com | 1-800-IT-FINDS

Enterprise and developer products have:
• over 25 different search features
• credit card search and other

forensics-oriented options
•	 efficient	multithreaded	indexing	
and	searching

dtSearch’s document filters support:
•	 local	and	remote	“Office”	files,	
PDFs,	compression	formats,	etc.

•	 emails	with	multilevel	attachments
•	 a	wide	variety	of	databases
•	 web	data

Developers:
•	 SDKs	for	Win	/	Linux	/	macOS
• APIs for current •NET / C++ / Java
•	 faceted	search,	granular	data	
classification	and	other	API	options

•	 deploy	on-premises	or	in	cloud

Visit dtSearch.com
• for hundreds of reviews and

case studies
• for fully-functional enterprise

and developer evaluations

Exploring .NET MAUI: Working with Lists of Data

12 codemag.com

Getting the Sample Code

You can download the sample
code for this article by visiting
www.CODEMag.com under
the issue and article, or by
visiting www.pdsa.com/
downloads. Select “Articles”
from the Category drop-
down. Then select “Exploring
.NET MAUI: Working with Lists
of Data” from the Item drop-
down.

UserViewModel.cs file and remove the System.Diagnos-
tics.Debugger.Break(); line of code from the SaveAsync()
method so you can see this code navigate back to the list
page after clicking on the Save button.

Try It Out
Run the application and click on the User menu. Click on
the edit button for a user to see the user detail page ap-
pear. Click on the Save button and you’re redirected back
to the user list page. There’s no code to save any changes
yet, but this will come in a later article.

Cancel Changes and Return to User List View
Besides the Save button, there is also a Cancel button on
the user detail page. For the Cancel button, you want to
just have it redirect back to the user list page without
saving any changes made on the page. Open the MauiV-
iewModelClasses\UserViewModel.cs file and add a Can-
celAsync() method. This method simply navigates back
to the user list view using the GoToAsync() method.

#region CancelAsync Method
public async Task CancelAsync() {
 await Shell.Current.GoToAsync("..");
}
#endregion

As you’ve done previously, add a CancelCommand prop-
erty to which you can map the Command property to the
Cancel button.

public ICommand? CancelCommand
 { get; private set; }

Create an instance of this new command property in the
Init() method and set it to call the CancelAsync() method
you just created.

CancelCommand = new Command(
 async () => await CancelAsync());

Open the Views\UserDetailView.xaml file, locate the
Cancel button and add a Command attribute that’s bound
to the CancelCommand property.

<Button Text="Cancel"
 ImageSource="cancel.png"
 ContentLayout="Left"
 ToolTipProperties.Text="Cancel Changes"
 Command="{Binding CancelCommand}" />

Try It Out
Run the application and click on the User menu. Click on
the Edit button for a user to see the detail page appear.
Click on the Cancel button and you’re redirected back to
the user list page.

Display a List of Products Using
a CollectionView
You’ve seen the ListView control. Let's now build the prod-
uct list page and product detail page using a Collection-
View control. The CollectionView control is like the List-
View in that it’s used to present a vertical list of data to the
user. The CollectionView control doesn’t have any Cell con-
trols. Instead, you create the DataTemplate in any format

in the list, you’re directed to the detail page and the
UserId value for each user is passed to the detail page.
The code behind on the detail page runs and the UserId
value is passed to the GetAsync(id) method, which in turn
fills the CurrentEntity property on the view model. Each
control on the detail page is bound to a property on the
CurrentEntity property, thus the data for the current user
is displayed on the detail page.

Save User and Return to User List View
When the user clicks on the Save button on the detail page,
a few different things may happen. The data is saved, and
they are returned to the list page to see their changes ap-
pear in the list. If there are one or more validation errors
that occur due to bad input, a list of values to update is
displayed. Another scenario is that an exception happens
and an error message is displayed. You have not written
code to save the data to a data store yet, but let's at least
take the happy path and assume the data is saved, and
you want to return the user to the list page. Open the
MauiViewModelClasses\UserViewModel.cs file and add a
SaveAsync() method, as shown in the following code:

#region SaveAsync Method
public override async Task<User?> SaveAsync() {
 User? ret = await base.SaveAsync();

 if (ret != null) {
 await Shell.Current.GoToAsync("..");
 }

 return ret;
}
#endregion

This method overrides the SaveAsync() in the UserView-
Model base class. It calls the SaveAsync() method in the
base class, which, if the user is saved successfully, a valid
User object is returned. If the User object is valid, then
use the GoToAsync() method to navigate back to the list
page. The two dots in the double quotes tell the .NET
MAUI navigation system to go back one level, or to the
page that called this one. Open the ViewModelClasses\

Figure 4: After navigating to the detail page, a back arrow
is displayed to allow you to go back to the list page.

Exploring .NET MAUI: Working with Lists of Data

13codemag.com

pository class to return a list of product data, as well as a
single product. Create a product view model class to sup-
port displaying a list of products and selecting a single
product, just like you did with the user view model class.

Create a Product Entity Class
Right mouse-click on the EntityClasses in the Adven-
tureWorks.EntityLayer project and add a new class
named Product. Replace the entire contents of this new
file with the code shown in Listing 5. This class is de-

you wish. This provides the same flexibility as using the
ViewCell you used on the ListView control. With the Collec-
tionView control, you may select single or multiple items.
The CollectionView control also uses virtualization, thus
making it potentially more performant than the ListView.

To illustrate the CollectionView control, let's start build-
ing the product classes to display a list of products and
display a single product object. Create a product entity
class to represent each field of a product. Create a Re-

using Common.Library;

namespace AdventureWorks.EntityLayer;

public partial class Product : EntityBase {
 #region Private Variables
 private int _ProductID;
 private string _Name = string.Empty;
 private string _ProductNumber
 = string.Empty;
 private string _Color = string.Empty;
 private decimal _StandardCost = 1;
 private decimal _ListPrice = 2;
 private string? _Size = string.Empty;
 private decimal? _Weight;
 private int? _ProductCategoryID;
 private int? _ProductModelID;
 private DateTime _SellStartDate;
 private DateTime? _SellEndDate;
 private DateTime? _DiscontinuedDate;
 private DateTime _ModifiedDate;
 #endregion

 #region Public Properties
 public int ProductID {
 get { return _ProductID; }
 set {
 _ProductID = value;
 RaisePropertyChanged(nameof(ProductID));
 }
 }

 public string Name {
 get { return _Name; }
 set {
 _Name = value;
 RaisePropertyChanged(nameof(Name));
 }
 }

 public string ProductNumber {
 get { return _ProductNumber; }
 set {
 _ProductNumber = value;
 RaisePropertyChanged(nameof(ProductNumber));
 }
 }

 public string Color {
 get { return _Color; }
 set {
 _Color = value;
 RaisePropertyChanged(nameof(Color));
 }
 }

 public decimal StandardCost {
 get { return _StandardCost; }
 set {
 _StandardCost = value;
 RaisePropertyChanged(nameof(StandardCost));
 }
 }

 public decimal ListPrice {
 get { return _ListPrice; }
 set {
 _ListPrice = value;
 RaisePropertyChanged(nameof(ListPrice));

 }
 }

 public string? Size {
 get { return _Size; }
 set {
 _Size = value;
 RaisePropertyChanged(nameof(Size));
 }
 }

 public decimal? Weight {
 get { return _Weight; }
 set {
 _Weight = value;
 RaisePropertyChanged(nameof(Weight));
 }
 }

 public int? ProductCategoryID {
 get { return _ProductCategoryID; }
 set {
 _ProductCategoryID = value;
 RaisePropertyChanged(nameof(ProductCategoryID));
 }
 }

 public int? ProductModelID {
 get { return _ProductModelID; }
 set {
 _ProductModelID = value;
 RaisePropertyChanged(nameof(ProductModelID));
 }
 }

 public DateTime SellStartDate {
 get { return _SellStartDate; }
 set {
 _SellStartDate = value;
 RaisePropertyChanged(nameof(SellStartDate));
 }
 }

 public DateTime? SellEndDate {
 get { return _SellEndDate; }
 set {
 _SellEndDate = value;
 RaisePropertyChanged(nameof(SellEndDate));
 }
 }

 public DateTime? DiscontinuedDate {
 get { return _DiscontinuedDate; }
 set {
 _DiscontinuedDate = value;
 RaisePropertyChanged(nameof(DiscontinuedDate));
 }
 }

 public DateTime ModifiedDate {
 get { return _ModifiedDate; }
 set {
 _ModifiedDate = value;
 RaisePropertyChanged(nameof(ModifiedDate));
 }
 }
 #endregion
}

Listing 5: Create a Product entity class to represent a single product.

Exploring .NET MAUI: Working with Lists of Data

14 codemag.com

Create a Product View Model for Commanding
Just like you did with the UserViewModel class, create a
view model class in the .NET MAUI application to handle
commanding for calling methods in the view model. In
the AdventureWorks.MAUI project, right mouse-click on
the MauiViewModelClasses folder and create a new class
named ProductViewModel. Replace the entire contents
of this new file with the code shown in Listing 7. You’ll
add more to this class a little later.

Create a Product Repository Class
Right mouse-click on the RepositoryClasses in the Ad-
ventureWorks.DataLayer.Mock project and add a new
class named ProductRepository. Replace the entire con-
tents of this new file with the code shown in Listing 8.

signed exactly like the User class where it has private
variables mapped to public properties, and which raise
the PropertyChanged event when modified.

Create a Product View Model Class
Right mouse-click on the ViewModelClasses in the Ad-
ventureWorks.ViewModelLayer project and add a new
class named ProductViewModel. Replace the entire con-
tents of this new file with the code shown in Listing
6. This view model class uses the same design pattern
as the UserViewModel class you created earlier. It has
properties for a repository object, a list of products, and
the currently selected product. It also contains the same
three methods as in the UserViewModel class: GetAsync(),
GetAsync(id), and SaveAsync().

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;

namespace AdventureWorks.ViewModelLayer;

public class ProductViewModel : ViewModelBase {
 #region Constructors
 public ProductViewModel() : base() {
 }

 public ProductViewModel(
 IRepository<Product> repo) : base() {
 _Repository = repo;
 }
 #endregion

 #region Private Variables
 private readonly IRepository<Product>? _Repository;

 private ObservableCollection<Product> _Products = new();
 private Product? _CurrentEntity = new();
 #endregion

 #region Public Properties
 public ObservableCollection<Product> Products {
 get { return _Products; }
 set {
 _Products = value;
 RaisePropertyChanged(nameof(Products));
 }
 }

 public Product? CurrentEntity {
 get { return _CurrentEntity; }
 set {
 _CurrentEntity = value;
 RaisePropertyChanged(nameof(CurrentEntity));
 }
 }
 #endregion

 #region GetAsync Method
 public async
 Task<ObservableCollection<Product>>
 GetAsync() {
 RowsAffected = 0;

 try {
 if (_Repository == null) {
 LastErrorMessage = REPO_NOT_SET;
 }
 else {
 Products = await _Repository.GetAsync();
 RowsAffected = Products.Count;
 InfoMessage = $"Found {RowsAffected} Products";
 }
 }
 catch (Exception ex) {

 PublishException(ex);
 }

 return Products;
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<Product?>
 GetAsync(int id) {
 try {
 // Get a Product from a data store
 if (_Repository != null) {
 CurrentEntity = await _Repository.GetAsync(id);
 if (CurrentEntity == null) {
 InfoMessage = $"Product id={id} was not found.";
 }
 else {
 InfoMessage = "Found the Product";
 }
 }
 else {
 LastErrorMessage = REPO_NOT_SET;
 InfoMessage = "Found a MOCK Product";

 // MOCK Data
 CurrentEntity =
 await Task.FromResult(new Product {
 ProductID = id,
 Name = "A New Product",
 Color = "Black",
 StandardCost = 10,
 ListPrice = 20,
 SellStartDate = Convert.ToDateTime("7/1/2023"),
 Size = "LG"
 });
 }

 RowsAffected = 1;
 }
 catch (Exception ex) {
 RowsAffected = 0;
 PublishException(ex);
 }

 return CurrentEntity;
 }
 #endregion

 #region SaveAsync Method
 public async virtual Task<Product?>
 SaveAsync() {
 // TODO: Write code to save data

 return await Task.FromResult(new Product());
 }
 #endregion
}

Listing 6: Create a Product view model for data binding on the product pages.

Exploring .NET MAUI: Working with Lists of Data

15codemag.com

xmlns:model="clr-namespace:
 AdventureWorks.EntityLayer;
 assembly=AdventureWorks.EntityLayer"

The code in the ProductRepository follows the same de-
sign pattern you already learned building the UserReposi-
tory class. The GetAsync() method returns a set of four
product objects and the GetAsync(id) returns a single
product object.

Build a Product List Page
You already have a product detail page, so now you
need to create a page to display a list of products. Right
mouse-click on the Views folder and add a new Content
Page (XAML) named ProductListView. Change the Title
attribute to "Product List". Add three XML namespaces to
reference the partial views, the MAUI view models, and
the entity layer project.

xmlns:partial="clr-namespace:
 AdventureWorks.MAUI.ViewsPartial"
xmlns:vm="clr-namespace:
 AdventureWorks.MAUI.MauiViewModelClasses"

using AdventureWorks.EntityLayer;
using Common.Library;

namespace AdventureWorks.MAUI.MauiViewModelClasses;

public class ProductViewModel :
 AdventureWorks.ViewModelLayer.ProductViewModel {
 #region Constructors
 public ProductViewModel() : base() {
 }

 public ProductViewModel(
 IRepository<Product> repo) : base(repo) {
 }
 #endregion
}

Listing 7: Create a view model in the .NET MAUI application for working with product data.

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;

namespace AdventureWorks.DataLayer;

/// <summary>
/// Creates a set of Product mock data
/// </summary>
public partial class ProductRepository
 : IRepository<Product> {
 #region GetAsync Method
 public async
 Task<ObservableCollection<Product>>
 GetAsync() {
 return await Task.FromResult(
 new ObservableCollection<Product>
 {
 new() {
 ProductID = 680,
 Name = @"HL Road Frame - Black, 58",
 ProductNumber = @"FR-R92B-58",
 Color = @"Black",
 StandardCost = 100.0000m,
 ListPrice = 1431.5000m,
 Size = @"58",
 Weight = 1016.04m,
 ProductCategoryID = 18,
 ProductModelID = 6,
 SellStartDate
 = new DateTime(2002, 6, 1),
 SellEndDate = null,
 DiscontinuedDate = null,
 ModifiedDate
 = new DateTime(2008, 3, 11),
 },
 new() {
 ProductID = 707,
 Name = @"Sport-100 Helmet, Red",
 ProductNumber = @"HL-U509-R",
 Color = @"Red",
 StandardCost = 13.0863m,
 ListPrice = 34.9900m,
 Size = null,
 Weight = 3.4m,
 ProductCategoryID = 35,
 ProductModelID = 33,
 SellStartDate
 = new DateTime(2005, 7, 1),
 SellEndDate = null,
 DiscontinuedDate = null,
 ModifiedDate
 = new DateTime(2008, 3, 11),

 },
 new() {
 ProductID = 712,
 Name = @"AWC Logo Cap",
 ProductNumber = @"CA-1098",
 Color = @"Multi",
 StandardCost = 6.9223m,
 ListPrice = 8.9900m,
 Size = null,
 Weight = 0.80m,
 ProductCategoryID = 23,
 ProductModelID = 2,
 SellStartDate
 = new DateTime(2005, 7, 1),
 SellEndDate = null,
 DiscontinuedDate = null,
 ModifiedDate
 = new DateTime(2008, 3, 11),
 },
 new() {
 ProductID = 713,
 Name = @"Long-Sleeve Logo Jersey, S",
 ProductNumber = @"LJ-0192-S",
 Color = @"Multi",
 StandardCost = 38.4923m,
 ListPrice = 49.9900m,
 Size = "S",
 Weight = null,
 ProductCategoryID = 25,
 ProductModelID = 11,
 SellStartDate
 = new DateTime(2005, 7, 1),
 SellEndDate = null,
 DiscontinuedDate = null,
 ModifiedDate
 = new DateTime(2008, 3, 11),
 }
 });
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<Product?> GetAsync(int id) {
 ObservableCollection<Product> list
 = await GetAsync();
 Product? entity = list.Where(
 row => row.ProductID == id)
 .FirstOrDefault();

 return entity;
 }
 #endregion
}

Listing 8: Create a product repository class to return a set of product objects.

Exploring .NET MAUI: Working with Lists of Data

16 codemag.com

Replace the <VerticalStackLayout> with the XAML shown in
Listing 9. Instead of a ListView control, use a CollectionView
control. Specify that you only want to allow a single row to
be selected at a time by setting the SelectionMode property
to Single. Bind the ItemsSource property to the Products
collection in the ProductViewModel class. The <Collection-
View.ItemTemplate> element specifies the DataTemplate for
how to display each item in your collection. Always add the
x:DataType attribute to the DataTemplate so it knows what
kind of entity object is within each row of your collection.

Why is there an ItemTemplate element around the
DataTemplate? It’s because there is also a HeaderTem-
plate element and a FooterTemplate element that you
may add to the CollectionView. These templates may also
have a DataTemplate that describes how the header and
footer are laid out for the CollectionView. I don't gener-
ally use these templates, but you may find them handy in
some circumstances. Open the Views\ProductListView.
xaml.cs file and replace the entire contents of this file
with the code shown in Listing 10. Once again, this code
should look very familiar to you, as it’s almost identical to
the code in the User List View code behind.

Change Application Shell and DI for Products
Now that you added a product list page and modified both
the list and the product detail page to have the Product-
ViewModel injected into each page, you need to ensure that
these pages work with DI. Open the AppShell.xaml file and
change the <ShellContent> element for the Products tab to
point to the ProductListView page instead of the Product-
DetailView page, as shown in the following XAML:

<ShellContent Title="Products"
 ContentTemplate="{DataTemplate
 views:ProductListView}" />

Open the ExtensionClasses\ServiceExtensions.cs file
and, in the AddRepositoryClasses() method, add code to
inject the ProductRepository class.

services.AddScoped<IRepository<Product>,
 ProductRepository>();

In the AddViewModelClasses() method, add code to inject
the ProductViewModel.

services.AddScoped<MauiViewModelClasses
 .ProductViewModel>();

In the AddViewClasses() method, add code to inject both
the product detail and list pages.

services.AddScoped<ProductDetailView>();
services.AddScoped<ProductListView>();

Try It Out
Run the application and click on the Products menu to
see the list of products, as shown in Figure 5.

Display Product Detail from
Collection View
Let's now modify the pages so the list can navigate to
the product detail page when the edit button is clicked.
Open the Views\ProductDetailView.xaml file and add an

Add a x:DataType attribute to the <ContentPage> element
to take advantage of compiled bindings on the page.

x:DataType="vm:ProductViewModel"

<Border Style="{StaticResource Border.Page}">
 <Grid Style="{StaticResource Grid.Page}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <partial:HeaderView ViewTitle="Product List"
 ViewDescription="The list of products in
 the system." />

 <CollectionView Grid.Row="1"
 SelectionMode="Single"
 ItemsSource="{Binding Products}">
 <CollectionView.ItemTemplate>
 <DataTemplate x:DataType="model:Product">
 <VerticalStackLayout Spacing="5">
 <HorizontalStackLayout>
 <Label FontAttributes="Bold"
 FontSize="Title"
 Text="{Binding Name}" />
 </HorizontalStackLayout>
 <HorizontalStackLayout>
 <Label FontAttributes="Bold"
 Text="Color" />
 <Label Text="{Binding Color}" />
 </HorizontalStackLayout>
 <HorizontalStackLayout>
 <Label FontAttributes="Bold"
 Text="Price" />
 <Label Text="{Binding ListPrice,
 StringFormat='{0:c}'}" />
 </HorizontalStackLayout>
 <HorizontalStackLayout>
 <ImageButton Source="edit.png"
 ToolTipProperties.Text="Edit Product" />
 <ImageButton Source="trash.png"
 ToolTipProperties.Text="Delete Product" />
 </HorizontalStackLayout>
 <BoxView Style="{StaticResource Grid.Item.Separator}" />
 </VerticalStackLayout>
 </DataTemplate>
 </CollectionView.ItemTemplate>
 </CollectionView>
 </Grid>
</Border>

Listing 9: Create the product list page using a CollectionView control.

using AdventureWorks.MAUI.MauiViewModelClasses;

namespace AdventureWorks.MAUI.Views;

public partial class ProductListView
 : ContentPage {
 public ProductListView(ProductViewModel viewModel) {
 InitializeComponent();

 _ViewModel = viewModel;
 }

 private readonly ProductViewModel _ViewModel;

 protected async override void OnAppearing() {
 base.OnAppearing();

 BindingContext = _ViewModel;

 await _ViewModel.GetAsync();
 }
}

Listing 10: Add code to get all products for displaying on the product list page.

Exploring .NET MAUI: Working with Lists of Data

17codemag.com

XML namespace to the product view model class in the
MauiViewModelClasses namespace.

xmlns:vm="clr-namespace:
 AdventureWorks.MAUI.MauiViewModelClasses"

Add the x:DataType on the ContentPage element to spec-
ify that the ProductViewModel class is the source of the
data binding for this page.

x:DataType="vm:ProductViewModel"

The XAML shown in Listing 11 is all the controls on the
ProductDetailView page with their data bindings to the ap-
propriate properties to the Product class. This XAML isn’t
too different from what you created in an earlier article; it
just has the data bindings attached to the controls.

Replace the Product Detail View Code Behind
Open the Views\ProductDetailView.xaml.cs file and re-
place the entire contents of this file with the code shown

Figure 5: A product list is created using a
CollectionView control.

<Label Text="Product Name"
 Grid.Row="1" />
<Entry Grid.Column="1"
 Grid.Row="1"
 Text="{Binding CurrentEntity.Name}" />
<Label Text="Product Number"
 Grid.Row="2" />
<Entry Grid.Row="2"
 Grid.Column="1"
 Text="{Binding CurrentEntity.ProductNumber}" />
<Label Text="Color"
 Grid.Row="3" />
<Entry Grid.Row="3"
 Grid.Column="1"
 Text="{Binding CurrentEntity.Color}" />
<Label Text="Cost"
 Grid.Row="4" />
<HorizontalStackLayout Grid.Row="4"
 Grid.Column="1">
 <Entry Text="{Binding CurrentEntity.StandardCost}" />
 <Stepper Value="{Binding CurrentEntity.StandardCost}"
 Minimum="1"
 Maximum="{Binding CurrentEntity.ListPrice}"
 Increment="1" />
</HorizontalStackLayout>
<Label Text="Price"
 Grid.Row="5" />
<HorizontalStackLayout Grid.Row="5"
 Grid.Column="1">
 <Entry Text="{Binding CurrentEntity.ListPrice}" />
 <Stepper Value="{Binding CurrentEntity.ListPrice}"
 Minimum="{Binding CurrentEntity.StandardCost}"
 Maximum="9999"
 Increment="1" />
</HorizontalStackLayout>
<Label Text="Size"
 Grid.Row="6" />
<Entry Grid.Row="6"
 Grid.Column="1"
 Text="{Binding CurrentEntity.Size}" />
<Label Text="Weight"
 Grid.Row="7" />
<VerticalStackLayout Grid.Row="7"
 Grid.Column="1">
 <Slider x:Name="weight"
 Value="{Binding CurrentEntity.Weight}"
 Minimum="1"
 Maximum="99999" />
 <Label Text="{Binding CurrentEntity.Weight}" />
</VerticalStackLayout>

<Label Text="Category"
 Grid.Row="8" />
<Entry Grid.Row="8"
 Grid.Column="1"
 Text="{Binding CurrentEntity.ProductCategoryID}" />
<Label Text="Model"
 Grid.Row="9" />
<Entry Grid.Row="9"
 Grid.Column="1"
 Text="{Binding CurrentEntity.ProductModelID}" />
<Label Text="Selling Start Date"
 Grid.Row="10" />
<DatePicker Grid.Row="10"
 Grid.Column="1"
 Date="{Binding CurrentEntity.SellStartDate}" />
<Label Text="Selling End Date"
 Grid.Row="11" />
<DatePicker Grid.Row="11"
 Grid.Column="1"
 Date="{Binding CurrentEntity.SellEndDate}" />
<Label Text="Discontinued Date"
 Grid.Row="12" />
<DatePicker Grid.Row="12"
 Grid.Column="1"
 Date="{Binding CurrentEntity.DiscontinuedDate}" />
<Label Text="Product Picture"
 Grid.Row="13" />
<Image Grid.Row="13"
 Grid.Column="1"
 HorizontalOptions="Start"
 Aspect="Center"
 Source="bikeframe.jpg" />
<Label Text="Product Notes"
 Grid.Row="14" />
<Editor Grid.Row="14"
 Grid.Column="1"
 HeightRequest="100" />
<HorizontalStackLayout Grid.Row="15"
 Grid.Column="1">
 <Button Text="Save"
 ImageSource="save.png"
 ContentLayout="Left"
 ToolTipProperties.Text="Save Data"
 Command="{Binding SaveCommand}" />
 <Button Text="Cancel"
 ImageSource="cancel.png"
 ContentLayout="Left"
 ToolTipProperties.Text="Cancel Changes"
 Command="{Binding CancelCommand}" />
</HorizontalStackLayout>

Listing 11: Map the data entry controls on the product detail page to the appropriate properties in the Product class.

Exploring .NET MAUI: Working with Lists of Data

18 codemag.com

file and add an x:Name attribute to the ContentPage
starting tag, as shown in the following XAML:

x:Name="ProductListPage"

Now that you’ve defined a name that refers to the Con-
tentPage, and that page has as its x:DataType equal to
the ProductViewModel object, this allows you to refer-
ence that view model by adding a Source={x:Reference
ProductListPage} within the Binding markup extension.
Locate the ImageButton control for the edit button and
make it look like the following XAML:

<ImageButton Source="edit.png"
 ToolTipProperties.Text="Edit Product"
 CommandParameter="{Binding ProductID}"
 Command="{Binding
 Source={x:Reference ProductListPage},
 Path=BindingContext.EditCommand}" />

Because you changed the <ShellContent> element to call the
ProductListView instead of the ProductDetailView page, that
page is no longer in the list of routes. Open the AppShell.
xaml.cs file and register the route for the ProductDetailView
in the constructor, as shown in the following code:

in Listing 12. The product detail page must accept a Pro-
ductId passed from the product list page, so add a [Query-
Property] attribute to the ProductDetailView class. Add the
OnAppearing() method to set the BindingContext of the
page to the view model injected into the constructor. Call
the GetAsync(ProductId) method to load the CurrentEntity
property with the product data to display on the controls.

Modify Product View Model Commands
Open the MauiViewModelClasses\ProductViewModel.cs
file you created earlier and add the code shown in Listing
13 after the constructors. This code should look very famil-
iar, as you used almost the exact same code in the User-
ViewModel that handles the commands for the user pages.

Modify Product List View XAML
Add the code to the edit button on the product list page
to bind to the EditCommand property in the Product-
ViewModel class. Open the Views\ProductViewList.xaml

using AdventureWorks.MAUI.MauiViewModelClasses;

namespace AdventureWorks.MAUI.Views;

[QueryProperty(nameof(ProductId), "id")]
public partial class ProductDetailView
 : ContentPage {
 public ProductDetailView(
 ProductViewModel viewModel) {
 InitializeComponent();

 _ViewModel = viewModel;
 }

 private readonly ProductViewModel _ViewModel;
 public int ProductId { get; set; }

 protected async override void OnAppearing() {
 base.OnAppearing();

 // Set the Page BindingContext
 BindingContext = _ViewModel;

 // Retrieve a Product
 await _ViewModel.GetAsync(ProductId);
 }
}

Listing 12: Add code in the product detail page to retrieve a single product object.

#region Commands
public ICommand? SaveCommand { get; private set; }
public ICommand? CancelCommand { get; private set; }
public ICommand? EditCommand { get; private set; }
#endregion

#region Init Method
public override void Init() {
 base.Init();

 // Create commands for this view
 SaveCommand = new Command(
 async () => await SaveAsync());
 CancelCommand = new Command(
 async () => await CancelAsync());
 EditCommand = new Command<int>(
 async (int id) => await EditAsync(id));
}
#endregion

#region SaveAsync Method
protected new async Task<Product?> SaveAsync() {

 Product? ret = await base.SaveAsync();

 if (ret != null) {
 await Shell.Current.GoToAsync("..");
 }

 return ret;
}
#endregion

#region CancelAsync Method
protected async Task CancelAsync() {
 await Shell.Current.GoToAsync("..");
}
#endregion

#region EditAsync Method
protected async Task EditAsync(int id) {
 await Shell.Current.GoToAsync(
 $"{nameof(Views.ProductDetailView)}?id={id}");
}
#endregion

Listing 13: Add the commands to handle editing, saving, and cancelling on the product pages.

Figure 6: Display the product detail information by
navigating from a product on the list page.

Exploring .NET MAUI: Working with Lists of Data

19codemag.com

Save or Cancel buttons and you are redirected back to the
product list page.

Display Colors Using a Carousel View
(Mobile Development Only)
By default, a CarouselView control displays items horizon-
tally so you can swipe back and forth to navigate from
one item to another. Swiping backward from the first item

Routing.RegisterRoute(
 nameof(Views.ProductDetailView),
 typeof(Views.ProductDetailView));

Try It Out
Run the application and click on the Product menu. Click
on the edit button for different products to see the prod-
uct detail page appear as shown in Figure 6. Click on the

using Common.Library;

namespace AdventureWorks.EntityLayer;

public class Color : EntityBase {
 #region Private Variables
 private int _ColorId = 0;
 private string _ColorName = string.Empty;
 #endregion

 #region Public Properties
 public int ColorId {
 get { return _ColorId; }
 set {
 _ColorId = value;
 RaisePropertyChanged(nameof(ColorId));
 }
 }

 public string ColorName {
 get { return _ColorName; }
 set {
 _ColorName = value;
 RaisePropertyChanged(nameof(ColorName));
 }
 }
 #endregion
}

Listing 14: Create an entity class to represent a color.

Figure 7: Use the CarouselView and IndicatorView
controls together.

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;

namespace AdventureWorks.DataLayer;

/// <summary>
/// Creates fake data for Colors.
/// </summary>
public partial class ColorRepository
 : IRepository<Color> {
 #region GetAsync Method
 public async
 Task<ObservableCollection<Color>>
 GetAsync() {
 return await Task.FromResult(
 new ObservableCollection<Color>
 {
 new() {
 ColorId = 1,
 ColorName = "Black",
 },
 new() {
 ColorId = 2,
 ColorName = "Blue",
 },
 new() {
 ColorId = 3,
 ColorName = "Gray",
 },
 new() {
 ColorId = 4,
 ColorName = "Multi",
 },
 new() {

 ColorId = 5,
 ColorName = "Red",
 },
 new() {
 ColorId = 6,
 ColorName = "Silver",
 },
 new() {
 ColorId = 7,
 ColorName = "Silver/Black",
 },
 new() {
 ColorId = 8,
 ColorName = "White",
 },
 new() {
 ColorId = 9,
 ColorName = "Yellow",
 }
 });
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<Color?> GetAsync(int id) {
 ObservableCollection<Color> list
 = await GetAsync();
 Color? entity = list.Where(
 row => row.ColorId == id)
 .FirstOrDefault();

 return entity;
 }
 #endregion
}

Listing 15: Create a repository class to return a set of colors.

Exploring .NET MAUI: Working with Lists of Data

20 codemag.com

on one of the dots in the IndicatorView to move through
the collection.

Create a Color Entity Class
When you’re using a color on the product detail page,
you only need to set the color name. However, in the
Color entity class you’re going to create, add a ColorId
property as well, in case you wish to store colors for your
products in a data store that requires a unique primary
key. Right mouse-click on the EntityClasses folder in the
AdventureWorks.EntityLayer project and add a new class
named Color. Replace the entire contents of this new file
with the code shown in Listing 14.

Create a Color Repository Class
Create a mock repository class to return a list of hard-
coded Color objects. Right mouse-click on the Reposito-
ryClasses folder in the AdventureWorks.DataLayer.Mock
project and add a new class named ColorRepository. Re-

in the collection displays the last item in the collection.
Similarly, swiping forward from the last item in the col-
lection returns to the first item in the collection. Note
that the CarouselView does not currently work very well
in Windows applications.

CarouselView shares much of its implementation with Col-
lectionView. However, the two controls have different use
cases. CollectionView is used to present lists of data of
any length, whereas CarouselView is used to display infor-
mation from a small list of items.

The CarouselView works closely with an IndicatorView
control (see Figure 7). The IndicatorView control shows
how many items are in the CarouselView by using a cir-
cular dot (by default). One dot represents a single item
in your collection being displayed in the CarouselView
control. You may swipe left or right on the CarouselView
to display each item in the collection, or you may click

using AdventureWorks.EntityLayer;
using Common.Library;
using System.Collections.ObjectModel;

namespace AdventureWorks.ViewModelLayer;

public class ColorViewModel
 : ViewModelBase {
 #region Constructors
 public ColorViewModel() : base() {
 }

 public ColorViewModel(
 IRepository<Color> repo) : base() {
 _Repository = repo;
 }
 #endregion

 #region Private Variables
 private readonly IRepository<Color>?
 _Repository;
 private ObservableCollection<Color>
 _Colors = new();
 private Color? _CurrentEntity = new();
 #endregion

 #region Public Properties
 public ObservableCollection<Color> Colors {
 get { return _Colors; }
 set {
 _Colors = value;
 RaisePropertyChanged(nameof(Colors));
 }
 }

 public Color? CurrentEntity {
 get { return _CurrentEntity; }
 set {
 _CurrentEntity = value;
 RaisePropertyChanged(nameof(CurrentEntity));
 }
 }
 #endregion

 #region GetAsync Method
 public async
 Task<ObservableCollection<Color>>
 GetAsync() {
 RowsAffected = 0;

 try {
 if (_Repository == null) {
 LastErrorMessage = REPO_NOT_SET;
 }
 else {

 Colors = await _Repository.GetAsync();
 RowsAffected = Colors.Count;
 InfoMessage =
 $"Found {RowsAffected} Colors";
 }
 }
 catch (Exception ex) {
 PublishException(ex);
 }

 return Colors;
 }
 #endregion

 #region GetAsync(id) Method
 public async Task<Color?> GetAsync(int id) {
 try {
 // Get a Color from a data store
 if (_Repository != null) {
 CurrentEntity = await _Repository.GetAsync(id);
 if (CurrentEntity == null) {
 InfoMessage = $"Color id={id} was not found.";
 }
 else {
 InfoMessage = "Found the Color";
 }
 }
 else {
 LastErrorMessage = REPO_NOT_SET;
 InfoMessage = "Found a MOCK Color";

 // MOCK Data
 CurrentEntity = await Task.FromResult(new Color {
 ColorId = 1,
 ColorName = "Black",
 });
 }

 RowsAffected = 1;
 }
 catch (Exception ex) {
 PublishException(ex);
 }
 return CurrentEntity;
 }
 #endregion

 #region SaveAsync Method
 public async virtual Task<Color?> SaveAsync() {
 // TODO: Write code to save data

 return await Task.FromResult(new Color());
 }
 #endregion
}

Listing 16: Create a Color View Model class for working with the color data store.

Exploring .NET MAUI: Working with Lists of Data

21codemag.com

place the entire contents of this new file with the code
shown in Listing 15. This code follows the same design
pattern as that you used for the user and product reposi-
tory classes.

Create a Color View Model
Now that you have the entity and repository classes for
colors created, create a color view model class. Right
mouse-click on the ViewModelClasses folder in the Ad-
ventureWorks.ViewModelLayer project and add a new
class named ColorViewModel. Replace the entire con-
tents of this new file with the code shown in Listing 16.

You now need a color view model class to handle com-
manding in .NET MAUI. Right mouse-click on the MauiV-
iewModelClasses folder and add a new class named Col-
orViewModel. Replace the entire contents of this new file
with the code shown in Listing 17.

Create a Color Detail View Page
After displaying a list of colors, you should also allow the
user to add or edit colors by creating a color detail page.
Right mouse-click on the Views folder and select Add >
New Item… and then .NET MAUI > .NET MAUI Content-
Page (XAML). Set the Name to ColorDetailView and click
the Add button. Set the Title attribute to Color Infor-
mation. On the Views\ColorDetailView.xaml file, add a
couple XML namespaces to the partial views' namespace
and the view model namespace.

xmlns:partial="clr-namespace:
 AdventureWorks.MAUI.ViewsPartial"
xmlns:vm="clr-namespace:
 AdventureWorks.MAUI.MauiViewModelClasses"

using Common.Library;
using System.Windows.Input;

namespace AdventureWorks.MAUI.MauiViewModelClasses;

public class ColorViewModel :
 AdventureWorks.ViewModelLayer.ColorViewModel
{
 #region Constructors
 public ColorViewModel() : base()
 {
 }

 public ColorViewModel(
 IRepository<EntityLayer.Color> repo) : base(repo)
 {
 }
 #endregion

 #region Commands
 public ICommand? SaveCommand { get; private set; }
 public ICommand? CancelCommand { get; private set; }
 public ICommand? EditCommand { get; private set; }
 #endregion

 #region Init Method
 public override void Init()
 {
 base.Init();

 // Create commands for this view
 SaveCommand = new Command(
 async () => await SaveAsync());
 EditCommand = new Command<int>(
 async (int id) => await EditAsync(id));

 CancelCommand = new Command(
 async () => await CancelAsync());
 }
 #endregion

 #region SaveAsync Method
 public override async
 Task<EntityLayer.Color?> SaveAsync()
 {
 EntityLayer.Color? ret
 = await base.SaveAsync();

 if (ret != null) {
 await Shell.Current.GoToAsync("..");
 }

 return ret;
 }
 #endregion

 #region CancelAsync Method
 public async Task CancelAsync()
 {
 await Shell.Current.GoToAsync("..");
 }
 #endregion

 #region EditAsync Method
 protected async Task EditAsync(int id)
 {
 await Shell.Current.GoToAsync(
 $"{nameof(Views.ColorDetailView)}?id={id}");
 }
 #endregion
}

Listing 17: Create the color view model class for commanding.

<Border Style="{StaticResource Border.Page}">
 <ScrollView>
 <Grid Grid.Row="0"
 Grid.Column="1"
 RowDefinitions="Auto,Auto,Auto,Auto,Auto"
 ColumnDefinitions="Auto,*"
 Style="{StaticResource Grid.Page}">

 <partial:HeaderView Grid.Row="0"
 Grid.ColumnSpan="2"
 ViewTitle="Color Information"
 ViewDescription="Use this screen
 to modify color information." />

 <Label Grid.Row="1"
 Text="Color Name" />
 <Entry Grid.Row="1"
 Grid.Column="1"
 Text="{Binding
 CurrentEntity.ColorName}" />

 <HorizontalStackLayout Grid.Row="2"
 Grid.Column="1">
 <Button Text="Save"
 ImageSource="save.png"
 ToolTipProperties.Text="Save Data"
 ContentLayout="Left"
 Command="{Binding SaveCommand}" />
 <Button Text="Cancel"
 ImageSource="cancel.png"
 ContentLayout="Left"
 ToolTipProperties.Text="Cancel Changes"
 Command="{Binding CancelCommand}" />
 </HorizontalStackLayout>
 </Grid>
 </ScrollView>
</Border>

Listing 18: Create a color detail view to edit colors.

Exploring .NET MAUI: Working with Lists of Data

22 codemag.com

Modify the Color List Page
Let's fix up the color list page you added before and use the
CarouselView control. Open the Views\ColorListView file.
Add XML namespaces for the commanding view models, en-
tity layer, and partial views, as shown in the following code:

xmlns:partial="clr-namespace:
 AdventureWorks.MAUI.ViewsPartial"
xmlns:vm="clr-namespace:
 AdventureWorks.MAUI.MauiViewModelClasses"
xmlns:model="clr-namespace:
 AdventureWorks.EntityLayer;
 assembly=AdventureWorks.EntityLayer"

Add an x:DataType attribute to the <ContentPage.Resourc-
es> element to take advantage of compiled data bindings.

x:DataType="vm:ColorViewModel"

Add an x:Name attribute so the edit button on the list
can reference back to the page to call the EditCommand
property in the color view model.

x:Name="ColorListPage"

When you created the color list page, you added a single
<Label> element to display text that described this page.
Replace the <Label> element with the following XAML.

<CarouselView Grid.Row="1"
 IndicatorView="colorIndicators"
 ItemsSource="{Binding Path=Colors}">
 <CarouselView.ItemTemplate>
 <DataTemplate x:DataType="model:Color">
 <StackLayout>
 <Frame HasShadow="True"
 BorderColor="DarkGray"
 CornerRadius="5"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand">
 <Grid Margin="20"
 RowDefinitions="Auto,Auto"
 ColumnDefinitions="Auto,*"
 RowSpacing="20">
 <Rectangle Grid.Row="0"
 Grid.Column="0"
 BackgroundColor="{Binding ColorName}"
 WidthRequest="40"
 HeightRequest="40"
 Margin="10" />
 <Label Grid.Row="0"
 Grid.Column="1"
 FontSize="Large"
 Text="{Binding ColorName}" />

 <HorizontalStackLayout Grid.Row="1"
 Grid.ColumnSpan="2">
 <ImageButton Source="edit.png"
 ToolTipProperties.Text="Edit Color"
 CommandParameter="{Binding ColorId}"
 Command="{Binding
 Source={x:Reference ColorListPage},
 Path=BindingContext.EditCommand}" />
 <ImageButton Source="trash.png"
 ToolTipProperties.Text="Delete Color" />
 </HorizontalStackLayout>
 </Grid>
 </Frame>
 </StackLayout>
 </DataTemplate>
 </CarouselView.ItemTemplate>
</CarouselView>

<IndicatorView Grid.Row="2"
 x:Name="colorIndicators"
 Margin="5"
 IndicatorSize="20"
 IndicatorColor="LightGray"
 SelectedIndicatorColor="DarkGray"
 HorizontalOptions="Center" />

Listing 20: Use a CarouselView, a Frame, and an IndicatorView for small lists of items.

using AdventureWorks.MAUI.MauiViewModelClasses;

namespace AdventureWorks.MAUI.Views;

[QueryProperty(nameof(ColorId), "id")]
public partial class ColorDetailView
 : ContentPage {
 public ColorDetailView(
 ColorViewModel viewModel) {
 InitializeComponent();

 _ViewModel = viewModel;
 }

 private readonly ColorViewModel _ViewModel;
 public int ColorId { get; set; }

 protected async override void OnAppearing() {
 base.OnAppearing();

 // Set the BindingContext to the ViewModel
 BindingContext = _ViewModel;

 // Retrieve a Color
 await _ViewModel.GetAsync(ColorId);
 }
}

Listing 19: Add code to display a color on the detail page.

Add an x:DataType attribute to the page to take advan-
tage of compiled bindings.

x:DataType="vm:ColorViewModel"

Replace the <HorizontalStackLayout> element with the
code shown in Listing 18. You don't need to add or edit
the ColorId property from the Color class, so just add
a single Label and an Entry control for the ColorName
property.

Open the Views\ColorDetailView.xaml.cs file and re-
place the entire contents of this file with the code shown
in Listing 19. This code should look very familiar by now,
as it follows the same design pattern as the one estab-
lished in the user and product detail pages.

Modify AppShell
The color list page is called from a ShellContent element
in the AppShell, so it’s already registered in route navi-
gation. However, you need to register the color detail
page, as it’s not referenced anywhere in XAML. Open the
AppShell.xaml.cs file and register the route to the Color-
DetailView in the constructor.

Routing.RegisterRoute(
 nameof(Views.ColorDetailView),
 typeof(Views.ColorDetailView));

Exploring .NET MAUI: Working with Lists of Data

23codemag.com

<Border Style="{StaticResource Screen.Border}">
 <Grid Padding="20">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <partial:HeaderView
 ViewTitle="Color List"
 ViewDescription="The list of colors
 in the system." />

 </Grid>
</Border>

Just after the <partial:HeaderView…> element, add the
XAML shown in Listing 20. The CarouselView control has
an IndicatorView property to which you set the name of
the IndicatorView control. As you can see, the x:Name
attribute defined on the IndicatorView is set to colorIn-
dicators, thus the IndicatorView property on the Carou-
selView control is set to this same name.

As you swipe through the CarouselView, or if you click
a dot on the IndicatorView, the same element in the
collection is selected, thus updating the other control.
In the DataTemplate for the CarouselView a <Rectangle>
element is used to display the color name as an actual
color on the screen (as you saw in Figure 7). This is
accomplished by binding the BackgroundColor property
to the ColorName property on the Color object being
displayed.

To load the colors, pass the ColorViewModel class to the
color list page. Open the ColorListView.xaml.cs file and
make it look like the code in Listing 21.

Open the ExtensionClasses\ServiceExtensions.cs file
and in the AddRepositoryClasses() method, add the Col-
orRepository to the DI container.

services.AddScoped<IRepository<EntityLayer.Color>,
 ColorRepository>();

In the AddViewModelClasses() method, add the Color-
ViewModel to the DI container.

services.AddScoped<MauiViewModelClasses
 .ColorViewModel>();

In the AddViewClasses() method, add the ColorListView
and ColorDetailView to the DI container.

SPONSORED SIDEBAR:

Ready to Modernize
a Legacy App?

Need advice on migrating
yesterday’s legacy
applications to today’s
modern platforms?

Take advantage of
CODE Consulting’s years
of experience and contact
us today to schedule a
FREE consulting call to
discuss your options.

No strings.
No commitment.

For more information:
www.codemag.com/
consulting or email us at
info@codemag.com.

 Paul D. Sheriff

using AdventureWorks.MAUI.MauiViewModelClasses;

namespace AdventureWorks.MAUI.Views;

public partial class ColorListView : ContentPage {
 public ColorListView(ColorViewModel viewModel) {
 InitializeComponent();

 _ViewModel = viewModel;
 }

 private readonly ColorViewModel _ViewModel;

 protected async override void OnAppearing() {
 base.OnAppearing();

 BindingContext = _ViewModel;

 await _ViewModel.GetAsync();
 }
}

Listing 21: Load the colors for displaying in the CarouselView.

services.AddScoped<ColorDetailView>();
services.AddScoped<ColorListView>();

Try It Out
Within Visual Studio, switch to the Android Emulator and
run the application. Click on the Maintenance > Colors
menu. Swipe through the colors to see the IndicatorView
control update and view the different colors, as shown
in Figure 7. Click on the edit button to view the color
detail page.

Summary
In this article, you used different list controls available
in .NET MAUI to display a collection of data. Use the
ObservableCollection class for collections as any changes
made to the collection are immediately reflected in any
bound list controls. The ListView control has a few differ-
ent ways to present data, but the most flexible is to use
the ViewCell. The CollectionView control is the preferred
control to use as it’s the most flexible and performant
of any of the list controls. If you have a small set of
data, you might use the CarouselView combined with the
IndicatorView. However, be aware that currently, this con-
trol is only optimized to work on the Android and iOS
platforms. Coming up in the next article, you’ll learn to
display information and error messages, display pop-up
dialogs, and to validate data in .NET MAUI.

Exploring .NET MAUI: Working with Lists of Data

24 codemag.comOffline AI Image Generation

ONLINE QUICK ID 2503031

Offline AI Image Generation
On January 5, 2021, OpenAI revealed DALL-E. Frankly, it blew everyone’s minds. DALL-E was a modified version of GPT-3. GPT,
as you might know, is a large language model (LLM), and it generates text. But DALL-E took an input prompt and generated
an image out of it. No, not searched for images across the internet, but generated a brand-new image on the fly. The demand

was great—everyone had to try it. There was a wait
list. It took a while to generate an image and the im-
ages weren’t that great, to be honest. Fast-forward barely
three years later, and you have many such text-to-image
models. DALL-E has undergone a few versions already.
And now there’s Midjourney, Stable Diffusion, Artbreeder,
Deep Dream Generator, Prisma, Craiyon, starryAI, and
many more. The images have gotten so good that they’re
frequently indistinguishable from real images. This has
created some strange problems; the phrase “seeing is be-
lieving” is no longer true.

In fact, these models have gotten so good and so acces-
sible that you can run them offline, on a commercial off-
the-shelf computer. I’m writing this article on a shiny new
M4 Max, and I’ve tested the code on an M1 Max. It’s quite
realistic to generate images using text prompts with com-
monly available models on your laptop. By the end of this
article, you’ll be able to do so on your machine as well.

Pardon me, but I can barely contain my excitement. Can
you imagine what this means? My thoughts turn to reality
on-the-fly and I’ll be the best meme maker in town. All
right, more than just that. When building presentations,
I could just fire up my local AI model, type in a text
prompt, and have it generate a nice image for me. Why
doesn’t PowerPoint have such a feature? Maybe it does—
if not, I’m sure that, at some point, it will.

Of course, this raises eyebrows and numerous ethical con-
cerns. How do the artists whose images were used to cre-
ate these models get paid? What implication does this
have on what is trustable and what is not? Can a quick
tweet on an AI-generated image create a news headline
and start a war? Can images that look absolutely real be
used to change the course of wars? Can you turn stills
into a video, appear in a fake webcam stream, and appear
as someone you’re not? What does this mean for social
engineering? What does this mean for human relation-
ships? Will we all have AI generated boyfriend/girlfriends
or just friends backed by an LLM, glued to our VR head-
sets?

Sadly, all those are absolutely real concerns, concerns
that have already manifested themselves in many ways.
And, as local hardware has gotten so powerful, all this is
well within the reach of anyone with a credit card. Ouch!

I feel the best solution here would be a blockchain plus
certificate-based distributed image verification solution,
so at least we’d know if an image is trustable. Trust me,
looking at an image and trusting that it’s real because it’s
a photo is no longer enough. Don’t believe me? Visit This-
PersonDoesNotExist.com and let me know what you think.

If I had enough video or picture data of you, could I
generate a model of you, and basically generate any im-

age of you, pretty much indistinguishable from reality?
Sadly yes!

All right, it’s best if I focus on the tech aspects of this, so
back to that. In this article, I’m going to show you a few
examples of applications that take in a text prompt and
generate an image for you. Although I’ll depend on open
source or openly available models, the actual execution
will be local, on my Mac. The code should be able to run
with no internet connection, entirely on your laptop, as
long as you have some beefy hardware. Either a higher-
end MacBook pro, or a Windows or Linux machine with a
high-end Nvidia card will do.

Why Offline?
You might be wondering: Why bother doing this offline?
There are models, such as Midjourney, that are available
as a service for as low as $10 a month. Why not just use
them?

There are some very good reasons to do this offline. First,
I’m cheap. I don’t want to pay $10 a month. If you do this
seriously at a commercial scale, it’ll cost you more than
that. But either way, being cheap is a pretty good reason.

Second, security and privacy are important. Your data stays
local, so you don’t have to upload any sensitive informa-
tion anywhere. What you generate is your business. An
offshoot of text-to-image generation is image-to-image
generation, where you can upload an image that you have
and use that as an inspiration to generate more images.
You wouldn’t want to upload your images to some random
service whose data residency requirements don’t agree with
your terms, right? You do read those terms, right?

Third, the ability to run this offline means you can run
this anywhere. Afterall, the ping times between Earth
and Mars are anywhere between eight and 16 minutes. I
wouldn’t want to wait eight minutes for an image to gen-
erate only to realize that I want to tweak it and gener-
ate another image and wait another eight minutes. Jokes
aside, image generation is still compute-intensive, given
today’s hardware. Typically, when we’re trying to get the
perfect image, we input and experiment with many pa-
rameters, and prompts, and refiners, to get the image just
right. It takes iterations, and we may want to move fast
with a lower resolution picture and then increase the res-
olution as we get closer to the result we want. Any seri-
ous image generation shop will need something like this.

The code I’ll show you runs on my local M4 Max, and each
image is generated within seconds. You could easily chain
up a bunch of M4 Pros, for example, or similar Nvidia-
based hardware in a cheap server farm, and accelerate
this process for real-world applications. Imagine if you
had a creative team on staff. They could issue prompts

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft
MVP, INETA speaker,
a .NET author, consultant,
and trainer.

Sahil loves interacting
with fellow geeks in real
time. His talks and train-
ings are full of humor and
practical nuggets.

His areas of expertise are
cross-platform Mobile app
development, Microsoft
anything, and security
and identity.

25codemag.com Offline AI Image Generation

it an input text prompt and it’ll generate an image for
you. In contrast, there are image-to-image models as
well, where you can start by using an existing image and
making tweaks to it. For instance, you could generate a
cartoon version of my mugshot.

Let’s understand a few basic concepts. First, what is a
diffusion model? A diffusion model is a type of generative
model that learns to represent data as a Markov chain
that progressively adds noise to the input data until it
becomes a random sample from a known distribution
(e.g., Gaussian noise). The model then learns to reverse
this diffusion process to generate new samples that are
similar to the original data. So, between forward diffu-
sion, denoising, and reverse diffusion, it’s able to help
you do things like image generation, image-to-image
translation, or data manipulation, like adding missing de-
tails into a picture. Text-to-image models, like latent dif-
fusion models, combine an LLM that transforms an input
text into a latent representation and a generative image
model, which is then able to generate an image.

As it turns out, there are many AI models that can run
offline, such as Stable Diffusion, DALL-E Mini (Craiyon), a
limited version of Midjourney, etc. Some of these models
are available as applications, and sometimes those apps
work only on mobile devices. I wanted to pick a model
that gave me the most freedom. My requirements were
that I wanted the most flexibility in picking the image
generation model. Maybe even extend it with more mod-
els. I wanted the ability to fine-tune the model with my
images. I wanted to use a model that could generate in-
credibly high-resolution images, and I wanted to do this
and much more through custom code.

What I really wanted was my own web application where I
can input a text prompt and generate an image within my
corporate network (or, for now, my home network). Let’s
see how far we can take this.

After some homework, I decided to go with Stable Dif-
fusion for this article. I’m not saying this is the best
possible model—there were so many other choices at
https://huggingface.co/models?pipeline_tag=text-to-
image&sort=trending. But after some high-level research,
it seems that Stable Diffusion comes in various sizes so I
could size it to my hardware. I don’t have a server farm,
just one laptop, so I need to be able to run this low for
dev purposes and scale it high for production. I wanted a
model that has decent support and community interest,
that performs reasonably fast on reasonable hardware,
and that allows me to tweak input enough to generate
exactly what I wish. Most of all, I wanted it to be free,
which Stable Diffusion seems to be.

Stable Diffusion
Stable Diffusion is a deep learning text-to-image model.
It’s built by a company called Stability AI. It can be used
for text-to-image applications, but also for other scenari-
os, such as image-to-image, inpainting, outpainting, etc.
Stable Diffusion was trained on an open-source dataset of
images at www.laion.ai. Given that the input dataset had
relatively lower resolution images of 512x512, Stable Dif-
fusion excels at generating images around that resolution.
In real-world applications, you can use Stable Diffusion

and generate images on the fly, supporting a team of
five to ten people, on a server farm costing maybe USD
10K, and very low power consumption. This is the realistic
value you can unlock with today’s hardware and I have no
doubts it’ll only get better.

The fourth reason is creative freedom. Many online image-
generation AI models have been accused of bias. I won’t
point out specific reasons, but let’s just agree that bias
exists. So does censorship. What if I want to generate
images that suit my needs and my taste without some
big company (or even government) telling me what I can
or cannot do. All right, please don’t get me in trouble on
this, or get yourself in trouble on this, but if you gener-
ate problematic or misleading content, it still wouldn’t
be cool, and you will probably face the consequences for
it. But still, let’s say you were directing a film based on
World War II, and you needed to generate an image of
Germany during 1942. Obviously, such an image would
have questionable artifacts that perhaps many online so-
lutions will block for good reason. But for your use case,
you should be able to generate something like this of-
fline, right? As long as it’s put to a moral use. Unfortu-
nately, there are plenty of NSFW models available easily
as well, but we’ll keep it work friendly, all right?

The fifth reason is commercial applicability. Many online-
generated images are not quite what you’re looking for.
Either their image styles are too generic, or they have
their own personality and therefore aren’t unique enough
for your brand, or maybe they’re watermarked, or come
with restrictions, or they’re not sufficient resolution for
the specific task you’re attempting. What if you wanted
to print a poster, and you needed a 6000px by 6000px
AI-generated image?

Okay, let’s think something crazy. What if you were direct-
ing a film based in the year 48288 AD, and you wanted
to generate a futuristic landscape projected on curved
super high-resolution screens. Imagine the cost savings
of being able to generate an AI image and project it on
a screen that surrounds the actors. The actors wouldn’t
need to even pretend or act. And it’ll save so much edit-
ing time. No more green screens, no more expensive sets,
but you will need super high-resolution images.

Finally, you may want to fine-tune an image generation
model with your own images. Imagine you’re a Hollywood
producer, and for some exceptionally risky scenes, you don’t
want to risk even a stunt man. Could you create an AI ver-
sion of an extremely overpaid Hollywood actor, and have
the AI version do all the dangerous stuff? This requires you
to create an AI model specific to that actor. What would
that mean for news readers? See this video https://x.com/
andrewrsorkin/status/1856849559756181904. Let me
know what you think.

Frankly, why do we even need actors at that point?

There are many other such reasons. But let’s just say that
enough reasons exist to try this. So let’s try it.

Text-to-Image Models
The specific kinds of models you’ll use for this article are
text-to-image models. As the name suggests, you give

26 codemag.com

to generate such images, and once you’re happy with the
image, you can use one of many upscaling models to get
a higher-resolution image if you wish. Although I won’t
cover upscaling in this article, you’re welcome to check
out https://openmodeldb.info/models/4x-Nomos8kDAT
as one of my favorite upscaling models. As subsequent
versions of Stable Diffusion have rolled out, Stable Diffu-
sion can generate good images at 1024x1024.

Stable Diffusion may also suffer from not being able to
generate certain details accurately. Notably, it may inac-
curately generate limbs. You can avoid this, to a great
extent, by using the right prompts. But it’s also not un-
common to use refiner models to get further details on
certain aspects of the image. For instance, you can use
dedicated models to refine skin to make it look more real-
istic, or face features, or limbs, or really anything.

A Simple Image Generation
Application
Okay, enough talk. Let’s write some code. The model I
decided to go with for my local application can be found
at https://huggingface.co/stabilityai/stable-diffusion-
3-medium. To use this model, you’ll have to create an
account at Hugging Face, agree to the terms of usage,
and share your contact information. I’m no lawyer, but it
seems like this model is free for research, non-commer-
cial, or even commercial usage, as long as your revenue is
less than $1M per year. I think I’m pretty safe there. You
can read their license here https://stability.ai/license.
If your revenue is > $1M, well, congratulations. You can
reach out to Stability AI for a commercial enterprise
license.

I intend to use Stable Diffusion with diffusers. Diffusers
are a type of neural network component used in deep
learning models, particularly in the field of computer vi-
sion and image processing. They’re a key component of
diffusion models, which I mentioned earlier. Diffusers are
used in image generation models, such as generative ad-
versarial networks (GANs) and variational autoencoders
(VAEs), to generate new images.

To get started, set up a Python project, with a virtual
environment targeting Python 3x. Go ahead and create a
requirements.txt with the following code in it.

torch
diffusers
transformers
protobuf
sentencepiece
accelerate

Then, in your .venv terminal, run the following command
to install the necessary packages.

pip install -r requirements.txt

Next, create a file called index.py with the code shown in
Listing 1. Let’s understand this code a bit better.

The first thing you do is create a diffusion pipeline us-
ing StableDiffusion3Pipeline.from_pretrained. A diffusion
pipeline is a series of processing steps used in diffusion

Figure 1: This is fine.

import torch
from diffusers import StableDiffusion3Pipeline

pipe = StableDiffusion3Pipeline.from_pretrained(
 "stabilityai/stable-diffusion-3-medium-diffusers",
 torch_dtype=torch.float16)
pipe.to("mps")

image = pipe(
 prompt="A cartoon image of yellow dog
 sitting on a chair, drinking coffee
 with fire all around him,
 saying this is fine",
 negative_prompt="",
 num_inference_steps=28,
 height=512,
 width=512,
 guidance_scale=7.0,
).images[0]

image.save("output.png")

Listing 1: The simple image generation code

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Python Debugger: Current File",
 "type": "debugpy",
 "request": "launch",
 "program": "${file}",
 "console": "integratedTerminal"
 }
]
}

Listing 2: The launch.json for debugging support

Offline AI Image Generation

27codemag.com

Yeah, the picture looks a bit more photo-realistic, and I
can sort of tell it is a person. But what’s up with her left
arm? The face looks a bit deformed. The skin looks arti-
ficially smooth and those curtains look haphazardly ar-
ranged. It’s impressive for a computer program to gener-
ate this, but I’m not fooling anyone with this. It’s gener-
ated by AI. It almost looks like a poor photoshop. You can
keep playing with the prompts, inference steps, guidance,
etc., but I wasn’t able to produce an image that I could
show someone without them being able to tell whether
this is AI or not. In fact, try generating pictures of ce-
lebrities, like Satya Nadella or Taylor Swift. It generates a
picture that kind of looks similar to them, but it’s clearly
not a picture of the person in question. Maybe that’s by
design. After all, we just went through an election in
the U.S., and there were plenty of AI-generated pictures

models to progressively refine and generate data, such
as images. You’re creating one from a pre-trained model
here. Could you use other pre-trained models? More on
that later.

A diffusion pipeline is a series of
processing steps used in diffusion
models to progressively refine and
generate data, such as images.

Next, use the pipeline to generate an image. When you
generate an image, you can pass in several parameters,
many of them optional. Here’s where you have to play
around with the right prompts and parameters to get
the right result. At the very least, you need to give it a
prompt, i.e., what you’re asking it to generate an image
of. You can also pass in negative prompts, which are in-
structions to the model to avoid generating certain kinds
of images. For example, a negative prompt could be “No
gore,” to avoid gory images. Then you have num_infer-
encing_steps, which is the number of denoising steps.
More denoising steps usually mean a better-quality image
at the expense of slower inference. Height and width are
pretty obvious parameters. And finally, there’s guidance_
scale. Higher guidance scale encourages it to generate
images that are closely linked to the text prompt, usually
at the expense of lower image quality.

Finally, to get debugging to work in VSCode, create a
.vscode folder and create a launch.json file with the code
shown in Listing 2.

That’s basically it. Now hit F5, and, in almost no time,
you should see an image generated in the output.png file.

The prompt I used was:

A cartoon image of yellow dog sitting on a chair, drinking
coffee with fire all around him, saying “This is fine.”

The image I was able to generate can be seen in Figure 1.
v
I LOL’ed big time when I saw that picture. I mean, look
at how the dog is holding the cup. Okay, AI did its best.
Seriously, how else would a dog hold a cup? That’s a bit
like how a dog would wear pants right? All four legs or
only rear paws? Also, dogs don’t drink coffee—coffee is
poisonous for dogs.

Let’s just agree that this code is impressive, but also, that
this is not so fine and it needs improvement. Can our very
simple model generate somewhat realistic pictures?

Change the prompt to:

Smiling woman in turquoise silk curtains. Fall sunlight.
Professional photography.

I got the image you can see in Figure 2.

My first reaction: ehh! Too bad it’s just AI! Figure 2: Trying to produce a more realistic image

Offline AI Image Generation

28 codemag.com

find models that are appropriate for various purposes.
Some are trained on a particular celebrity. Some are great
for generating scenery. My goal was to generate realistic
images, so this AI model (of two people) caught my eye:
https://civitai.com/models/4201/realistic-vision-v60-
b1. The same models are also available on Hugging Face
if you prefer.

Although you can download the model directly from Civi-
tai, in order to use it with a diffusion pipeline, it’s going
to need some prep work.

First go ahead and download the model of your choice.
In my case, I downloaded realistic-vision v5.1 Hyper
(VAE). This downloaded model is a safetensors file. You
need to convert it to a format that can be used with dif-
fusers. Thankfully, Hugging Face provides a script to do
that at https://raw.githubusercontent.com/huggingface/
diffusers/v0.20.0/scripts/convert_original_stable_diffu-
sion_to_diffusers.py. Download this file and place it in
a folder. This file depends on the same Python packages
that your project currently does, so I suggest that you
create a folder called Models in your same project and
place this file there.

To convert the safetensors file to diffusers, run the fol-
lowing command:

python
convert_original_stable_diffusion_to_diffusers.py
--checkpoint_path
 realisticVisionV60B1_v51HyperVAE.safetensors
--dump_path realistic/
--from_safetensors

This will take only a few moments to process. Verify that a
folder, as shown in Figure 3, now appears in your project
under the Models folder.

Great. Now you’re ready to consume this model using a
diffusion pipeline.

Modify the code as shown in Listing 3. Go ahead and run
the code. The prompt is same as before:

Smiling woman in turquoise silk curtains. Fall sunlight.
Professional photography.

Now hold your breath. Your image, although similar, may
not be identical. The image I was able to generate can be
seen in Figure 4.

My first reaction: WOW! Too bad it’s just AI!

I mean seriously. Does anyone have her number? She
doesn’t have a ring either. I am frankly blown away at the
quality of this image. But even this can get better!

You can choose to upscale this model to a higher resolu-
tion. This article is getting a bit long, but you can use an
upscaler like https://github.com/zhengchen1999/DAT to
upscale this generated image. I went ahead and upscaled
this model to 8x, and although the image was still pretty
good, I could tell that there was some artifacting going
on. Figure 5 shows it upscaled to 8x and a crop of just
her lips.

floating around. Thankfully, for most of them, you could
tell they are just AI.

I want to explore this a bit further, so I headed over to
https://civitai.com.

Civitai is a website where users can share models, images,
videos, articles, and all-around image and video genera-
tion. There are many models to pick from and many of
them are uncensored. Contributors share their work and
frequently explain how they arrived at a certain result.

I could take an existing model and fine tune it, but a lot
of that work has already been done for me in the various
models available in Civitai. As you explore Civitai, you’ll

Figure 4: Image generated with the same prompt using realistic model

Figure 3: Safetensors
converted to diffusers

Offline AI Image Generation

29codemag.com

As you can see in Figure 5, the image is still extremely
good, but let’s be honest, nobody has lips that smooth,
especially not in winter. Here you can use extensions
for Stable Diffusion, like ADetailer (https://github.com/
Bing-su/adetailer), to further work on features such as
hands and eyes and so on. With that, you can take a gen-
erated image, detect features, and enhance portions of it
to be way more realistic.

Remember that earlier I said I was unable to generate
photorealistic pictures of celebrities? Maybe that’s by
design. After all, I don’t want to get sued for likeness
reasons. But if you’re following my article along and have
the code working, go ahead and try generating a pic-
ture of Taylor Swift. How about Donald Trump? How about
Joe Biden? How about Einstein? Now do you believe me?
Those pictures look completely indistinguishable from re-
ality. Actually, let me generate a picture of someone who
(hopefully) won’t mind.

The prompt I used was:

Abraham Lincoln riding a motorbike.

The image I was able to generate can be seen in Figure 6.

Jaw drop! I had no idea our ex-presidents were such dare-
devils. But even that image looks like a painting, doesn’t
it? The issue is that the input data for all pictures of
Abraham Lincoln were similar in details. You could fine
tune the model and get better results, of course.

Now, I’m not going to push my luck by generating a pic-
ture of a modern celebrity who has plenty of pictures
available, someone like say Taylor Swift, Donald Trump,
or Kamala Harris. But believe me, the generated pictures
are frequently indistinguishable from real. And for those
who don’t have plenty of pictures, you can fine tune with
an input set of images. Figure 6: Honest Abe was into motorbikes—maybe!

Figure 5: Upscaled to 8x and cropped part of the image.

import torch
import safetensors
import transformers
import diffusers

model_path = "models/realistic"
pipe = diffusers.DiffusionPipeline.from_pretrained(
 model_path, torch_dtype=torch.float16,
 safety_checker=None, use_safetensors=False)
pipe.to("mps")

image = pipe(

 prompt="
 Smiling woman in turquose silk curtains.
 fall sunlight. professional photography",
 num_inference_steps=30,
 height=768,
 width=512,
 guidance_scale=1.5,
 seed=1876016,
).images[0]

image.save("output1.png")

Listing 3: Use the realistic model in a diffusion pipeline

Offline AI Image Generation

30 codemag.com

Putting It All Together
Now that you have the basic code working, can you put
this together into a working website where a user can
give a prompt and other input parameters, and the server
crunches it up to generate a model and show it to the user?

Let’s do it!

In the project you were working on, edit the require-
ments.txt and add the following packages:

flask
flask_executor

In this same project, create a folder called Templates
and drop an index.html file in there. Also create a folder
called Static where generated images will go.

The intention is to allow the user to enter an input
prompt and click Generate Image, the server does its AI
magic, and when an image is ready, it’s shown to the user.
Of course, you can make this as compelling as you wish,
but to keep things to the point, I won’t focus on things
like a beautiful user interface, etc.

Let’s get started with the index.html first. The index.html
is going to leverage jQuery, and it will have a very simple
user interface: a text box to receive the user’s prompt
and a button to start the process of image generation on
the server. Then, the code will poll the server every five
seconds to see if the image is ready or not. As soon as
the image is ready, it will be shown to the user. The full
code can be seen in Listing 4. Note that I’ve taken some
shortcuts besides the ugly UX. I’m not validating inputs,
I’m not allowing the user to specify height/width, etc.
But this isn’t production code; I’m trying to stay to the
point and address things pertinent to the task.

<!DOCTYPE html>
<html>

<head>
 <title>Offline AI Image generation</title>
 <script
 src="https://code.jquery.com/jquery-3.6.0.min.js">
 </script>
</head>

<body>
 <h1>Offline AI Image generation</h1>
 Enter prompt:
 <input text="Natural scenery" id="generation-prompt"/>
 <button id="start-generation">Generate Image</button>
 <div id="generation-status"></div>

 <script>
 $(document).ready(function () {
 $('#start-generation').click(function () {
 // Start the generation
 $('#generation-status').text(
 "generating image");
 $.ajax({
 type: 'POST',
 url: '/start_generation',
 contentType: 'application/json',
 data: JSON.stringify(
 {'generation-prompt':
 $('#generation-prompt').val()}),

 success: function (data) {
 $('#generation-status').text(
 data.message);
 // Check every 5 seconds
 let intervalId = setInterval(
 function () {
 $.ajax({
 type: 'GET',
 url: '/check_generation',
 success: function (data) {
 if (data.message ===
 'generation complete') {
 // Display the image
 $('#generation-image')
 .attr('src', data.image);
 clearInterval(intervalId);
 } else {
 $('#generation-status').text(
 data.message);
 };
 }
 });
 }, 5000);
 }
 });
 });
 });
 </script>
</body>

</html>

Listing 4: The index.html

def generate_image(generation_prompt):
 model_path = "models/realistic"
 pipe = diffusers.DiffusionPipeline.from_pretrained(
 model_path, torch_dtype=torch.float16,
 safety_checker=None, use_safetensors=False)
 pipe.to("mps")

 image = pipe(
 prompt=generation_prompt,
 negative_prompt="",
 num_inference_steps=30,
 height=768,
 width=512,
 guidance_scale=1.5,
 seed=1876016,
).images[0]

 image.save("static/image.png")

 # Return the filename
 return 'static/image.png'

Listing 5: Image generation code

@app.route('/start_generation', methods=['POST'])
def start_generation():
 if os.path.exists('static/image.png'):
 os.remove('static/image.png')
 generation_prompt = request.json['generation-prompt']
 executor.submit(generate_image(generation_prompt))
 return jsonify({'message': 'generating image'})

Listing 6: The start generation route

@app.route('/check_generation')
def check_generation():
 # Check if the image file exists
 if os.path.exists('static/image.png'):
 return jsonify({'message': 'generation complete',
 'image': 'static/image.png'})
 else:
 return jsonify({'message': 'generation running'})

Listing 7: The check generation route

Offline AI Image Generation

31codemag.com

Now let’s focus on the server-side code. On the server-
side code, you need to turn the console application into
a flask application. The idea is that it will serve index.
html. It will serve an image.png from the static folder
when an image is ready. And it will expose three APIs/
routes.

The first route will be start_generation, which is callable
over POST, as you can see in Listing 4. This accepts an
input parameter that is the prompt.

The second route will be check_generation, which the
client will call every five seconds to see if the image is
ready.

The third route will be /image, where the generated im-
age will be served.

Let’s get started.

First, I separated out my image-generation code and pa-
rameterized it, as can be seen in Listing 5. This is almost
exactly the same code as you’ve already seen in Listing 3.
The only difference is that the prompt is parameterized.
You can make this more flexible by allowing more input
parameters, and perhaps even letting the user pick more
than one model.

Next is the code to start image generation, as can be
seen in Listing 6. This code deletes a previously gener-
ated file, if it exists, and kick starts the image generation
process by calling the generate_image function with the
user-supplied input prompt. When the image is gener-
ated, save it as static\image.png.

In Listing 7, you can see the check_generation route.
Here, you simply check to see if the file is present, which
means that generation is complete. If the file isn’t pres-
ent, it returns generation running: otherwise it returns
generation complete with the name of the generated
image. This code is intentionally simple. In the real world,
you’ll have an authenticated application, tie this to a
user’s session, and generate unique filenames for every
execution. You might even have a clean-up process to re-
move images older than a certain date. Those are typical
in any production application.

Finally, you have the image route, where you serve the
image from the generated file in the static folder. This
can be seen in Listing 8.

Of course, you’ll need a route to serve index.html from the
templates folder, which can be seen in Listing 9.

The full server-side code put together can be seen in List-
ing 10.

Your project is already setup for debugging, so hit F5 to
start debugging. As soon as you hit F5, you should see a
message, like below, in VSCode’s terminal:

* Running on http://127.0.0.1:5000
Press CTRL+C to quit
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 327-338-769

@app.route('/image')
def serve_image():
 return url_for('static', filename='image.png')

Listing 8: The serving image route

@app.route('/')
def index():
 return render_template('index.html')

Listing 9: Default route to serve index.html

from flask import Flask,
 render_template, jsonify, url_for, request
from flask_executor import Executor
from PIL import Image, ImageDraw
import os
import torch
import safetensors
import transformers
import diffusers

app = Flask(__name__)
executor = Executor(app)

Generate the image
def generate_image(generation_prompt):
 model_path = "models/realistic"
 pipe = diffusers.DiffusionPipeline.from_pretrained(
 model_path, torch_dtype=torch.float16,
 safety_checker=None, use_safetensors=False)
 pipe.to("mps")

 image = pipe(
 prompt=generation_prompt,
 negative_prompt="",
 num_inference_steps=30,
 height=768,
 width=512,
 guidance_scale=1.5,
 seed=1876016,
).images[0]

 image.save("static/image.png")

 # Return the filename
 return 'static/image.png'

@app.route('/')
def index():
 return render_template('index.html')

@app.route('/start_generation', methods=['POST'])
def start_generation():
 if os.path.exists('static/image.png'):
 os.remove('static/image.png')
 generation_prompt = request.json['generation-prompt']
 executor.submit(generate_image(generation_prompt))
 return jsonify({'message': 'generating image'})

@app.route('/check_generation')
def check_generation():
 # Check if the image file exists
 if os.path.exists('static/image.png'):
 return jsonify({'message': 'generation complete',
 'image': 'static/image.png'})
 else:
 return jsonify({'message': 'generation running'})

@app.route('/image')
def serve_image():
 return url_for('static', filename='image.png')

if __name__ == '__main__':
 app.run(debug=True)

Listing 10: The full index.py for server side code

Offline AI Image Generation

32 codemag.com

Figure 7: The website is ready.

Figure 8: Purr-man to the rescue! Protecting NYC from evil, one catnap at a time. Figure 9: Melon-choly no more!

Offline AI Image Generation

33codemag.com

I’m serious. Get on the AI bandwagon. Not because you
want to be an AI engineer, but because you want to re-
main relevant. The superpowers you discover will make
you 1000x more productive. I’ll never bother to learn re-
gex now or internalize complex Git commands. LLMs fig-
ure this out for me.

Tell me what real-world tasks you’d like to see AI solve
for you. I’d like to keep a developer focus, and ideally
target solutions that don’t require subscriptions or swip-
ing credit cards.

Hey, PowerPoint! Where is my AI copilot for memes?

More next time. Until then, happy coding!

Now open the browser and visit the http://127.0.01:5000
URL and you should see a web page, as shown in Figure 7.

Ooh, so exciting! Let’s enter a prompt. I used the follow-
ing prompt:

A cat wearing a Batman suit at sunset, fighting crime in
New York, hyper-realistic.

Creative enough? You feel free to try whatever you wish!
My crime fighting kitty can be seen in Figure 8.

Haha! This is fun. Let’s try another prompt. This time,
let’s not go realistic. Let’s go artistic.

Watermelon has arms and legs and is running in a car-
toon.

The results can be seen in Figure 9.

Honestly, I could play with this all day, and there’s so
much more you can add here, things I didn’t even get a
chance to touch upon. For instance, what if you could
show the user not one but four generated images from
the input prompt? Yep, that’s easy: Notice that the gen-
erated image is an array. There are four images there,
so try it!

Then you can take an image as an inspiration and ask
the user to tweak it. For instance, that watermelon looks
cool, but turn it into a Picasso painting, and that would
be image-to-image generation.

What about chaining multiple models together to perform
automated tasks, like enhance certain details, upscale,
and well, what about video?

Can I take an input image, and say, turn it into a short
video, and give an inspiration to the input? Yeah, all that
is possible!

Summary
Here’s an interesting fact for you. The most powerful
supercomputer in the world is called El Capitan. It cost
$600 million to build it, and it needs 28,000 tons of liq-
uid to cool it. It needs 27 megawatts to run it, and I’m
sure it has a building and a dedicated staff to baby sit
it. In terms of Tera/Exa flops, can you believe that this
incredible supercomputer that costs millions and needs
the power of a metropolis to run, is only 320 times more
powerful than an off the shelf M4 max, which runs on
25 watts of power, exactly the kind I used to write this
article?

I could, theoretically speaking, build a server farm of 320
macs for the cost of around 1.6 million USD, and create an
AI farm as powerful as the most powerful supercomputer
ever built.

Now I know it isn’t as simple as that. There’s the issue
of writing specialized software. Are we entering an era
where AI can write this software for me? Believe me, as
a race, we are entering an era that is going to blow our
minds around what is possible in the hands of mere mor-
tal developers.

Advertisers Index

1&1 Internet, Inc.
 www.1and1.com 7

CODE Consulting
 www.codemag.com/techhelp 2, 57

CODE Divisions
 www.codemag.com 75

CODE Framework
 www.codemag.com/framework 49

CODE Magazine
 www.codemag.com/magazine 37, 65

CODE Staffing
 www.codemag.com/staffing 25

dtSearch
 www.dtSearch.com 69

LEAD Technologies
 www.leadtools.com 5

SPTechCon
 www.sptechcon.com 45

ADVERTISERS INDEX

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

This listing is provided as a courtesy
to our readers and advertisers.
The publisher assumes no responsi-
bility for errors or omissions.

SPONSORED SIDEBAR:

CODE Is Hiring!

CODE Staffing is accepting
resumes for various open
positions ranging from
junior to senior roles.

We have multiple
openings and will consider
candidates who seek
full-time employment or
contracting opportunities.
For more information:
www.codestaffing.com.

 Sahil Malik

Offline AI Image Generation

codemag.com34 Building Modern Web Applications Using Blazor ASP.NET Core

ONLINE QUICK ID 2503041

Building Modern Web Applications
Using Blazor ASP.NET Core

Cover ART

codemag.com 35Building Modern Web Applications Using Blazor ASP.NET Core

Cover ART

codemag.com

JavaScript functions from C# and vice versa. This article
will take a deep dive into Blazor and its components, and
then demonstrate how to build modern web applications
using it. It will also discuss the performance and security
considerations, deployment using Docker and Kubernetes,
and the best practices.

If you’re to work with the code examples discussed in this
article, you need the following installed in your system:

• Visual Studio 2022
• .NET 9.0
• ASP.NET 9.0 Runtime

If you don’t already have Visual Studio 2022 installed on
your computer, you can download it from here: https://
visualstudio.microsoft.com/downloads/.

•
At the end of this journey, you’ll be able to build high-
performance, scalable, and secure Blazor applications in
ASP.NET Core 9 and Visual Studio 2022.

Understanding the Problem
While building web applications, you would typically need
server- and client-side components. To create the server-
side components, you might want to use C#, Java, etc.
On the other hand, when building the client-side com-
ponents, you might typically want to use Angular, React,
etc. You need to learn and master two different types of
technologies, one for the server side and one for the cli-
ent side. This makes it difficult to maintain the codebase
over time. See Figure 1 to understand a technology stack
of a typical web application that doesn’t use Blazor.

Blazor is a web framework that allows web developers to
use C# in lieu of JavaScript to create modern web appli-
cations with reusable components that can be executed
on both the client-side and the server-side to provide
optimal web solutions. The Blazor framework is part of
the ASP.NET Core framework and helps in streamlining the
web development process for .NET and C# developers tar-
geting web applications.

An Introduction to Blazor
Blazor, an open-source framework from Microsoft, em-
powers developers to create interactive web applica-
tions using C# and .NET. Blazor employs WebAssembly,
a web standard that permits browser-based code execu-
tion from languages other than JavaScript, creating a
fully featured, high-performance client-side development
environment using C#. By using .NET, Blazor empowers
developers to build full-stack applications encompassing
both client and server components. Such flexibility per-
mits developers to choose the hosting model best suited
to their application’s needs, including client-side render-
ing for interactive interfaces and server-side rendering for
improved performance and scalability.

Blazor provides a modern, efficient, and versatile ap-
proach to web application development. It allows devel-
opers to build interactive, high-performing applications
using C# and the .NET and .NET Core frameworks. By us-
ing its features, tools, and best practices, developers can
streamline development, improve application functional-
ity, and create engaging user experiences across diverse
platforms.

Key Features of Blazor
Here’s a quick look at the key features of Blazor.

Using C# in Lieu of JavaScript Throughout
When using Blazor, developers no longer need to lever-
age multiple development languages, libraries, and tools
when building their applications. Instead, they can use C#
throughout all application layers, both at the server side
and the client-side, thereby eliminating the need to learn
and use JavaScript. Consequently, this reduces the devel-
opment effort, enables you to use the same language for
building your client- and server-side components, thereby
promoting code reuse across different platforms.

Component-Based Architecture
Blazor follows a component-based architecture, facili-
tating code reusability, separation of concerns, modular
design, easy maintenance, and enabling you to build ap-

Figure 1: The technology stack in a typical web
application

Blazor is a modern web framework from Microsoft that was included in .NET 5. It’s used for building interactive web applications
using C# and .NET and it’s based on a flexible, modular component model that’s well-suited for building applications with
rich, interactive web user interfaces. It should be noted that you can still use JavaScript if you’d like to, i.e., you can invoke your

Joydip Kanjilal
joydipkanjilal@yahoo.com

Joydip Kanjilal is an MVP
(2007-2012), software
architect, author, and
speaker with more than
20 years of experience.
He has more than 16 years
of experience in Microsoft
.NET and its related
technologies. Joydip has
authored eight books,
more than 500 articles,
and has reviewed more
than a dozen books.

36 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

ern browsers without using plug-ins. Moreover, you can
execute Blazor Hybrid apps on Windows, macOS, iOS, and
Android platforms using .NET MAUI. Additionally, you can
host your Blazor Server applications on any platform that
provides support for ASP.NET Core.

Render Modes
Blazor leverages render modes to determine the hosting
model to be used, whether the application should be ren-
dered at the server or the client, and whether it’s inter-
active or non-interactive. Blazor supports the following
types of render modes:

• Static server
• Interactive server
• Interactive WebAssembly
• Interactive auto

How Does Blazor Work?
Blazor is a Microsoft framework that allows executing ap-
plications built using C# in a web browser without using
any plug-ins. You can use Blazor to build modern-day ap-
plications using C# as a full-stack development tool. Ap-
plications developed using Blazor run inside the context of
your web browser. Once you compile such an application,
one or more files are loaded into the browser and executed.
Unlike ASP.NET Core, you don't need a specific back-end
component to run your Blazor application. Blazor applica-
tions can access web services using HTTP REST APIs.

A Blazor application is composed of optional reusable
components containing a C#, HTML, and CSS conglom-
erate that can run both on the server and client sides.
These components define the structure and behavior of
the user interface. These are .NET C# classes enclosed in
.NET assemblies supporting event handling logic and user
events that can be reused and also be made available as
Razor class libraries or NuGet packages. Components han-
dle user interaction using events such as button clicks,
which trigger updates to the state of the components.

Blazor WebAssembly
Blazor WebAssembly (WASM) is a single-page application
framework for building cutting-edge client-side web ap-
plications based on .NET that are compatible with all web
browsers. With Blazor WASM, the entire application, from
the application logic to UI elements, its dependencies,
and the .NET Core runtime, is loaded in the web browser.
Anytime you launch the web application or any web page,
the code responsible for the client-side logic and all its
dependencies is also fetched. The source code for .NET
WASM and its dependencies, like C# and Razor files, are
compiled into .NET assemblies, which are then transferred
to your web browser and executed there. It’s preserved
in bytecode format for fast download and execution and
allows interaction with the browser through JavaScript,
using a feature known as JavaScript Interop. Figure 2
shows the components of a typical Blazor Web Assembly
application.

Blazor Server
In the Blazor server hosting model, components run on the
server inside an ASP.NET Core application. Using the Sig-
nalR connection and the WebSockets protocol, you manage
UI changes or updates, events, and JavaScript calls.

plications in a structured manner. These components take
the form of self-contained, reusable units of UI and logic
written in razor syntax, which combines HTML, CSS, and
C#. These components specify your application's logic and
structure, making multilevel web development possible.
In this approach, the source code is divided into smaller
logical pieces that can be used again in the future while
making the applications responsive and interactive.

Authentication and Authorization
Blazor provides support for robust security and data
protection to thwart malicious attackers. It comes with
built-in support for authentication and authorization and
easy integration with OAuth providers, IdentityServer,
and Azure AD. Note that Blazor takes advantage of the
ASP.NET security framework to establish a user's identity.
In Blazor Server apps, the AuthenticationStateProvider
service uses the HttpContext.User API to retrieve authen-
tication state data.

Identity Server is an open-source
framework for implementing
identity and access control in your
.NET applications. It implements
OpenID Connect (OIDC) and
OAuth 2.0 standards, integrates
with ASP.NET Core Identity
framework, and provides a common
way to authenticate requests in
ASP.NET Core applications.

Integration with the .NET Ecosystem
Blazor integrates nicely with the .NET ecosystem, includ-
ing ASP.NET Core, Entity Framework Core, etc. You can
easily share code between the server and client compo-
nents, thereby enhancing maintainability and reducing
code redundancy. Additionally, you can call your JavaS-
cript functions easily from Blazor and integrate Blazor
with JavaScript frameworks and libraries.

Support for Multiple Hosting Models
Blazor supports both client-side and server-side hosting
models, providing flexibility and performance optimiza-
tion based on project requirements. To achieve this, it
supports multiple hosting models, such as the following:

• Blazor WebAssembly (WASM): These applications
can be executed entirely on the client-side in the
browser using WebAssembly.

• Blazor Server: These are applications that run on
the server and can transmit UI updates to the client
components over a SignalR connection.

• Blazor Hybrid: These applications combine the best
of both worlds, i.e., they blend Blazor with .NET
MAUI for building native desktop and mobile apps.

Platform Independence
Applications built in Blazor are platform independent. For
example, you can run Blazor WebAssembly apps in mod-

37Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Use Cases
Here are a few use cases for Blazor applications:

• Single-page applications (SPAs)
• Progressive web apps (PWAs)
• Cross-platform desktop applications
• Real-time applications
• Line-of-business (LOB) applications

What Are Progressive Web
Applications?
Progressive Web Applications (PWAs) are web applications
that provide users with a rich experience regardless of the
platform on which they execute.

The following are the features of PWAs:

• Progressive enhancement: PWAs can work on any
device or platform, enabling an intuitive user expe-
rience on desktops and mobile devices.

• Responsive design: PWAs provide an enriched user
experience by following responsive web design prin-
ciples across devices and platforms.

• Offline support: PWAs can work offline or in areas
with limited connectivity so that you can access the
application even when there’s no connectivity.

Here are the key benefits of PWAs:

• Cross-platform compatibility
• Offline Accessibility
• Enhanced performance
• Cost-effective

There are certain downsides to using PWAs:

• Security concerns
• Limited native support
• Limited user engagement
• Limited discoverability
• Limited browser support

In the application you’ll create later in this article, you
won’t use PWAs for simplicity and brevity.

The Blazor application is hosted on the server, and all
changes or events triggered on the application's brows-
er are simplified and communicated to the server using
SignalR. Although the user interface is rendered to the
web browser, the UI updates and event handling are per-
formed on the server side. Although this is analogous to
traditional web applications, unlike a traditional web ap-
plication, the client and the server communicate over a
SignalR connection, as shown in Figure 3.

Blazor Hybrid
The Blazor Hybrid model enables developers to create
native applications for mobile or desktop using a hybrid
model in which Razor components are executed directly
in the .NET process instead of through WebAssembly. This
approach doesn’t require web assembly to execute your ap-
plication. You can take advantage of .NET native technolo-
gies, such as MAUI and WPF, together with Razor compo-
nents to create your Blazor Hybrid applications. Figure 4
shows the components of a Blazor Hybrid application.

Figure 3: In a Blazor Server app, the client and the server applications communicate using SignalR

Figure 2: The components of a Blazor Web Assembly application

38 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Create a New Blazor Web Assembly Project in .NET 9
and Visual Studio 2022
You can create a project in Visual Studio 2022 in sev-
eral ways, such as from the Visual Studio 2022 Developer
Command Prompt or by launching the Visual Studio 2022
IDE. When you launch Visual Studio 2022, you'll see the
Start window. You can choose Continue without code
to launch the main screen of the Visual Studio 2022
IDE.

Now that you know the basics, let’s start setting up the
project. To create a new ASP.NET Core 8 Project in Visual
Studio 2022:

1. Start the Visual Studio 2022 IDE.
2. In the Create a new project window, select Blazor

Web App and click Next to move on.
3. Specify the project name as Blazor_WebAssembly_

Demo and the path where it should be created in the
Configure your new project window.

4. If you want the solution file and project to be cre-
ated in the same directory, you can optionally check
the Place solution and project in the same direc-
tory checkbox. Click Next to move on.

5. In the next screen, specify the target framework and
authentication type as well. Ensure that the Con-
figure for HTTPS, and Do not use top-level state-
ments checkboxes are unchecked because you won’t
use any of these in this example.

6. Next, specify the Interactive render mode and In-
teractivity location

7. You should ensure that the Include sample pages
checkbox is checked if you would like to have sample
pages added to your project

8. Click Create to complete the process.

A new Blazor Web App project is created. Figure 5 shows
the default solution structure.

When you execute the application, the Home page will
be displayed in the web browser, as shown in Figure 6.

Integrating Blazor WebAssembly
into an Existing ASP.NET Core Web
Application
In this section, you’ll examine how you can integrate a
Blazor WebAssembly application with an existing ASP.NET
Core Web Application.

First, create an ASP.NET Core 9 application in Visual Stu-
dio by following the steps outlined in the next section.

Create a New ASP.NET Core 9 Project in Visual Studio 2022
You can create a project in Visual Studio 2022 in sev-
eral ways, such as from the Visual Studio 2022 Developer
Command Prompt or by launching the Visual Studio 2022
IDE. When you launch Visual Studio 2022, you'll see the
Start window. You can choose Continue without code
to launch the main screen of the Visual Studio 2022
IDE.

Now that you know the basics, let’s start setting up the
project. To create a new ASP.NET Core 8 Project in Visual
Studio 2022:

Figure 4: Components of a Blazor Hybrid application

Figure 5: The solution structure of a Blazor Web
Assembly application

39Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

3. Configure the Blazor WebAssembly App using the
Configure your new project dialog.

4. In the Program.cs file, comment out this line: build-
er.RootComponents.Add<App>("#app");.

5. To enable your ASP.NET Core Web application to use
the Blazor Web Assembly components, add the Blazor
application as a project reference using the Refer-
ence Manager dialog window.

6. Search for the NuGet project Microsoft.AspNetCore.
Components.WebAssembly.Server in the ASP.NET Core
Web application and add install it.

7. Add the following two lines in the Program.cs file:

app.UseBlazorFrameworkFiles();
app.MapFallbackToFile("index.html");

1. Add the following script reference as well:

<script src="_framework/blazor.webassembly.js">
</script>

That’s all you need to do!

In the next section, you’ll create a new Blazor Server ap-
plication in Visual Studio 2022.

Create a New Blazor Server Application in .NET 9 and
Visual Studio 2022
You can create a project in Visual Studio 2022 in sev-
eral ways, such as from the Visual Studio 2022 Developer
Command Prompt or by launching the Visual Studio 2022
IDE. When you launch Visual Studio 2022, you'll see the
Start window. You can choose Continue without code to
launch the main screen of the Visual Studio 2022 IDE.

1. Start the Visual Studio 2022 IDE.
2. In the Create a new project window, select ASP.NET

Core Web API and click Next to move on.
3. Specify the project name as ASPNETCoreBlazor and

the path where it should be created in the Configure
your new project window.

4. If you want the solution file and project to be cre-
ated in the same directory, you can optionally check
the Place solution and project in the same direc-
tory checkbox. Click Next to move on.

5. In the next screen, specify the target framework and
authentication type as well. Ensure that the Con-
figure for HTTPS, Enable Docker Support, Do not
use top-level statements, and the Enable OpenA-
PI support checkboxes are unchecked because you
won’t use any of these in this example.

6. Remember to leave the Use controllers checkbox checked
because you won’t use minimal API in this example.

7. Click Create to complete the process.

A new ASP.NET Core Web API project is created. You’ll use
this project to implement the CQRS pattern in ASP.NET
Core and C#.

Next, create a new Blazor WebAssembly application in the
same solution using the steps outlined in an earlier sec-
tion and follow the steps given below to integrate your
Blazor WebAssembly into the ASP.NET Core Web project.

1. Right-click on the Solution Explorer and select the
Add New Project option to create a new project into
your solution.

2. Next, search for Blazor WebAssembly and select Blazor
WebAssembly App from the search results found.

Figure 6: A Blazor Web Assembly application in execution

40 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

3. Specify the project name as Blazor_Hybrid_Demo
and the path where it should be created in the Con-
figure your new project window.

4. In the next screen, specify the target frame-
work and authentication type as well. Ensure that
the Configure for HTTPS and Do not use top-level
statements checkboxes are unchecked because you
won’t use any of these in this example.

5. If you want the solution file and project to be
created in the same directory, you can optionally
check the Place solution and project in the same
directory checkbox. Click Next to move on.

6. Click Create to complete the process.

Figure 8 shows what the solution structure of the Blazor
Hybrid Application looks like.

You can execute this application in Windows (default) or
your Android and iOS devices. To run this application on
an Android device, follow these steps:

1. From the menu in your Visual Studio IDE, select Tools
> Android > Android Device Manager.

2. When the Android Device Manager is launched, create
a new Android device to run your application.

3. Once the Android Device has been created, click
Start.

Now that you know the basics, let’s start setting up the
project. To create a new ASP.NET Core 8 Project in Visual
Studio 2022:

1. Start the Visual Studio 2022 IDE.
2. In the Create a new project window, select Blazor

Server App and click Next to move on.
3. Specify the project name as Blazor_Server_Demo

and the path where it should be created in the Con-
figure your new project window.

4. In the next screen, specify the target framework and
authentication type as well. Ensure that the Config-
ure for HTTPS and Do not use top-level statements
checkboxes are unchecked because you won’t use any
of these in this example.

5. If you want the solution file and project to be
created in the same directory, you can optionally
check the Place solution and project in the same
directory checkbox. Click Next to move on.

6. Click Create to complete the process.

A new Blazor Server App project is created. Figure 7
shows the default solution structure of the Blazor Server
App you just created.

Create a New Blazor Hybrid Application in .NET 9 and
Visual Studio 2022
Set up a new Blazor Hybrid Application project in Visual
Studio 2022 by following the steps outlined below:

1. Start the Visual Studio 2022 IDE.
2. In the Create a new project window, select .NET

MAUI Blazor Hybrid App and click Next to move on.

Figure 7: The solution structure of a Blazor Server
application

Figure 8: The solution structure of a Blazor Hybrid
application

41Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Implement a Supply Chain
Management Application
Microservices architecture is a structural approach that
organizes an application as a collection of small inde-
pendent services modeled around a business domain that
can communicate with one another, if need be. In this
section, you’ll implement a Supply Chain Management Ap-
plication using ASP.NET Core and Blazor. To do this, follow
these steps:

1. Create the Supply Chain Management System database
2. Build the Solution Structure
3. Create the Product Microservice

a. Create the Product model
b. Create the Product Data Context
c. Seed the Product database table
d. Create the Product Repository
e. Create the Product Controller

6. Create the Supplier Microservice
a. Create the Supplier model
a. Create the Supplier Data Context
a. Seed the Supplier database table
a. Create the Supplier Repository
a. Create the Supplier Controller

2. Install Entity Framework Core
3. Configure the application

a. Specify the database connection string
2. Execute the application

Create the Supply Chain Management System Database
Create a new database called SupplyChainManagement-
System using the following script:

Create database SupplyChainManagementSystem

Next, create the Product, Order, Supplier, and the Ship-
ment database tables inside the SupplyChainManage-
mentSystem database using the script given in Listing 1.

Figure 10 demonstrates the database diagram of the
ShoppingCartSystem database.

4. If you've got multiple emulators created for
your Android device, select your desired emulator
and then click F5 to run the application.

Figure 9 shows the Blazor Hybrid application running in
an Android emulator.

Figure 9: A Blazor Hybrid application running in an
Android emulator

Figure 10: The database design of the SupplyChainManagementSystem database

42 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

In this next section, you’ll create a new Blazor Server Ap-
plication named SupplyChainManagementSystem by fol-
lowing the steps outlined earlier.

The Solution Structure
As evident from the database design, the SupplyChain-
ManagementSystem application is comprised of the Sup-
plier, Product, Shipment, and Order microservices. Each
of these microservices correspond to a module. There are
four modules in this application.

For the sake of simplicity, you’ll create only two of them:
Supplier and Product. Figure 11 shows what the solu-
tion structure looks like.

There are several files and folders in the generated proj-
ect that you can observe when you look at the solution
structure:

• Pages: This solution folder contains Razor compo-
nents or Blazor UI building blocks.

• wwwroot: This solution folder contains static files
like images, CSS, JavaScript etc.

• Program.cs: This file marks the entry point for the
application.

• App.razor: This file represents the root component
that configures routing and layout for your application.

• _Imports.razor: This file represents a Shared Razor
imports file for the entire application.

In the sections that follow, you’ll create the related class-
es and interfaces pertaining to the application you’ll be
building here.

Reorganizing the Project
When you create a standalone Blazor WebAssembly ap-
plication in .NET 9, you’ll not see any option to host it
in ASP.NET Core. Microsoft has removed this option from
.NET 8 onward. If you use .NET 7, you’ll be able to see an
option to host your project in ASP.NET Core, as shown in
Figure 12.

 -- Supplier table

CREATE TABLE Supplier (

 Supplier_Id UniqueIdentifier PRIMARY KEY,
 Supplier_Name VARCHAR(255) NOT NULL,
 Supplier_Address VARCHAR(255) NOT NULL,
 Supplier_Contact VARCHAR(255),
 Supplier_Phone VARCHAR(20),
 Supplier_Email VARCHAR(20)
);

-- Product table

CREATE TABLE Product (

 Product_Id UniqueIdentifier PRIMARY KEY,
 Product_Name VARCHAR(255) NOT NULL,
 Product_Description TEXT,
 Unit_Price DECIMAL(10, 2) NOT NULL,
 Product_Quantity INT NOT NULL
);

-- Order table

CREATE TABLE [Order] (

 Order_Id UniqueIdentifier PRIMARY KEY,
 Product_Id UniqueIdentifier NOT NULL,
 Supplier_Id UniqueIdentifier NOT NULL,
 Order_date DATE NOT NULL,
 Order_Quantity INT NOT NULL,
 FOREIGN KEY (Product_Id) REFERENCES Product(Product_Id),
 FOREIGN KEY (Supplier_Id) REFERENCES Supplier(Supplier_Id)
);

-- Shipment table

CREATE TABLE Shipment (

 Shipment_Id UniqueIdentifier PRIMARY KEY,
 Order_Id UniqueIdentifier NOT NULL,
 Shipment_Date DATE NOT NULL,
 Estimated_Arrival_Date DATE NOT NULL,
 Actual_Arrival_Date DATE,
 FOREIGN KEY (Order_Id) REFERENCES [Order](Order_Id)
);

Listing 1: The Database Script

Figure 11: The solution structure of our Supply Chain
Management System

43Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Once the window pops up, search for the NuGet packages to
add to your project. To do this, type in Microsoft.EntityFrame-
workCore, Microsoft.EntityFrameworkCore.Design, Microsoft.
EntityFrameworkCore.Tools, and Microsoft.EntityFramework-
Core.SqlServer in the search box and install them one after
the other. Alternatively, you can type the commands shown
below at the NuGet Package Manager Command Prompt:

PM> Install-Package
Microsoft.EntityFrameworkCore

PM> Install-Package
Microsoft.EntityFrameworkCore.Design

PM> Install-Package
Microsoft.EntityFrameworkCore.Tools

PM> Install-Package
Microsoft.EntityFrameworkCore.SqlServer

You can also install these packages by executing the fol-
lowing commands at the Windows Shell:

dotnet add package
Microsoft.EntityFrameworkCore
dotnet add package
 Microsoft.EntityFrameworkCore.Design
dotnet add package
 Microsoft.EntityFrameworkCore.Tools
dotnet add package
 Microsoft.EntityFrameworkCore.
SqlServer

Install the NuGet packages in both the SupplyChainMan-
agementSystem.Server and SupplyChainManagement-

When you create a standalone Blazor WebAssembly ap-
plication in .NET 7, you’ll observe three projects created
automatically for you. These are the Server/API project,
the Client project, and a Shared project.

The server project is where we
usually write the back-end logic
(API, services, etc.). The shared
project typically contains libraries
that are used across both the server
and client projects. The client
project is where you build your
user interface components.

You can, however, create these projects in .NET 9 manu-
ally as a workaround. In this example, you’ll create the
following three projects in the solution:

• SupplyChainManagementSystem.Server
• SupplyChainManagementSystem.Client
• SupplyChainManagementSystem.Shared

Install Entity Framework Core
So far, so good. The next step is to install the necessary
NuGet Package(s) for working with Entity Framework Core
and SQL Server. To install these packages into your proj-
ect, right-click on the solution and then select Manage
NuGet Packages for Solution….

Figure 12: Creating a standalone Blazor WebAssembly App in DotNet7

44 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Typically, you should access
the database components in
the server project only. If you’re
to implement authentication and
authorization in your application,
you can (optionally) do that in
the client project.

Create the Model Classes
First off, create two solution folders named Models and
DataAccess. The former will contain one or more model
classes, and the latter will have the data context and
repository interfaces and classes. It should be noted that
you can always create multiple data context classes in the
same project. If your data context class contains many
entity references, it’s a good practice to split the data
context among multiple data context classes rather than
having one large data context class.

Create a new class called Product in a file named Product.
cs inside the Models folder and write the following code
in there:

namespace SCMS.Product.Models
{
 public record Product
 {
 public Guid Product_Id
 { get; set; }

 public string Product_Name
 { get; set; } = default!;

 public string Product_Description
 { get; set; } = default!;

 public string Product_Category
 { get; set; } = default!;

 public decimal Product_Price
 { get; set; } = default!;

 public int Product_Quantity
 { get; set; } = default!;

 public DateTime Created_At
 { get; set; } = DateTime.Now;

 public DateTime Modified_At
 { get; set; } = DateTime.Now;
 }
}

In this implementation, you’ll use only one model class:
Product.

Create the Data Context
In Entity Framework Core (EF Core), a data context is a
component used by an application to interact with the
database and manage database connections, and to query
and persist data in the database. Let’s now create the

System.Client (if you need to use EF Core components)
projects.

Create the Product Microservice
In this example, you’ll build the Product microservice ap-
plication or the Product API. The product microservice
application is composed of the following files:

• Product.cs: The product model that contains do-
main-specific data and (optionally) business logic

• IProductRepository.cs: The IProductRepository in-
terface that contains the declaration of the opera-
tions supported by the product repository

• ProductRepository.cs: The product repository class
that implements the members of the IProductRepos-
itory interface

• ProductDbContext.cs: The product data context
used to perform CRUD operations for the Product
table in the database

• appsettings.json: The application’s settings file
where you can configure the database connection
string, logging metadata, etc.

• Program.cs: Any ASP.NET Core application contains
a file where the startup code required by the appli-
cation resides. This file is named Program.cs where
the services required by your application are con-
figured. You can specify dependency injection (DI),
configuration, middleware, and much more informa-
tion in this file.

Specify the Database Connection String
Your application requires a connection string to establish
a connection to the database which, in turn, contains the
necessary information about the database connection and
any initialization parameters sent by a data provider to a
data source. Typically, a connection string contains the
name of the database to connect to, the instance name of
the database server where the database resides, and some
other settings pertaining to security of the database.

In ASP.NET Core, the application's settings are stored in
a file known as appsettings.json. This file is created by
default when you create a new ASP.NET Core project. You
can take advantage of the ConnectionString property to
retrieve or store the connection string for a database. You
can specify the connection string in the appsettings.json
file, as shown below:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "ConnectionStrings": {
 " DefaultConnection":
 "Write your connection string here."
 },
 "AllowedHosts": "*"
}

You’ll use this connection string to enable the applica-
tion to connect to the database in a section later in this
article.

45Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Hosting Models in Blazor

Blazor offers a range of
hosting models and gives
flexibility to developers in
terms of whether to host
the application on the client-
side or on the server-side.
The supported hosting
models are Blazor Server
and Blazor WebAssembly.

project. You can get it from here: https://www.nuget.org/
packages/bogus.

The following code snippet illustrates how you can gener-
ate data using random data from the Bogus library.

private Product[]
GenerateProductData()
{
 var productFaker = new Faker
 <SCS.Product.Models.Product>()
 .RuleFor(x => x.Product_Id,
 f => Guid.NewGuid())
 .RuleFor(x =>
 x.Product_Name, f =>
 f.Commerce.ProductName())

 .RuleFor(x => x.Product_Description,
 f => f.Commerce.ProductDescription())

 .RuleFor(x => x.Product_Category,
 f => f.Commerce.ProductMaterial())

 .RuleFor(x => x.Product_Price,
 f => Math.Round(f.Random.Decimal
 (1000, 5000), 2));

 return productFaker.
 Generate(count: 5).ToArray();
}

Invoke the GenerateProductData method in the OnModel-
Creating method to populate the database with randomly
generated data, as shown in the following piece of code:

protected override void
OnModelCreating
(ModelBuilder modelBuilder)
{
 modelBuilder.Entity
 <Models.Product> ().
 ToTable("Product");

 modelBuilder.Entity
 <Models.Product> ().
 HasKey(p => p.Product_Id);

 var products =
 GenerateProductData();

 modelBuilder.Entity
 <Models.Product> ().
 HasData(products);
}

The complete source code of the ProductDbContext class
is given in Listing 2.

Register the ProductDb data context instance as a service
with the services container of ASP.NET Core using the fol-
lowing piece of code in the Program.cs file:

builder.Services.AddDbContext
<ProductDbContext>(options =>
{
 options.UseSqlServer(

data context class to enable the application to interact
with the database to perform CRUD (Create, Read, Update,
and Delete) operations.

To do this, create a new class named ProductDbContext
that extends the DbContext class of EF Core and write the
following code in there:

public class ProductDbContext: DbContext
{
 public DbSet <Product>
 Products { get; set; }

 protected override void OnConfiguring
 (DbContextOptionsBuilder optionsBuilder)
 {
 base.OnConfiguring (optionsBuilder);
 }
}

In the preceding piece of code, the statement base.
OnConfiguring(optionsBuilder) calls the OnConfiguring
method of the base class of your ProductDbContext. Be-
cause the base class of the ProductDbContext class is Db-
Context, the call does nothing in particular.

You can specify your database connection string in the
OnConfiguring overloaded method of the ProductDbCon-
text class. However, in this implementation, you’ll store
the database connection settings in the AppSettings.json
file and read it in the Program.cs file to establish a data-
base connection.

Note that your custom data context class (the Product-
DbContext class, in this example), must expose a public
constructor that accepts an instance of type DbContext
Options<ApplicationDbContext> as an argument. This is
needed to enable the runtime to pass the context con-
figuration using a call to the AddDbContext() method to
your custom DbContext class. The following code snippet
illustrates how you can define a public constructor for
your data context class.

public ProductDbContext
(DbContextOptions
<ProductDbContext> options,
IConfiguration configuration) :
base(options)
{
 _configuration = configuration;
}

Seed the Database
You might often want to work with data seeding when us-
ing Entity Framework Core (EF Core) to populate a blank
database with an initial or minimal data set. Data seeding
is a one-time process of loading data into a database.
The EF Core framework provides an easy way to seed the
data using the OnModelCreating() method of the DbCon-
text class.

To generate fake data in your ASP.NET Core application,
you can take advantage of the Bogus open-source library.
It helps you to seed your database by taking advantage
of randomly generated but realistic data. To use this li-
brary, you install the Bogus library from NuGet into your

46 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

{

}

In the model classes (both Product
and Supplier), you’ve used record
type. The reason is that a record
type is an immutable, lightweight
data type and much more efficient
compared to a class type or even
a struct type as far as performance
and data integrity is concerned.

The ProductRepository class, illustrated in the code
snippet below, implements the methods of the IProduc-
tRepository interface. Here is how the IProductRepository
interface should look:

using SupplyChainManagementSystem.Shared.Models;
using System.Collections.Generic;

namespace SupplyChainManagementSystem.Server.Data
{
 public interface IProductRepository
 {
 public Task<List<Product>>
 GetAllProductsAsync();

 public Task<Product>
 GetProductByIdAsync(Guid id);

 public Task CreateAsync (Product product);

 builder.Configuration
 ["ConnectionStrings:DefaultConnection"]);
});

If your application needs to perform multiple units of
work, it’s advisable to use a DbContext factory instead. To
do this, register a factory by calling the AddDbContext-
Factory method in the Program.cs file of your project, as
shown in the following code example:

builder.Services.AddDbContextFactory
<ProductDbContext>(options =>
{
 options.UseSqlServer
(builder.Configuration
["ConnectionStrings: DefaultConnection"]);
});

Create, Update, and Delete Products
Now that you know how to query data from the Product
database table, let’s understand how you can create a new
product record, update an existing product record, and
delete a product record from the database. To do this, you
need to create commands to handle each of the Create,
Update, and Delete operations.

Create the ProductRepository Class
A repository class is an implementation of the Repository
design pattern and is one that manages data access. The
application takes advantage of the repository instance to
perform CRUD operations against the database. Now, cre-
ate a new class named ProductRepository in a file having
the same name with a .cs extension. Then write the fol-
lowing code in there:

public class ProductRepository :
IProductRepository

using Bogus;
using Microsoft.EntityFrameworkCore;
using SupplyChainManagementSystem.Shared.Models;

namespace SupplyChainManagementSystem.Server.Data
{

 public class ProductDbContext : DbContext
 {
 private readonly IConfiguration _configuration;

 public ProductDbContext(DbContextOptions
 <ProductDbContext> options,
 IConfiguration configuration) : base(options)
 {
 _configuration = configuration;
 }

 protected override void
 OnConfiguring(DbContextOptionsBuilder
 optionsBuilder)
 {
 _ = optionsBuilder.UseSqlServer(_configuration.

 GetConnectionString("DefaultConnection")).
 EnableSensitiveDataLogging();
 }

 public DbSet<Product> Products { get; set; }
 protected override void OnModelCreating
 (ModelBuilder modelBuilder)
 {

 modelBuilder.Entity<Product>().ToTable("Product");
 modelBuilder.Entity<Product>().HasKey(p =>
 p.Product_Id);

 var products = GenerateProductData();
 modelBuilder.Entity<Product>().HasData(products);
 }

 private Product[] GenerateProductData()
 {
 var productFaker = new Faker<Product>()
 .RuleFor(x => x.Product_Id, f => Guid.NewGuid())
 .RuleFor(x => x.Product_Name, f =>
 f.Commerce.ProductName())
 .RuleFor(x => x.Product_Description, f =>
 f.Commerce.ProductDescription())
 .RuleFor(x => x.Product_Category, f =>
 f.Commerce.ProductMaterial())
 .RuleFor(x => x.Product_Price, f =>
 Math.Round(f.Random.Decimal(1000, 5000), 2));
 return productFaker.Generate(count: 5).ToArray();
 }
 }
}

Listing 2: The ProductDbContext class

47Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

• Supplier.cs: The supplier model that contains do-
main-specific data and (optionally) business logic

• ISupplierRepository.cs: The ISupplierRepository
interface that contains the declaration of the opera-
tions supported by the product repository

• SupplierRepository.cs: The supplier repository
class that implements the members of the ISuppli-
erRepository interface

• SupplierDbContext.cs: The supplier data context
used to perform CRUD operations for the Supplier
table in the database

• appsettings.json: The application’s settings file
where you can configure the database connection
string, logging metadata, etc.

• Program.cs: Any ASP.NET Core application contains
a file where the startup code required by the appli-
cation resides. This file is named Program.cs where
the services required by your application are con-
figured. You can specify dependency injection (DI),
configuration, middleware, and much more informa-
tion in this file.

Create the Supplier Class
Create a new class named Order in a file having the same
name with a .cs extension and write the following code
in there:

public class Supplier
{
 public Guid Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
}

The other entity classes are not being shown here for
brevity and also because this is a minimalistic implemen-
tation to illustrate a microservices-based application with
just two modules: Product and Supplier.

Seed the Database
The following code snippet illustrates how you can gen-
erate random supplier data using random data from the
Bogus library:

private Supplier[]
GenerateSupplierData()
{
 var supplierFaker =

 public Task UpdateAsync (Product product);
 public Task DeleteAsync (Product product);
 }
}

The complete source code of the ProductRepository class
is given in Listing 3.

Create the ProductController Class
Now, create a new controller named ProductController in
the Controllers folder of the project. The following code
snippet shows how you can take advantage of constructor
injection to pass an instance of type IProductRepository
interface using the constructor and then use it to retrieve
all product records from the database.

public class ProductController : Controller
{
 private IProductRepository _productRepository;
 public ProductController(IProductRepository
 productRepository)
 {
 _productRepository = productRepository;
 }
}

The complete source of the ProductController class is
given in Listing 4.

Create the Supplier Microservice
In this example, you’ll build the Product microservice ap-
plication or the Product API. The product microservice
application is composed of the following files:

using SupplyChainManagementSystem.Shared.Models;

namespace SupplyChainManagementSystem.Server.Data
{
 public class ProductRepository
 {
 private readonly
 ProductDbContext _productDbContext;
 public ProductRepository(
 ProductDbContext productDbContext)
 {
 _productDbContext = productDbContext;
 }

 public async Task<List<Product>> GetProducts()
 {
 return await Task.FromResult(
 _productDbContext.Products.ToList());
 }

 public async Task<Product> GetProduct(Guid Id)
 {
 return await Task.FromResult
 (_productDbContext.Products.FirstOrDefault(
 x => x.Product_Id == Id));
 }
 }
}

Listing 3: The ProductRepository class

[Route("api/[controller]")]
[ApiController]
public class ProductController : Controller
{
 private IProductRepository _productRepository;
 public ProductController
 (IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }

 [HttpGet("GetProducts")]
 public async Task<List<Product>> GetProducts()
 {
 return await _productRepository.GetProducts();
 }
}

Listing 4: The ProductController class

48 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

 var suppliers = GenerateSupplierData();
 modelBuilder.Entity<Supplier>
 ().HasData(suppliers);
}

The complete source code of the SupplierDbContext class
is given in Listing 5.

Lastly, register the SupplierDb data context instance with
the services container of ASP.NET Core using the following
piece of code in the Program.cs file:

builder.Services.AddDbContext
<SupplierDbContext>
(options =>
{

 options.UseSqlServer(
 builder.Configuration
 ["ConnectionStrings:DefaultConnection"]);
});

Create the ISupplierRepository Interface
Create a new .cs file named ISupplierRepository in your
project and replace the default generated code with the
following code snippet:

public interface ISupplierRepository
{
 public Task<List<Supplier>> GetSuppliers();
 public Task<Supplier> GetSupplier(int Id);
}

Create the SupplierRepository Class
Now create a new class named SupplierRepository in a
file having the same name with a .cs extension. Write the
following code in there:

 new Faker<Supplier>()

 .RuleFor(x => x.Supplier_Id,
 f => Guid.NewGuid())

 .RuleFor(x => x.Supplier_Name,
 f => f.Person.FullName)

 .RuleFor(x => x.Supplier_Address,
 f => f.Person.Address.ToString())

 RuleFor(x => x.Supplier_Phone,
 f => f.Person.Phone)

 .RuleFor(x => x.Supplier_Email,
 f => f.Person.Email);

 return supplierFaker.Generate
 (count: 5).ToArray();
}

Next, invoke the GenerateSupplierData method in the
OnModelCreating method to populate the database with
randomly generated supplier data, as shown in the follow-
ing piece of code:

protected override void
OnModelCreating
(ModelBuilder modelBuilder)
{
 modelBuilder.Entity<Supplier>
 ().ToTable("Supplier");

 modelBuilder.Entity
 <Supplier>().HasKey(s =>
 s.Supplier_Id);

using Bogus;
using Microsoft.EntityFrameworkCore;
using SupplyChainManagementSystem.Shared.Models;

namespace SupplyChainManagementSystem.Server.Data
{
 public class SupplierDbContext : DbContext
 {
 private readonly IConfiguration _configuration;

 public SupplierDbContext(DbContextOptions
 <SupplierDbContext> options,
 IConfiguration configuration) : base(options)
 {
 _configuration = configuration;
 }

 protected override void
 OnConfiguring(DbContextOptionsBuilder
 optionsBuilder)
 {

 _ = optionsBuilder.UseSqlServer
 (_configuration.
 GetConnectionString("DefaultConnection")).
 EnableSensitiveDataLogging();
 }

 public DbSet<Supplier> Suppliers { get; set; }

 protected override void OnModelCreating
 (ModelBuilder modelBuilder)

 {

 modelBuilder.Entity<Supplier>().ToTable("Supplier");
 modelBuilder.Entity<Supplier>().HasKey(s =>
 s.Supplier_Id);

 var suppliers = GenerateSupplierData();
 modelBuilder.Entity<Supplier>().HasData(suppliers);
 }

 private Supplier[] GenerateSupplierData()
 {
 var supplierFaker = new Faker<Supplier>()
 .RuleFor(x => x.Supplier_Id,
 f => Guid.NewGuid())
 .RuleFor(x => x.FirstName, f =>
 f.Person.FirstName)
 .RuleFor(x => x.LastName, f =>
 f.Person.LastName)
 .RuleFor(x => x.Address, f =>
 f.Person.Address.ToString())
 .RuleFor(x => x.Phone, f =>
 f.Person.Phone)
 .RuleFor(x => x.Email, f =>
 f.Person.Email);

 return supplierFaker.Generate
 (count: 5).ToArray();
 }
 }
}

Listing 5: The SupplierDbContext class

SPONSORED SIDEBAR:

AI Executive Briefing

Experience the game-
changing impact of
AI through CODE
Consulting’s Executive
Briefing service. Uncover
the immense potential and
wide-ranging benefits of
AI in every industry.
Our briefing provides
strategic guidance for
seamless implementation,
covering crucial aspects
such as infrastructure,
talent acquisition,
and leadership.

Discover how to effectively
integrate AI and propel
your organization into
future success.

Contact us today to
schedule your executive
briefing and embark
on a journey of
AI-powered growth.
www.codemag.com/ai

49Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

 return await Task.FromResult(suppliers);
}

public async Task<Order> GetSupplier(int Id)
{
 return await Task.FromResult(suppliers.
 FirstOrDefault(x => x.Id == Id));
}

The complete source code of the SupplierRepository class
is given in Listing 6.

Create the SupplierController Class
Now, create a new controller named SupplierController
in the Controllers folder of the project. The Supplier-
Controller exposes a couple of action methods to enable
consuming one or more supplier records from a client ap-
plication. Similar to the ProductController class, you’ll
leverage constructor injection to build an instance of
the SupplierRepository class and then use it to retrieve
supplier data from the database, as shown in the code
snippet given below:

public class SupplierController :
Controller
{
 private ISupplierRepository
 _supplierRepository;

 public SupplierController
 (ISupplierRepository
 supplierRepository)
 {
 _supplierRepository =
 supplierRepository;
 }
}

The complete source of the SupplierController class is
given in Listing 7.

Register the Service Instances with
IServiceCollection
The following code snippet illustrates how you can reg-
ister the IRequestHandler instances added as a transient
service to the IServiceCollection:

builder.Services.AddScoped
<IProductRepository,
ProductRepository>();

Register the IProductRepository instance with the service
collection, as shown below:

builder.Services.AddScoped
<IProductRepository, ProductRepository>();

The following code snippet illustrates how an instance of
type ISupplierRepository is added as a scoped service to
the IServiceCollection:

builder.Services.AddScoped
<ISupplierRepository,
SupplierRepository>();

public class SupplierRepository :
ISupplierRepository
{

}

The SupplierRepository class, illustrated in the code snip-
pet below, implements the methods of the ISupplierRe-
pository interface.

public async Task<List<Supplier>> GetSuppliers()
{

[Route("api/[controller]")]
[ApiController]
public class SupplierController : ControllerBase {
 private ISupplierRepository _supplierRepository;
 public SupplierController
 (ISupplierRepository supplierRepository)
 {
 _supplierRepository = supplierRepository;
 }

 [HttpGet("{id}")]
 public async Task<Supplier> GetSupplier(int id)
 {
 return await _supplierRepository.GetSupplier(id);
 }

 [HttpGet("GetSuppliers")]

 public async Task<List<Supplier>> GetSuppliers()

 {

 return await _supplierRepository.GetSuppliers();

 }

}

Listing 7: The SupplierController class

using SupplyChainManagementSystem.Shared.Models;
namespace SupplyChainManagementSystem.Server.Data
{
 public class SupplierRepository : ISupplierRepository
 {
 private readonly
 SupplierDbContext _supplierDbContext;
 public SupplierRepository(
 SupplierDbContext supplierDbContext)
 {
 _supplierDbContext = supplierDbContext;
 }

 public async Task<List<Supplier>> GetSuppliers()
 {
 return await Task.FromResult(
 _supplierDbContext.Suppliers.ToList());
 }

 public async Task<Supplier> GetSupplier(Guid Id)
 {
 return await Task.FromResult
 (_supplierDbContext.Suppliers.
 FirstOrDefault(
 x => x.Supplier_Id == Id));
 }
 }
}

Listing 6: The SupplierRepository class

50 Building Modern Web Applications Using Blazor ASP.NET Core

codemag.com

Execute the SupplierChain-
ManagementSystem Application
Finally, run the application by pressing the F5 key on your
keyboard. When the application executes, you’ll observe
the Home page displayed, as shown in Figure 13.

Where Do We Go from Here?
Blazor is a feature-rich contemporary framework and cut-
ting-edge technology that avoids dealing with the nitty-
gritty of developing interactive web apps. It supports
both client-side and server-side hosting models, provid-
ing flexibility, enhanced performance, and the ability to
build full-stack applications in .NET and C#.

The complete source code of the Program.cs file is given
in Listing 8.

using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using SupplyChainManagementSystem.Server.Data;
using SupplyChainManagementSystem.Server.Models;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllers();

builder.Services.AddDbContext<ApplicationDbContext>(
 options => options.UseSqlServer(
 builder.Configuration.GetConnectionString
("DefaultConnection")));

builder.Services.AddIdentity<ApplicationUser,
IdentityRole>().AddEntityFrameworkStores

<ApplicationDbContext>();

builder.Services.AddScoped<IProductRepository,
ProductRepository>();

builder.Services.AddScoped<ISupplierRepository,
SupplierRepository>();

var app = builder.Build();

// Configure the HTTP request pipeline.

app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();

app.Run();

Listing 8: The Program.cs file (Server/API project)

Figure 13: The SupplyChainManagementSystem application in execution

You can implement authentication
in your Blazor application using
the built-in authentication
provided by Microsoft. If you
already have a Blazor application,
you can’t follow this approach to
implement authentication in your
Blazor applications. It’s preferable
to implement an out-of-the-box
authentication to overcome
the limitations of this approach.

 Joydip Kanjilal

51Building Modern Web Applications Using Blazor ASP.NET Core

52 codemag.comBoost Your iOS App Development with ChatGPT AI-Assistance

ONLINE QUICK ID 2503051

Kevin J. McNeish
kevin@oakleafdigitalsoft-
ware.com
www.oakleafdigitalsoft-
ware.com/blog
@twitter.com/kjmcneish

Kevin McNeish is author
of “Coding iOS Apps with
ChatGPT” and numerous
other books and articles.
A seven-time Microsoft
MVP awardee, Kevin is
an accomplished interna-
tional conference speaker
and President of Oak Leaf
Digital, a software
company specializing
in innovative solutions.
Kevin also teaches in-
person seminars, em-
powering developers to
maximize the potential
of ChatGPT in their work.

Boost Your iOS App Development
with ChatGPT AI-Assistance
The genie’s out of the bottle and there’s no turning back! If you haven’t tried AI-assisted programming yet, now is a great time
to dive in. Tools such as ChatGPT have come a long way from their inception. You’ll be amazed at how much more productive
you’ll be and wonder how you ever managed without them. The genie’s out of the bottle and there’s no turning back!

If you haven’t tried AI-assisted programming yet, now is
a great time to dive in. Tools such as ChatGPT have come
a long way from their inception. You’ll be amazed at how
much more productive you’ll be and wonder how you ever
managed without them.

In this article, I explore practical applications of ChatGPT
for iOS app development, debunk common myths, and
showcase its potential and pitfalls as a coding partner.
Whether you’re new to ChatGPT or already familiar with it,
you’ll find valuable information about recently released
features, including Projects and Canvas Mode. This article
specifically highlights the capabilities of ChatGPT Plus
and GPT-4 Turbo, unlocking new levels of efficiency and
creativity.

ChatGPT: Fear and Loathing
I’ve encountered some negative reactions when discuss-
ing AI-assisted programming with some developers. This
resistance is a common response to disruptive technolo-
gies. One argument I often hear is “A developer worth
their salt doesn’t need ChatGPT.” I believe this sentiment
stems in part from the negative publicity ChatGPT received
early on, including stories of students using it to write es-
says, complete assignments, and pass exams, passing off
the AI-generated work as their own. As a result, some
developers equate using ChatGPT with cheating or, worse,
as an admission of inadequacy and incompetence.

In response, I make the point that ChatGPT is just another
tool in a developer’s arsenal. It helps you perform your
usual tasks faster and more accurately. Not using ChatGPT
is like refusing to upgrade to a newer compiler that’s bet-
ter at finding coding errors—it’s a missed opportunity to
enhance your productivity and code quality. Just as an
improved compiler can catch subtle bugs, suggest optimi-
zations, or provide clearer error messages, ChatGPT serves
as a coding assistant that improves your efficiency. It can
help debug tricky issues, generate boiler plate code, or
even clarify complex programming concepts, giving you
more time to focus on solving challenging problems.

Then there’s the fear that AI will make coders obsolete.
I talked to one aspiring programmer who decided not to
pursue a career in coding believing that tools like Chat-
GPT would handle all coding tasks, leaving little need for
human input. I think this speaks to a lack of awareness
of AI’s limitations. AI is far from replacing the creative,
human-centric aspects of development. Programming of-
ten involves deeply understanding business needs, solv-
ing ambiguous problems, and crafting creative and ef-
ficient solutions—areas where human developers excel.

ChatGPT enhances efficiency and creativity, but doesn’t
replace critical thinking or domain expertise.

ChatGPT enhances efficiency and
creativity, but doesn’t replace critical
thinking or domain expertise.

Ultimately, ChatGPT doesn’t “think” or innovate; it assists
with repetitive or time-consuming tasks, leaving humans
to focus on innovation and strategy. Understanding what
AI encompasses helps contextualize its role. Artificial in-
telligence refers to systems or machines that simulate
human intelligence to perform tasks. AI can be catego-
rized into:

• Narrow AI (Weak AI): Focused on specific tasks,
such as language processing, or image recognition.
ChatGPT falls into this category.

• General AI (Strong AI): A hypothetical future sys-
tem capable of performing any intellectual task a
human can do, including reasoning and self-aware-
ness.

ChatGPT is Narrow AI, specializing in generating and
understanding natural language rather than possessing
human-like intelligence.

Throughout this article and in those to come, I’ll high-
light the limitations and strengths of using AI as a tool.
Ultimately, ChatGPT isn’t coming for your job, but people
who know how to leverage it are.

ChatGPT isn’t coming for your job,
but developers who know how
to leverage it are.

ChatGPT Free vs. Paid Version
Although there’s a free version of ChatGPT available, I
highly recommend subscribing to ChatGPT Plus for $20
per month. The free version (GPT-3.5) has decent capa-
bilities, but the tools you really need are in GPT-4 Turbo
with ChatGPT Plus.

53codemag.com Boost Your iOS App Development with ChatGPT AI-Assistance

look at some of these features and how they can enhance
your app development.

Working with the Projects Feature
Projects, introduced on December 13, 2024 during Ope-
nAI’s 12 Days of OpenAI event, provide a structured
workspace for managing long-term or multi-step tasks.
Projects lets you keep related work organized, including
files and datasets, as well as group multiple conversa-
tions-related topics. ChatGPT Plus users can create an
unlimited number of projects.

In Figure 1, you can see a list of projects in the left panel
of the ChatGPT Desktop window.

I’ve created projects for:

• My book, Coding iOS Apps with ChatGPT
• A training seminar I’m giving in Germany
• This series of CODE Magazine articles

These folders allow me to keep the different projects I’m
working on organized. When I switch tasks during my
workday, I just click the project I want to work on and
begin interacting with ChatGPT.

Let’s create a new project to see how this works.

1. Hover your mouse over Projects in the sidebar and
click the plus (+) button that appears. This displays
a New Project dialog, as shown in Figure 2.

Here are the extras you get with ChatGPT Plus that you
don’t get with the free version, which I outline in more
detail in the next section:

• Projects: Organizes and manages work by creating
persistent, structured spaces for related tasks, docu-
ments, and code. It’s ideal for long-term project like
app development.

• Coding Assistance: It possesses far more compre-
hensive understanding and debugging of complex
code, refactoring large codebases, and designing
intricate software patterns.

• Larger Context Window: The free version of Chat-
GPT can only handle shorter snippets of code (ap-
proximately 4,096 tokens or pieces of text). In con-
trast, ChatGPT-4 Turbo processes 128,000 tokens,
handling longer code files and project discussions.

• Image Inputs: Analyzes and responds to questions
about uploaded images.

• Document Analysis: Reviews and extracts informa-
tion from uploaded documents.

• Advanced Coding Assistance: Has enhanced reasoning
capabilities for complex coding tasks and debugging.

• DALL-E Image Generation: Creates and edits im-
ages directly in the chat, including editing specific
parts of an image.

• Canvas Mode: Provides a dedicated workspace for
editing long-form content or working on code col-
laboratively.

Given the obvious advantages over the free version, this
article focuses on ChatGPT-4 Turbo. Let’s take a closer

Figure 1: ChatGPT lists the projects you create in its left-hand side bar.

54 codemag.com

icon appears that, when clicked, allows you to set the
color of the project folder in the side panel. You can also
hover over the project name, click the pencil icon that
appears and change the name of the project.

Adding Project Instructions
You can tailor ChatGPT’s responses within a project by
adding instructions. For example:

• Follow Swift API Design Guidelines, using camelCase
for variables and PascalCase for classes and structs.

• The app must support iOS 17 and later.
• Use SwiftUI for building the user interface, with re-

usable components.
• Use Alamofire for networking.
• Use ObservableObject for state management.
• Ensure offline caching is implemented using Core-

Data.

After specifying instructions, ChatGPT actively uses them
as a reference when answering project-specific questions.
Let’s try out this feature.

1. In the Project panel, click the Add Instructions but-
ton.

2. In the Instructions dialog (Figure 4), enter When
answering questions about the JSON files in this
project, display responses in YAML format unless
specified otherwise.

2. Enter the name of the project (for example, ChatGPT
Demo Project).

3. Click the Create project button.

This displays your new project in the Project Panel on the
right (Figure 3). At the top-left of the Project Panel is a
folder. If you hover your mouse over this folder, a pencil

Figure 3: Creating or selecting a project displays the Project Panel on the right.

Figure 2: ChatGPT Plus-tier users can create an unlimited number of projects.

Boost Your iOS App Development with ChatGPT AI-Assistance

55codemag.com

pages of mobile app exceptions logged in Sentry.io and
ask ChatGPT for insights, like “What percentage of errors
are being caused by nullable exceptions?” ChatGPT’s an-
swers help me get the big picture of where I should con-
centrate my efforts. Similarly, I can upload a screenshot
of an Xcode Instruments Performance Report to identify
high memory usage or excessive CPU consumption and
get optimization recommendations.

ChatGPT excels at processing uploaded documents, such
as PDFs and Word documents, offering capabilities for ex-
tracting, summarizing, and analyzing data. For example,
although ChatGPT didn’t write my latest book, I uploaded
the draft Word document and asked it to check for spelling
and grammatical errors. Its multi-lingual abilities are also
impressive; I recently, received PDF documents in German
from two hotels for a seminar I’m holding in Germany. I
uploaded both documents and asked ChatGPT to give me an
overview of each contract to help me decide on the venue.
It did a great job of translating the documents into English
and giving me a list of pros and cons for each hotel.

3. Click Save to add this instruction to the project. This
displays the first several words of the instruction in
the Instructions UI control.

In the next section, you’ll add a JSON file for ChatGPT
to analyze and process so you can see this instruction
at work.

You can tailor ChatGPT’s responses
within a project by adding
instructions.

Adding Project Documents and Files
In October 2023, OpenAI expanded ChatGPT’s ability to
interpret and respond to visual inputs such as diagrams,
screenshots, and handwritten notes—features I use ev-
ery day. For example, I can take screenshots of several

Figure 4: Add instructions to tailor the way ChatGPT responds to questions in your project.

Figure 5: You can upload documents and files associated with a project for ChatGPT to analyze.

Boost Your iOS App Development with ChatGPT AI-Assistance

56 codemag.com

Figure 6: Analyze file contents by asking ChatGPT specific questions.

Figure 7: The new ChatGPT canvas provides a dedicated workspace for editing long-form content.

Boost Your iOS App Development with ChatGPT AI-Assistance

57codemag.com

ChatGPT responds by summarizing the projects in YAML
format, as specified in the project instructions (Figure 6).

You can also try questions like:

• Show me all team members and their roles.
• Show me all tasks assigned to John Doe.
• What projects haven’t started yet?
• Calculate the total duration of each project.

These features make ChatGPT a power tool for analyzing
project data and extracting actionable insights from up-
loaded files.

Canvas Mode
Canvas Mode is one of ChatGPT’s most powerful features,
providing a dedicated workspace for editing long-form
content or collaborating on code. This mode is espe-
cially useful for managing complex projects, providing
developers with tools to organize and visualize their
work.

Here are some of the key features of Canvas Mode:

• Focused Editing: Canvas Mode allows you to view
and edit your code or content in a distraction-free
environment, which is ideal for managing extensive
codebases or lengthy documentation.

• Collaboration: If you have an enterprise version of
ChatGPT, you can collaborate with team members by

If you want to use this feature for your projects, the Add
files option in ChatGPT’s Projects panel is the best way to
upload documents or datasets. Let’s kick the tires on this
feature. In the download files for this article (on www.
CODEMag.com), there’s a project_data.json file that con-
tains a fictional dataset about projects, tasks, and team
members.

Here are the steps to upload a file:

1. In the Projects panel, click the Add files button to
open the Project files dialog (Figure 5).

2. Click the Add files button.
3. Navigate to the folder that contains the project_

data.json file, select it, and then click Open.
4. An upload progress indicator appears. Once the up-

load is complete, an icon indicating the file type is
displayed.

5. Close the dialog by clicking the X in the top-right
corner.

After uploading, the UI displays: Project files – 1 file.

With the file uploaded, you can query its contents. Try
entering the following command in the Chat Input field:
Summarize the projects in the project data JSON file,
including their names, descriptions, and statuses.

Click the Send button (up arrow) in the bottom-right cor-
ner of the Chat Input Field to send the request.

Figure 8: ChatGPT animates code updates in a canvas.

Boost Your iOS App Development with ChatGPT AI-Assistance

58 codemag.com

At the bottom right corner of the canvas is an action
menu. Hover over it to access several options (Figure 9).

• Add Comments: Automatically inserts comments
into your code in the canvas

• Add Logs: Adds print() statements to your code to
track key events in your app

• Fix Bugs: Analyzes the code file line by line to de-
tect and fix bugs

• Port to a Language: Opens a popup to select a tar-
get language: PHP, C++, Python, JavaScript, Type-
Script, Java. It then creates a new canvas with the
converted code.

• Code Review: Reviews the code line by line, adding
comments with suggestions for improvement

For instance, selecting Add Comments and Add Logs re-
sults in automatically annotated code with well-placed
log statements, as shown in Figure 10. Although the
comments exceed what you normally write, the logging
statements are well placed.

The Code Review is an interesting option—especially
when ChatGPT reviews the code it generated itself. Fig-
ure 11 shows the result of this code review. As you can

sharing the canvas workspace. Changes appear in
real-time, making it easier to co-develop or review.

• Version Tracking: Canvas Mode saves changes as it-
erations, making it easy to revert to previous ver-
sions. This feature is crucial for maintaining code
integrity during iterative development.

• Enhanced Visualization: With syntax highlighting,
formatting options, and structured file organization,
Canvas Mode makes it easy to navigate large projects.

To create a new canvas, type the following in the ChatGPT
chat window: Create a blank canvas with a simple Swif-
tUI Hello World view in it.

When you do this, the ChatGPT sidebar disappears, the
Chat window takes its place, and the canvas appears on
the right side of the screen, as shown in Figure 7.

Now you can manually edit the code in the canvas or ask
ChatGPT to make modifications. For example, you could
type: Add a navigation bar to this view.

ChatGPT animates the code update, showing changes line
by line as it works. The newly added NavigationView ap-
pears in the canvas, as shown in Figure 8.

Figure 9: The canvas action menu gives easy access to key features.

Boost Your iOS App Development with ChatGPT AI-Assistance

59codemag.com

I was working on some low-level C# code today, and Chat-
GPT was stuck in a loop of producing code that wouldn’t
compile. To get around this, I located the relevant .NET
class-level code file, copied it, and pasted it into the
chat. With that additional context, ChatGPT finally pro-
duced code that worked without a hitch. I was curious, so
I asked ChatGPT why it didn’t know about the existence
of the method I needed. It replied:

That's a great question! The reason I initially missed the
method is that I don’t have direct access to every library's
source code or detailed documentation unless provided
during our conversation. My suggestions are based on my
training, publicly available knowledge, and the context
you provide.

As another example, I was working on a simple Swift view
and asked ChatGPT How do I set the background color
of this view? I already knew the answer to this ques-
tion, but was testing ChatGPT’s knowledge. It suggested
a somewhat overcomplicated approach using a ZStack. I
suggested setting the background color directly on the
view and ChatGPT agreed that was a better solution. How-
ever, when I pasted a different page into the chat box and
asked the same question, it gave me the same overcom-

see, ChatGPT highlights specific lines of code and offers
improvement suggestions in a balloon on the right. I’ve
worked extensively with ChatGPT over the last few years
in both Swift and C# code, and it’s surprisingly good at
finding issues with your code.

At the top-right corner of the canvas, version control but-
tons allow you to go navigate between iterations of your
code or copy the current version to your clipboard. These
tools ensure that you can easily track your work.

All in all, Canvas Mode allows ChatGPT to not just be a
coding assistant, but a part of the development process.
Whether you’re editing, debugging, or porting code, the
features in Canvas Model make it a great tool for devel-
opers.

Holding ChatGPT Accountable
For all of its virtues, there are times when ChatGPT can
be very frustrating. It’s perfectly capable of generating
code that contains critical errors that prevent compila-
tion. Fortunately, in most cases, it provides a corrected
solution. However, there are times when resolving issues
requires more persistence and context.

Figure 10: ChatGPT can automatically add comments and log statements to your code.

Boost Your iOS App Development with ChatGPT AI-Assistance

60 codemag.com

plicated solution. I then asked: Why do you keep recom-
mending to use a ZStack when it’s not a best practice?

ChatGPT responded as shown in Figure 12, thanking me
for keeping it accountable! LOL.

Another common pitfall arises when asking ChatGPT to im-
prove or upgrade a class. For example, I’ve uploaded code
and requested general improvements or specific updates,
like upgrading to the latest version of a NuGet package.
About half the time, ChatGPT completely removes neces-
sary methods from the class without explanation.

Just yesterday, it removed a dozen essential methods
from a class. For each missing method, I asked if the
omission was intentional and each time it replied as
shown in Figure 13.

The takeaway here is this: You need a healthy measure of
caution when accepting code, advice, or solutions from
ChatGPT. You must understand the problem, the program-
ming language, and the relevant libraries well enough to

Figure 11: ChatGPT is surprisingly good at offering suggestions for improving your code.

Figure 12: ChatGPT may thank you for holding it accountable.

Figure 13: Beware of ChatGPT removing necessary code from your classes!

Boost Your iOS App Development with ChatGPT AI-Assistance

61codemag.com

Is the name TravelMapper already associated with exist-
ing travel-related applications?

ChatGPT responded:

The name TravelMapper is already associated with exist-
ing travel-related applications (and it provided a list of
these). Given the existing use of TravelMapper and similar
names in the travel app domain, it’s advisable to select a
unique name to avoid potential trademark conflicts and
ensure distinct branding.

ChatGPT then suggested a list of alternative names, from
which I chose TripNavigator. So, TripNavigator it is!
This will be the app we’ll build together in the upcoming
articles in this series. Stay tuned as we bring this idea to
life with ChatGPT’s help!

Conclusion
Integrating AI tools like ChatGPT into your iOS develop-
ment workflow can be a game-changer, transforming how
you approach coding challenges, streamline your process-
es, and even brainstorm creative ideas. By embracing its
strengths while keeping a watchful eye on its limitations,
you can make the most of its potential as a coding com-
panion rather than as a replacement for your expertise.
Although skepticism around AI assistance persists, the
developers who adapt and leverage these tools effectively
will be the ones shaping the future of development.

know when ChatGPT’s suggestions are off-base. Maintain-
ing a healthy level of skepticism ensures that you can
effectively navigate its limitations.

You need a healthy measure of
caution when accepting code,
advice, or solutions from ChatGPT.

Brainstorming App Ideas
ChatGPT is a great resource for brainstorming app ideas.
While writing this article, I asked ChatGPT the following
question:

I’m writing a set of four articles for CODE Magazine that
shows how to use ChatGPT as an AI assistant when build-
ing iOS apps. Give me five ideas for a sample app to in-
clude in these articles.

Here are the titles ChatGPT generated (it also provided
detailed descriptions and features for each, but I’ve listed
just the titles here):

1. TaskFlow: A Collaborative Task Manager
2. RecipeBuddy: A Smart Recipe Manager
3. FitTrack: A Personal Fitness Tracker
4. TravelMapper: A Trip Planning App
5. MoodJournal: A Mental Health and Wellness

App

I liked the TravelMapper idea. My wife and I recently took
a trip to Ireland. Although we used ChatGPT to help us
plan our itinerary, we did most of the work with pen and
paper. It would have been great to have an app stream-
line the process. Here’s the detailed app description Chat-
GPT gave us.

TravelMapper: A Trip Planning App
Concept: An app that allows users to plan trips, save
destinations, and explore activities near their locations.

Features:

• Add trip details like destination, dates, and activi-
ties.

• Display trips on an interactive map using MapKit.
• Show nearby attractions with real-time location up-

dates.
• Generate itineraries with suggested activities.
• Save trip memories with a photo journal.

Why it’s great:

• Highlights ChatGPT’s ability to assist with MapKit
and location services.

• Demonstrates real-time API integration for fetching
local attractions and weather data

Okay, I’m sold! This app idea was useful and shows the
potential of using ChatGPT as a development assistant.
However, before moving forward, I asked ChatGPT:

 Kevin J. McNeish

SPONSORED SIDEBAR:

Adding Copilots to
Your Apps

The future is here and
you don’t want to get left
behind. Unlock the true
potential of your software
applications by adding
Copilots.

CODE Consulting can
assess your applications
and provide you with
a roadmap for adding
Copilot features and
optionally assist you in
adding them to your
applications.

Reach out to us today
to get your application
assessment scheduled.
www.codemag.com/ai

Boost Your iOS App Development with ChatGPT AI-Assistance

62 codemag.comManaging Diverse Data Types in a Dataset with COLUMNTRANSFER

ONLINE QUICK ID 2503061

Gaurav Mittal
Gauravmittal1985@gmail.com

Gaurav Mittal is an
accomplished author and
international speaker,
recognized for his
published articles.
He has spoken at global
conferences and served
on several judging panels.
In addition to his
professional achieve-
ments, Gaurav actively
contributes to non-profit
organizations through
volunteer work.
Outside of work, he enjoys
spending time with his
children and playing sports.

Managing Diverse Data Types in a
Dataset with COLUMNTRANSFER
In real-world applications, datasets often include a variety of feature types, such as unstructured text, categorical, and numerical
columns. Preparing these mixed-feature datasets for machine learning requires a careful approach: first performing feature
selection to identify the most relevant columns, and then applying distinct preprocessing methods for each data type.

Managing different feature types effectively is essential
to ensure that the final model can leverage the unique
information each type provides.

In this article, I’ll demonstrate how to address such sce-
narios, sharing my experience working with a dataset that
included categorical, numerical, and unstructured text
columns after feature selection, and explaining the pre-
processing steps used to ready the data for model training.

Data Preparation
To prepare your data for machine learning, particularly
when working with a dataset that includes unstructured
text, categorical, and numerical features, using Column-
Transformer from SKLEARN.COMPOSE is an efficient ap-
proach.

To demonstrate a use case for ColumnTransformer, I’m
going to use an existing Kaggle Problem (https://www.
kaggle.com/datasets/nicapotato/womens-ecommerce-
clothing-reviews). The reason I’m choosing this dataset
is because it includes diverse datatypes in one dataset.
As you can see in the highlighted columns of Figure 1,
numerical columns are highlighted in yellow, categorical
columns are in green, and orange is used to highlight
unstructured text columns. Stopwords in the ReviewText
column are also highlighted in bold purple.

To create an ML model for such a dataset without using
ColumnTransformer, I’ll need to manually encode categori-
cal features, scale numerical features, or preprocess text
features. This can be complex and error-prone, especially
as the dataset grows or changes. Also, when process-
ing numerical and categorical features independently,
it breaks the smooth flow of data transformation that a

pipeline offers. Manual encoding creates a weak point in
the ML workflow as transformed features need to be con-
catenated back together manually. Using ColumnTrans-
former for this use case is an ideal choice.

In the beginning of the Python code, import all the librar-
ies in Listing 1.

Feature Engineering
Feature engineering is the process of creating new inputs,
called features, that help improve the performance of a
machine learning model. This process involves transform-
ing raw data into a more useful format that makes pat-
terns easier for the model to recognize. Feature engineer-
ing includes cleaning, modifying, or adding features to a
dataset so the model can understand it better.

Download this dataset to your local folder and read the
CSV file using READ_CSV command to load this dataset to
a DataFrame in Python. Exact commands for you to use
are shown in the following snippet and you can see the
output in Figure 2.

path = r\\Womens Clothing E-Commerce Reviews.csv
df = pd.read_csv(path)

Now, let’s perform common feature engineering steps to
prepare the DataFrame for building the pipeline, as you
can see in the snippet that follows.

1. Remove unnamed column 0.
2. Remove null rows from ‘Class name’, ‘Review

Text’, and ‘Title’.

df.drop(df.columns[0], axis=1, inplace=True)
df = df[~df['Class Name'].isnull()]

Figure 1: Raw Dataset with different datatypes highlighted in color

63codemag.com Managing Diverse Data Types in a Dataset with COLUMNTRANSFER

• For multiple columns: (Name, Transformer, [col-
umns])

• For a single text column: (Name, Transformer, col-
umn)

Name: A string that acts as an identifier. It’s useful for
setting parameters using set_params and enables search-
ing during grid search.

Transformer: Specifies the type of transformation. It can
be an estimator supporting fit and transform, or the val-
ues drop or passthrough. In this example, I’ll be using
the following transformations:

df = df[~df['Review Text'].isnull()]
df = df[~df['Title'].isnull()]

After feature engineering, the DataFrame should look like
Figure 3.

Until now, you haven’t verified the datatypes included in
the DataFrame. Let’s find out all the data types in this
DataFrame using code from the next snippet. You can see
the different datatypes as displayed in Figure 4.

df.dtypes

ColumnTransformer Class
When working with a DataFrame that has a mix of data
types, it’s essential to apply different preprocessing steps to
numeric, categorical, and text features before feeding them
into a machine learning model. Numeric features may re-
quire scaling, categorical features benefit from one-hot en-
coding or ordinal encoding, and text features typically need
vectorization techniques like TF-IDF or word embeddings.

The ColumnTransformer class in Python’s SKLEARN.COM-
POSE module offers an efficient way to handle datasets
with heterogeneous data types, allowing you to apply
multiple transformations to different feature types simul-
taneously within the same dataset. This approach ensures
that each feature type transforms appropriately, helping
better model performance. This class accepts up to six
parameters, out of which, two key parameters are trans-
formers and remainder.

Transformers Parameter
One of the key parameters for ColumnTransfer class ob-
ject, is a list of tuples specifying which transformer ob-
jects to apply to subsets of the data. Each tuple follows
one of the below mentioned formats.

#Imports
import numpy as np
import pandas as pd # type: ignore
import re
import string
Machine Learning Imports
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
Test Processing Imports
import nltk
from nltk.corpus import stopwords
from sklearn.preprocessing import OneHotEncoder
#word exrtaction
from sklearn.feature_extraction.text import CountVectorizer

Listing 1: Importing Necessary Libraries

Figure 2: Output of the READ_CSV command snippet

64 codemag.com

Pipeline Building
Setting up the ColumnTransformer class for the Pipeline
building involves the steps discussed in this next section.

Text Preprocessing
Use TfidfVectorizer or CountVectorizer for vectorizing
text data. In this case, you can remove stop words by
specifying stop_words='english' within the vectorizer.
An English stopwords list usually includes simple words
that don’t add any meaning and aren’t included in the
text analysis. Examples of these words are the, and is,
in, for, and it. These stopwords are frequently removed
to focus on more meaningful terms when processing text
data in natural language processing tasks such as text
classification or sentiment analysis. You can remove these
in the dataset using the STOPWORDS.words method.

Categorical Encoding Using OneHotEncoder
One-Hot Encoding is a method in ML used to convert cat-
egorical data into numerical data to enhance the accuracy
of the ML models. This encoding method is particularly
useful when dealing with non-ordinal categorical fea-
tures, where categories don’t have a natural ordering. In
one-hot encoding, each unique category within a feature
is transformed into a binary vector. For instance, if a fea-
ture Fruit has categories like Pear, Apple, and Mango,
one-hot encoding creates three new binary columns:
Fruit_Pear, Fruit_Apple, and Fruit_Mango. When an in-
stance has a specific category, the corresponding column
is set to 1, and the others are set to 0.

Numeric Scaling Using StandardScaler
StandardScaler is part of the sklearn.preprocessing mod-
ule in Python that’s used to adjust each feature to have a
mean of 0 and a standard deviation of 1. The purpose of

• StandardScaler for numeric columns
• CountVectorizer for unstructured text columns
• OneHotEncoder for categorical columns

[columns]: A list of columns from the dataset to which
the transformations will apply.

For the dataset in present example, I’ll be applying trans-
formations as explained below:

• SimpleImputer with constant filling for categorical
columns (['Division Name', 'Department Name'])

• CountVectorizer with STOPWORDS for the 'Review
Text' column

• simple CountVectorizer for the 'Title' column
• SimpleImputer with median filling for numerical

columns (['Clothing ID', 'Age', 'Rating', 'Recommend-
ed IND', 'Positive Feedback Count'])

By using these transformations in the ColumnTransform-
er class object, you can streamline preprocessing and di-
rectly feed the transformed data into a ML model.

Remainder Parameter
Now, let’s discuss the second key parameter, remainder.
This parameter manages any remaining columns in the
dataset for which you haven’t defined any specific trans-
formations in the transformers parameter. By default, re-
mainder is set to value drop, meaning that if you haven’t
specified any value for this parameter, the pipeline won’t
include the remaining columns in the final dataset. The
other possible value is passthrough, which allows these
columns to pass through unchanged. Selecting between
these options can have a significant impact on the ML
model accuracy.

Figure 3: Output of feature engineering

Managing Diverse Data Types in a Dataset with COLUMNTRANSFER

65codemag.com

unstructured textual data, with each type receiving di-
verse kinds of transformations. Further, I described how
the parameter remainder is set to either pass through or
drop the untransformed columns. These are flexible strat-
egies that help prepare heterogeneous data for machine
learning with the most appropriate preprocessing treat-
ment according to each feature type, thus, increasing the
effectiveness of the model.

scaling is to ensure that all numerical features contribute
equally to the model.

Listing 2 explains the exact Python methods and com-
mands used to define the object of the ColumnTrans-
former class to apply transformations in the example
dataset.

In Listing 2, you’re splitting the data into training and
test sets, with 80% of the data allocated for training
and 20% reserved for testing, ensuring consistent results
through a fixed random state.

Next, you’ll construct a pipeline to combine two main
components: ColumnTransformer object and a Random
Forest classifier for the prediction task. After building
the pipeline, you’ll train it on the training data to create
the prediction model. This structured approach ensures
consistent preprocessing and model training while pre-
venting data leakage between training and test sets, as
shown in the next snippet.

X = df.drop('Class Name', axis='columns')
y=df['Class Name']
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2,random_state = 42)
pipeline = Pipeline(steps=[
 ('feature_engineer', ct),
 ('RF', RandomForestClassifier (n_jobs=-1,
 class_weight='balanced'))
])
pipeline.fit(X_train, y_train)
preds = pipeline.predict(X_test)
print('accuracy %s' % accuracy_score(preds, y_test))
print(classification_report(y_test, preds))

Summary
In this article, you saw the usage of ColumnTransformer
in Python for applying customized transformations to nu-
meric, categorical, and unstructured textual data sepa-
rately. In turn, this allowed effective preprocessing of
columns containing numeric data, categorical data, and

STOPWORDS = (stopwords.words('english'))
catTransformer = Pipeline(steps
 'cat_imputer',
 SimpleImputer(
 strategy='constant',
 fill_value='missing'
)),
 ('cat_ohe',
 OneHotEncoder(
 handle_unknown='ignore')
)]
)
textTransformer_0 = Pipeline(steps=[
 ('text_bow',

 CountVectorizer(lowercase=True,
 \token_pattern=r"(?u)\b\w+\b",\
 stop_words=STOPWORDS))])
textTransformer_1 = Pipeline(steps=[(
 'text_bow1',
 CountVectorizer())
])
numeric_features = [

 'Clothing ID',
 'Age',
 'Rating',
 'Recommended IND',
 'Positive Feedback Count']
numTransformer = Pipeline(steps=[(
 'imputer',
 SimpleImputer(strategy='median')),
 ('scaler', StandardScaler())
])
ct = ColumnTransformer(
transformers=[
('cat', catTransformer,
 ['Division Name','Department Name']),
('num', numTransformer, numeric_features),
('text1', textTransformer_0, 'Review Text'),
('text2', textTransformer_1, 'Title')
],remainder='passthrough')
If no value is specified in remainder,
columns without transformations will be
removed from the dataset.
'drop' is the default value for remainder.

Listing 2: Steps for creating Data Preprocessing Pipeline

 Gaurav Mittal

SPONSORED SIDEBAR:

Stay Connected with
CODE Magazine on
LinkedIn

Join our professional
community on LinkedIn
to stay ahead in the tech
world.

Why Connect with Us?

Exclusive Content:
Get the latest tech insights
and articles.

Industry Updates:
Stay informed with cutting-
edge news.

Networking:
Connect with peers and
industry leaders.

Help us grow by sharing
with colleagues and friends.

Follow us today:
www.linkedin.com/
company/code-magazine

Figure 4: The data types in the DataFrame

Managing Diverse Data Types in a Dataset with COLUMNTRANSFER

66 Title article codemag.com

67Title articlecodemag.com

68 Title article codemag.com

69Title articlecodemag.com

70 Title article codemag.com

71Title articlecodemag.com

72 Title article codemag.com

73Title articlecodemag.com

74 Title article

Mar/Apr 2025
Volume 26 Issue 2

Group Publisher
Markus Egger

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Writers in This Issue
Joydip Kanjilal Sahil Malik
Kevin McNeish Gaurav Mittal
Paul D. Sheriff

Technical Reviewers
Markus Egger
Rod Paddock

Production
Friedl Raffeiner Grafik Studio
www.frigraf.it

Graphic Layout
Friedl Raffeiner Grafik Studio in collaboration
with onsight (www.onsightdesign.info)

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext. 26
tammy@code-magazine.com

Circulation & Distribution
General Circulation: EPS Software Corp.
Newsstand: Ingram Periodicals, Inc.
 International Bonded Couriers (IBC)
 Media Solutions
 Source Interlink International

Subscriptions
Circulation Manager
Colleen Cade
832-717-4445 ext. 28
ccade@codemag.com

US subscriptions are $29.99 USD for one year.
Subscriptions outside the US are $50.99 USD.
Payments should be made in US dollars drawn
on a US bank. American Express, MasterCard,
Visa and Discover credit cards accepted.
Back issues are available. For subscription
information, email subscriptions@code-magazine.com
or contact customer service at 832-717-4445 ext. 9.

Subscribe online at
www.code-magazine.com

CODE Developer Magazine
EPS Software Corporation / Publishing Division
6605 Cypresswood Drive, Ste 425, Spring, Texas 77379 USA
Phone: 832-717-4445

CODE COMPILERS

YOUR PARTNER
FOR CUSTOM
SOFTWARE
SOLUTIONS

CONTACT US TODAY. NO STRINGS. NO COMMITMENT.

codemag.com/code
832-717-4445 ext. 9 • info@codemag.com

©
sh

ut
te

rs
to

ck

REAL BUSINESS VALUE FOR AI CUSTOM APPLICATION DEVELOPMENT
TRAINING / MENTORING CONTINGENT IT STAFFING

Is your development team struggling to complete business-critical projects on time?
Are you looking to harness cutting-edge technologies, including Al, for maximum impact?

CODE EXCELS IN:
• AI integration for enhanced functionality
• .NET web and desktop development
• Azure cloud migration and transformation

• Blazor development
• Mobile app creation
• Staffing, training and mentoring

Let CODE transform your software challenges into competitive advantages.

UNLOCK
STAFFING
EXCELLENCE

STAFFING

Top-Notch IT Talent, Contract Flexibility, Happy Teams, and a
Commitment to Customer Success Converge with CODE Staffing

Our IT staffing solutions are engineered to drive your business forward while
saving you time and money. Say goodbye to excessive overhead costs and
lengthy recruitment efforts. With CODE Staffing, you’ll benefit from contract
flexibility that caters to both project-based and permanent placements. We
optimize your workforce strategy, ensuring a perfect fit for every role and
helping you achieve continued operational excellence.

Ready to Discuss Your IT Staffing Needs?

Visit our website to find out more about how we are changing
the staffing industry.

Website: codestaffing.com

Yair Alan Griver (yag)
Chief Executive Officer

Direct: +1 425 301 1590

Email: yag@codestaffing.com

